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@ A connection between
SMBH mass and
galaxy spheroid stellar
velocity dispersion

@ Power law: M x o¢,
a~5
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Summary

@ A connection between
SMBH mass and
galaxy spheroid stellar
velocity dispersion

@ Power law: M x o¢,
a~5

@ Value of o decreases

when galaxies are
separated by
morphological type

@ Implies co-evolution

between SMBH and the
host galaxy spheroid
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@ A connection between
SMBH mass and bulge
stellar mass

@ Almost linear (Haring &
Rix 2004), at least for
ellipticals

@ Implies similar growth
patterns for SMBH and
host galaxies
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@ A connection between
SMBH mass and bulge
stellar mass

@ Almost linear (Haring &
Rix 2004), at least for
ellipticals

@ Implies similar growth
patterns for SMBH and
host galaxies

@ Very large scatter
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SMBH-galaxy connection

Possible physical SMBH-galaxy connection

@ Connection cannot be gravitational:

G
Rinn = % ~ 10/\/7802_020 pc < Ry ~ 1 kpe

Summary
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SMBH-galaxy connection

Possible physical SMBH-galaxy connection

@ Connection cannot be gravitational:

G
R = % ~ 10Mgoyg pe < Ry =~ 1 kpe (1)

@ But can be energetic:

Eucer = Min€? =~ 2 x 1087 1 Mg erg > B, ~ Myo? ~ 8 x 10%8 M0y, ere
(2)
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SMBH-galaxy connection

Possible physical SMBH-galaxy connection

@ Connection cannot be gravitational:

G
R = % ~ 10/\/’80'2_020 pc < Ry ~ 1 kpc (1)

@ But can be energetic:

Eucer = nMyn % = 2 10%1g 1 Mg erg > Eyy = Myo® = 8 x 10% Myyo5yq erg
2)
@ The question then becomes how can energy be
communicated to the bulge at a ~ 0.5% efficiency.
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Basic wind properties

Accretion disc wind

@ Radiation pressure in the accretion disc drives a wind
(King & Pounds 2003):

_ o2 D
Pw = M Vw = TLAGN Vw = Vese & 1770; EW = M\;Vw = 7—7-77LAGN
3)
n= Laon .om= —MW (4)
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Basic wind properties

Accretion disc wind

@ Radiation pressure in the accretion disc drives a wind
(King & Pounds 2003):

. i ) 2 2
pw = MWVW = TLACGN; Vw = Vese & LmnC; EW = M\;VW = 7—7-77LAGN
_ 3)
= _bovy oo My (4)
IWAGNC2 Macc

@ The wind is quasi-spherical and self-regulates to keep
7 ~ 1 (single-scattering limit) (King 2010)
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Basic wind properties

Accretion disc wind

@ Radiation pressure in the accretion disc drives a wind
(King & Pounds 2003):

) . . M 2 2
Pw = MWVW = TLACGN; Vw = Vese & LmnC; EW = \;VW = 7—7-77LAGN
_ 3)
= _bovy oo My (4)
IWAGNC2 Macc

@ The wind is quasi-spherical and self-regulates to keep
7 ~ 1 (single-scattering limit) (King 2010)

@ Winds likely to be intermittent (e.g. Pounds & Vaughan
2012)



Q>



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues Summary
000 0@0000 000000 000

Basic wind properties

Observed winds (UFQOs)

@ Winds are detected via blueshifted FeXXV and FeXXVI
absorption, indicating very high ionisation parameters
£~ 108
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Basic wind properties

Observed winds (UFQOs)

@ Winds are detected via blueshifted FeXXV and FeXXVI
absorption, indicating very high ionisation parameters
£~ 108

@ Observed in ~ 40% of local AGN (Tombesi et al. 2010)

Summary
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absorption, indicating very high ionisation parameters
£~ 108

@ Observed in ~ 40% of local AGN (Tombesi et al. 2010)

@ Wind velocities fall in range v, = 0.03 — 0.3c (Reeves et
al. 2003, Tombesi et al. 2010)
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Basic wind properties

Observed winds (UFQOs)

@ Winds are detected via blueshifted FeXXV and FeXXVI
absorption, indicating very high ionisation parameters
£~ 108

@ Observed in ~ 40% of local AGN (Tombesi et al. 2010)

@ Wind velocities fall in range v, = 0.03 — 0.3c (Reeves et
al. 2003, Tombesi et al. 2010)

@ Spatial extent r,, < 1 pc
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Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

