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Topics to be Covered
• Lecture 1: AGN properties and taxonomy, 

fundamental physics of AGNs, AGN structure 
• Lecture 2: The broad-line region, emission- 

line variability, reverberation mapping 
principles, practice, and results, the radius– 
luminosity relationship, AGN outflows and 
disk-wind models 

• Lecture 3: AGN luminosity function and its 
evolution, role of black holes, direct/indirect 
measurement of AGN black hole masses, 
relationships between BH mass and 
AGN/host properties, “industrial scale” 
reverberation mapping
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Cosmic Evolution 
of AGNs

• Very luminous AGNs 
were much more 
common in the past. 

• The “quasar era” 
occurred when the 
Universe was 10-20% 
its current age.
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Modern Surveys

• Recent surveys are 
detecting luminous 
AGNs at very high 
redshift and large 
numbers of quasars 
at intermediate 
redshift.

SDSS quasars
with z > 5.7
Fan 2006
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Largest Known Redshifts 



High-z Quasars
• Current highest quasar 

redshift z 
 

7.1
– Supermassive black 

holes appeared within a 
few hundred million 
years of the Big Bang

– Metals in their spectra 
indicate processing in 
stars already occurred.

Fan et al. 2001

Vestergaard & Osmer 2009
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Evolution of the QSO Luminosity 
Function

• Density evolution: 
quasars “turn off” and 
luminosity function 
translates downward.

• Several problems, most 
importantly that local 
density of very luminous 
quasars is 
overpredicted.

Density
evolution
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Evolution of the QSO Luminosity 
Function

• Luminosity evolution: 
quasars just become 
fainter with time.

• Does not agree with 
observation that most 
quasars are emitting 
near the Eddington 
limit: the typical nearby 
quasar is about 50 
times fainter than it 
would have been at z 

 2.

Luminosity
evolution
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Evolution of the AGN Luminosity 
Function

• Because we can now 
observe lower- 
luminosity AGNs at 
high-z, our view of 
evolution of the 
luminosity function 
has changed in the 
last decade.

• Preferred scenario is 
now “luminosity- 
dependent density 
evolution” (LDDE) or 
“cosmic downsizing.” Comoving density of

2dF+SDSS quasars at different
luminosities.
Croom et al. 2009
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Cosmic 
Downsizing

• The space density of 
lower-luminosity 
AGNs peaks later in 
time than that of 
luminous AGNs.
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Evolution of the AGN Luminosity 
Function

• Luminosity- 
dependent 
density 
evolution is 
most clearly 
seen in the X- 
rays
– Low-luminosity 

systems are 
accessible at 
high z in X- 
rays

X-ray luminosity function
Brandt & Hasinger 2005
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Supermassive Black Holes Are Common
• Supermassive black 

holes are found in 
galaxies with large central 
bulge components.

• These are almost 
certainly remnant black 
holes from the quasar 
era.

• To understand accretion 
history, we need to 
determine black-hole 
demographics. M 87, a giant elliptical

SMBH > 3109 M



Relationship Between Black Hole 
Mass and Host Galaxy Properties

• Remarkable since BH 
constitutes 0.5% of the 
mass of the bulge.

• Indicates a close 
(evolutionary?) 
relationship between BH 
growth/bulge formation?
– Do these evolve over 

time?
• Do supermassive black 

holes affect their host 
galaxies?MBH – Lbulge relationship

MBH – * relationship

Marconi & Hunt 2004
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A Current Paradigm: Feeding and 
Feedback

• Supermassive black holes are “active” if there 
is a large reservoir of gas to “feed” them.
– Quasars were more common in the past because 

less gas was locked up in stars; galaxies were gas 
rich.

• Once a quasar reaches a high-enough 
luminosity, energetic “feedback” (radiation, 
winds, jets) from quasars (and massive 
stars?) heats or removes the ISM, shutting 
down star formation.
– There is thus a close correlation between black 

hole mass and galaxy mass.
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Role of Quasars in Galaxy Formation 
(or why galaxy formation theorists suddenly like 

quasars…)

• Models of galaxy formation predict that 
massive galaxies should still have large 
reservoirs of gas and active star 
formation.

• Feedback from accretion onto 
supermassive black holes might provide 
the energy necessary to regulate 
cooling and subsequent star formation. 
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Does This Represent an 
Evolutionary Sequence?