B 3um,v2

Tsh—W:WX 109, K (5)
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Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)
2
Ty = 3pm, vy,
16kp

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc

~1.3 x10"%¢, K (5)
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Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

3um,v2
16kp

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc

@ Hot wind bubble pushes against the surrounding gas and
causes it to expand on a timescale f.x,

T = ~1.3 x10"%¢, K (5)



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues Summary
000 00e000 000000 000

Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

3um,v2
16kg

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc

@ Hot wind bubble pushes against the surrounding gas and
causes it to expand on a timescale f.x,

@ fc/tp increases with radius, determines type of outflow:

T = ~1.3 x10"%¢, K (5)
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Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

3um,v2
Ty = “hT0 %
16ks

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc

@ Hot wind bubble pushes against the surrounding gas and
causes it to expand on a timescale f.x,

@ fc/tp increases with radius, determines type of outflow:

o Close to the AGN, ¢/t < 1, cooling is efficient, outflow is
driven by wind momentum

~1.3 x10"%¢, K (5)
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Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

B 3um,v2
Tan = 16kg

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc

@ Hot wind bubble pushes against the surrounding gas and
causes it to expand on a timescale f.x,
@ fc/tp increases with radius, determines type of outflow:
o Close to the AGN, ¢/t < 1, cooling is efficient, outflow is
driven by wind momentum
e Far from the AGN, &/, > 1, cooling is inefficient, outflow
is driven by wind energy

~1.3 x10"%¢, K (5)
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Wind shock

Wind shock

@ Wind shocks against the surrounding ISM; post-shock
temperature (assumed uniform)

3um,v2
Ty = “hT0 %
16ks

@ Shocked wind cools by inverse Compton scattering against
the AGN radiation field, with a cooling time fc
@ Hot wind bubble pushes against the surrounding gas and
causes it to expand on a timescale f.x,
@ fc/tp increases with radius, determines type of outflow:
o Close to the AGN, ¢/t < 1, cooling is efficient, outflow is
driven by wind momentum
e Far from the AGN, &/, > 1, cooling is inefficient, outflow
is driven by wind energy
e The transition radius at which i/, = 1 is known as the
cooling radius

~1.3 x10"%¢, K (5)
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Wind shock

AGN winds and outflows

shock front

(momentum and .-
pressure cunsmcd)\} £ wind shock
- (thermalized energy rapidly

lost to cooling,

conserved)

momentum-driven outflow

SMBH
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shocked,
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wind
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wind shock
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Large-scale outflows
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only ram pressure g

contact discontinuity
(momentum and
pressure conserved)

Outstanding issues

ISM shock

{thermalized energy

rapidly lost to cooling,
only ram pressure

congerved)
shocked,
adiabatically
expanding ISM
ISM

(E = nLpg/3)

1SM shock =

(energy conscrved)

Summary

Zubovas & King (2012)
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)

@ More realistically, the wind is a two-temperature plasma
(Faucher-Giguére & Quataert 2012):
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)
@ More realistically, the wind is a two-temperature plasma
(Faucher-Giguére & Quataert 2012):
e Electrons cool down very rapidly

Summary
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)

@ More realistically, the wind is a two-temperature plasma
(Faucher-Giguére & Quataert 2012):

e Electrons cool down very rapidly
e Most of the energy is in protons

Summary
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)
@ More realistically, the wind is a two-temperature plasma
(Faucher-Giguére & Quataert 2012):
e Electrons cool down very rapidly
e Most of the energy is in protons

e Electron-proton energy exchange inefficient, cooling also
inefficient
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Wind shock

Cooling radius

@ If the shocked wind is treated as a uniform plasma,
Rc ~ 500 pc (King 2003)
@ More realistically, the wind is a two-temperature plasma
(Faucher-Giguére & Quataert 2012):
e Electrons cool down very rapidly
e Most of the energy is in protons
Electron-proton energy exchange inefficient, cooling also
inefficient
o Effective Rc < 1 pc
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Wind shock

Wind shock in clumpy medium

@ A realistic ISM has uneven density

@ Most of the wind energy escapes through low-density
channels (Zubovas & Nayakshin 2014)

Summary
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Wind shock

Wind shock in clumpy medium

@ A realistic ISM has uneven density

@ Most of the wind energy escapes through low-density
channels (Zubovas & Nayakshin 2014)

@ Dense clouds, which can feed the SMBH, are affected
mostly by the AGN wind momentum

Summary
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Wind shock

Wind shock in clumpy medium

@ A realistic ISM has uneven density
@ Most of the wind energy escapes through low-density
channels (Zubovas & Nayakshin 2014)

@ Dense clouds, which can feed the SMBH, are affected
mostly by the AGN wind momentum
@ Two types of outflow still occur:

Summary
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Wind shock

Wind shock in clumpy medium

@ A realistic ISM has uneven density

@ Most of the wind energy escapes through low-density
channels (Zubovas & Nayakshin 2014)

@ Dense clouds, which can feed the SMBH, are affected
mostly by the AGN wind momentum

@ Two types of outflow still occur:

e Dense gas experiences a momentum-driven outflow and
evaporation in the surrounding hot diffuse plasma



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues Summary
000 00000e 000000 000

Wind shock

Wind shock in clumpy medium

@ A realistic ISM has uneven density

@ Most of the wind energy escapes through low-density
channels (Zubovas & Nayakshin 2014)

@ Dense clouds, which can feed the SMBH, are affected
mostly by the AGN wind momentum
@ Two types of outflow still occur:

e Dense gas experiences a momentum-driven outflow and
evaporation in the surrounding hot diffuse plasma

e Diffuse gas and evaporating dense clouds experience an
energy-driven outflow
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Q Large-scale outflows
@ Momentum-driven outflow
@ Energy-driven outflow
@ Wind-outflow connection
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AGN winds and outflows

shock front
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ISM shock

{thermalized energy

rapidly lost to cooling,
only ram pressure

congerved)
shocked,
adiabatically
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ISM

(E = nlrga/3)

1SM shock =

(energy conscrved)

Zubovas & King (2012)
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Momentum-driven outflow

Momentum-driven outflow

@ Small-scale outflow, E < 103 Lagn

@ Can only escape to large distances if AGN wind

momentum rate is higher than the weight of the dense gas
clouds
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Momentum-driven outflow

Momentum-driven outflow

@ Small-scale outflow, E < 103 Lagn

@ Can only escape to large distances if AGN wind
momentum rate is higher than the weight of the dense gas
clouds

@ This condition gives a required luminosity:

4fgcg4

Lagy > Lot = G ~ 4.6 x 10460300 erg s ! (6)



SMBH-galaxy connection AGN winds Large-scale outflows

Outstanding issues Summary
000 000000 900000

000
Momentum-driven outflow

Momentum-driven outflow

@ Small-scale outflow, E < 103 Lagn

@ Can only escape to large distances if AGN wind
momentum rate is higher than the weight of the dense gas
clouds

@ This condition gives a required luminosity:

4f,c
LagNn > Leic = —éa“ ~ 4.6 x 10460300 erg s (6)
@ Assuming that this is the Eddington luminosity, this
translates to a critical mass
fok

Msypr > Mo = Wg—Gza“ ~3.7 x 108030 My (7)
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Momentum-driven outflow

Momentum-driven outflow

@ Small-scale outflow, E < 1073 Lagn

@ Can only escape to large distances if AGN wind
momentum rate is higher than the weight of the dense gas
clouds

@ This condition gives a required luminosity:
4f,c
o

@ Assuming that this is the Eddington luminosity, this
translates to a critical mass

Lagy > Lot = ~ 4.6 x 10460300 erg s ! (6)

fok
Msypr > Mo = Wg—Gza“ ~3.7 x 108030 My (7)
@ The calculated M. (o) is rather similar to, but with a lower
exponent value than, the observed M — o correlation
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Momentum-driven outflow

M — o relation

@ Galaxies of different
morphological types and in
different environments have
different ISM and different
requirements for the AGN
luminosity:

Summary
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Momentum-driven outflow

M — o relation

@ Galaxies of different
morphological types and in
different environments have
different ISM and different
requirements for the AGN
luminosity:

@ The constant factor in the
M. (o) expression is higher in
ellipticals than in spirals and in
cluster galaxies than in field
galaxies



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues Summary
000 000000 0@0000 000

Momentum-driven outflow

M — o relation

@ Galaxies of different
morphological types and in
different environments have
different ISM and different
requirements for the AGN
luminosity:

e The constant factor in the
M. (o) expression is higher in
ellipticals than in spirals and in
cluster galaxies than in field
galaxies

o The same is true for o
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Momentum-driven outflow

M — o relation
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@ Galaxies of different
morphological types and in
different environments have
different ISM and different
requirements for the AGN
luminosity:

e The constant factor in the
M. (o) expression is higher in
ellipticals than in spirals and in
cluster galaxies than in field

100 200 400 galaxies

Velocity dispersion, km/s

Zubovas & King (2013)

@ The same is true for o

@ The resulting correlation has a
steeper slope, closer to observed
(Zubovas & King 2013)
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Energy-driven outflow

Energy-driven outflow

@ Once the black hole mass Msypa > M., or if there is

sufficiently diffuse gas close to the SMBH, the outflow
becomes large-scale

Summary
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Energy-driven outflow

Energy-driven outflow

@ Once the black hole mass Msypa > M., or if there is

sufficiently diffuse gas close to the SMBH, the outflow
becomes large-scale

@ Shocked wind is adiabatic, Eyy =~ Ey ~ 0.05LagN

Summary
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Energy-driven outflow

Energy-driven outflow

@ Once the black hole mass Msypa > M., or if there is

sufficiently diffuse gas close to the SMBH, the outflow
becomes large-scale

@ Shocked wind is adiabatic, Eyy =~ Ey ~ 0.05LagN

@ Typical outflow velocities Vo, ~ 10% km s~!, mass flow
rates Moy ~ 10°M, yr—1

Summary
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Energy-driven outflow

Energy-driven outflow

@ Once the black hole mass Mgy > M, or if there is
sufficiently diffuse gas close to the SMBH, the outflow
becomes large-scale

@ Shocked wind is adiabatic, Eyy =~ Ey ~ 0.05LagN

@ Typical outflow velocities Vo, ~ 10% km s~!, mass flow
rates Moy ~ 10°M, yr—1

@ Outflow momentum Py ~ 20Lagn/C

Summary
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Energy-driven outflow

Energy-driven outflow

@ Once the black hole mass Mgy > M, or if there is
sufficiently diffuse gas close to the SMBH, the outflow
becomes large-scale

@ Shocked wind is adiabatic, Eyy =~ Ey ~ 0.05LagN

@ Typical outflow velocities Vo, ~ 10% km s~!, mass flow
rates Moy ~ 10°M, yr—1

@ Outflow momentum Py ~ 20Lagn/C

@ These predictions (Zubovas & King 2012) agree very well
with observations (Cicone et al. 2014)

Summary
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Energy-driven outflow

Observed outflow properties

Outstanding issues
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Summary
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Energy-driven outflow

Effect on galactic scales

@ Outflow is powerful enough to remove most gas from
galaxy spheroid on timescales shorter than star formation
timescale (Feruglio et al. 2010, Cicone et al. 2014)



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues
[e]e]e}

Summary
000000 000000 000

Energy-driven outflow

Effect on galactic scales

@ Outflow is powerful enough to remove most gas from
galaxy spheroid on timescales shorter than star formation
timescale (Feruglio et al. 2010, Cicone et al. 2014)

@ Outflowing gas cools rapidly (Zubovas & King 2014,
Richings & Faucher-Giguere), f.o0 < tayn, forms molecular

clumps, might lead to star formation within the outflow
(Maiolino et al. 2017)
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Energy-driven outflow

Effect on galactic scales

@ Outflow is powerful enough to remove most gas from
galaxy spheroid on timescales shorter than star formation
timescale (Feruglio et al. 2010, Cicone et al. 2014)

@ Outflowing gas cools rapidly (Zubovas & King 2014,
Richings & Faucher-Giguere), f.o0 < tayn, forms molecular
clumps, might lead to star formation within the outflow
(Maiolino et al. 2017)

@ Outflow has very high pressure:

Pou  (Vou\2 [ Ra)? Ri\?.

Plisc - ( g ) Rout ~ 25 Rout ' (8)
this compresses gas in the galactic disc and can trigger or
enhance star formation there (Zubovas et al. 2013)
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Wind-outflow connection

Wind-outflow connection
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Tombesi et al. (2015)



0 SMBH-galaxy connection
© AGN winds

@ Basic wind properties
@ Wind shock

o

Large-scale outflows
@ Momentum-driven outflow
@ Energy-driven outflow

@ Wind-outflow connection
° Outstanding issues

@ Wind mass flow rate
@ Temporal AGN variability
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@ Model assumption: m= 1, i.e.
My, = My

DA
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Wind mass flow rate

Wind mass flow rate

@ Model assumption: m= 1, i.e.
Mw = Macc

@ This isn’t true in general: disc
feeding process doesn’t know
about the central SMBH mass
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Wind mass flow rate

Wind mass flow rate

@ Model assumption: m= 1, i.e.

1000 ; T T MW = Macc
L SR {1 @ Thisisn’t true in general: disc
I st SR ] feeding process doesn’t know
s AN o about the central SMBH mass
* 'E i i : ~ E . . . .
byt @ Preliminary 1.5D simulation
oE 253 Mgy AN 3 results suggest that m ~ 10;
-m-253Myr” AN .
oor | . 1 winds have lower vy, but
o~ L - higher py, and Ey,

SMBH mass, M,

Naujalis, Zubovas & Semionov
(in prep)
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Wind mass flow rate

Wind mass flow rate

@ Model assumption: m= 1, i.e.

1000 ; T T MW = Macc
L SR 1 @ Thisisn't true in general: disc
I st SR ] feeding process doesn’t know
g A T about the central SMBH mass
5 1k - " - N E . . .
i @ Preliminary 1.5D simulation
e 253 Moyt O E results suggest that m ~ 10;
-m-253Myr” AN .
oor | . 1 winds have lower vy, but
- - - higher p,, and E,,
SMBH mass, Mo @ However, parts of the wind

might ‘fail’ and become the
torus, so the escaping wind
may have M, similar to M,

Naujalis, Zubovas & Semionov
(in prep)
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Temporal AGN variability

Multiple AGN episodes

@ AGN episodes are short

(tagn ~ 10° yr), outflow lifetimes
are long (fou > 1 Myr)
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Temporal AGN variability

Multiple AGN episodes

@ AGN episodes are short
(tagn ~ 10° yr), outflow lifetimes
are long (fyu > 1 Myr)

@ Outflow correlations might be
broken as the AGN fades
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AGN winds
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Multiple AGN episodes
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@ AGN episodes are short
(tagn ~ 10° yr), outflow lifetimes
are long (fu > 1 Myr)

@ Outflow correlations might be
broken as the AGN fades

@ Correlations preserved if
Lagn (t) o< t~ with exponent
a~ 1
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Temporal AGN variability

Multiple AGN episodes
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@ AGN episodes are short
(tagn ~ 10° yr), outflow lifetimes
are long (fou > 1 Myr)

@ Outflow correlations might be
broken as the AGN fades

@ Correlations preserved if
Lagn (t) o< t~ with exponent
a~ 1

@ Later AGN episodes can
illuminate the outflow, but do not
break correlations either



SMBH-galaxy connection
[e]e]e}

Temporal AGN variability

AGN winds
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Multiple AGN episodes
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Large-scale outflows
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Outstanding issues

@ AGN episodes are short
(tagn ~ 10° yr), outflow lifetimes
are long (fou > 1 Myr)

@ Outflow correlations might be
broken as the AGN fades

@ Correlations preserved if
Lagn (t) o< t~ with exponent
a~ 1

@ Later AGN episodes can
iluminate the outflow, but do not
break correlations either

@ Observed correlations might be
an upper limit to outflow
properties

Summary
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Temporal AGN variability

Correlations as upper limits
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@ AGN winds are a powerful source of energy affecting
galaxy evolution:

«O>» «Fr « > «

>

DA



SMBH-galaxy connection AGN winds Large-scale outflows Outstanding issues Summary
000 000000 000000 000

Summary

@ AGN winds are a powerful source of energy affecting
galaxy evolution:
e AGN wind momentum establishes the M — ¢ relation by
cutting off the SMBH gas supply
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Summary

@ AGN winds are a powerful source of energy affecting
galaxy evolution:
e AGN wind momentum establishes the M — ¢ relation by
cutting off the SMBH gas supply
e Energy-driven AGN outflows clear gas out of galaxies and
affect star formation
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Summary

@ AGN winds are a powerful source of energy affecting
galaxy evolution:
e AGN wind momentum establishes the M — ¢ relation by
cutting off the SMBH gas supply
e Energy-driven AGN outflows clear gas out of galaxies and
affect star formation

@ Theoretical predictions agree very well with observed wind
and outflow properties
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Summary

@ AGN winds are a powerful source of energy affecting
galaxy evolution:
e AGN wind momentum establishes the M — ¢ relation by
cutting off the SMBH gas supply
e Energy-driven AGN outflows clear gas out of galaxies and
affect star formation

@ Theoretical predictions agree very well with observed wind
and outflow properties

e But there are certain complications and outstanding issues
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