Schawinski et al. 2007Mass 

A
ge

 

Orange dots: Quiescent early-type galaxies
Gray dots: Non-early type galaxies
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Evolution of the MBH –* and 
MBH –Lbulge Relationships

• Some claims for evolution of the MBH –* 
MBH –Lbulge relationships, other claims for 
no evolution, or even no causal relation.

• To test this, we must use (indirect) scaling 
methods for strong UV emission lines for 
luminous and distant quasars. 
– One direct (dubious) black hole mass 

measurement at z = 2.17 (Kaspi et al. 2007). 
No others at z > 0.3.
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Measuring Central Black-Hole Masses
• Virial mass measurements based on motions 

of stars and gas in nucleus.
– Stars

• Advantage: gravitational forces only
• Disadvantage: requires high spatial resolution

– larger distance from nucleus  less critical test

– Gas
• Advantage: can be observed very close to nucleus, high 

spatial resolution not necessarily required
• Disadvantage: possible role of non-gravitational forces 

(radiation pressure)
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Virial Estimators

Source Distance from 
central source    

X-Ray Fe K 3-10 RS 
Broad-Line Region 200104 RS 
Megamasers 4 104 RS 
Gas Dynamics 8 105 RS 
Stellar Dynamics 106 RS 

 

 
In units of the Schwarzschild radius 
RS = 2GM/c2 = 3 × 1013 M8 cm .

Mass estimates from the
virial theorem:

M = f (r V 2 /G)
where
r = scale length of

region
V = velocity dispersion
f = a factor of order 

unity, depends on
details of geometry
and kinematics
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Direct vs. Indirect Methods
• Direct methods are based on 

dynamics of stars or gas accelerated by 
the central black hole.
– Stellar dynamics, gas dynamics, 

reverberation mapping
• Indirect methods are based on 

observables correlated with the mass of 
the central black hole.
– MBH –* and MBH –Lbulge relationships, 

fundamental plane, AGN scaling 
relationships (RBLR –L)



21

“Primary”, “Secondary”, and 
“Tertiary” Methods

• Depends on model-dependent assumptions 
required.

• Fewer assumptions, little model dependence:
– Proper motions/radial velocities of stars and 

megamasers (Sgr A*, NGC 4258+)
• More assumptions, more model dependence:

– Stellar dynamics, gas dynamics, reverberation 
mapping

• Since the reverberation mass scale currently depends on 
other “primary direct” methods for a zero point, it is 
technically a “secondary method” though it is a “direct 
method.”
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Reverberation 
Mapping Results

• Reverberation lags 
have been measured 
for ~50 AGNs, 
mostly for H, but in 
some cases for 
multiple lines.

• AGNs with lags for 
multiple lines show 
that highest 
ionization emission 
lines respond most 
rapidly  ionization 
stratification
– Highest ionization 

lines are also 
broadest!



A Virialized 
BLR

• V 
 

R –1/2 for 
every AGN in 
which it is 
testable.

• Suggests that 
gravity is the 
principal 
dynamical force 
in the BLR.
– Caveat: 

radiation 
pressure! 

Peterson & Wandel 2002

Mrk 110

Kollatschny 2003

Bentz+ 2009
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Reverberation-Based Masses

2
BH /M f r V G 

Observables:
r = BLR radius (reverberation)
V = Emission-line width

“Virial Product” (units of mass)

Set by geometry and inclination
(subsumes everything we don’t know)

If we have independent measures of MBH , we
can compute an ensemble average <f >
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Measuring the Emission-Line 
Widths

• We preferentially 
measure line widths in 
the rms residual 
spectrum.
– Constant features 

disappear, less 
blending.

– Captures the velocity 
dispersion of the gas 
that is responding to 
continuum variations.

Grier+ 2012, ApJ, 755:60



26

AGN MBH –* Relationship
• Assume zero point of 

most recent quiescent 
galaxy calibration.
f 

 
= 4.19 ± 1.08

• Maximum likelihood 
places an upper limit on 
intrinsic scatter        
log MBH ~ 0.40 dex.
– Consistent with 

quiescent galaxies.
Grier+ 2013, ApJ, 773:90

AGN
AGN, new H-band *
Quiescent galaxy
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The AGN MBH –Lbulge Relationship
• Line shows best-fit to 

quiescent galaxies
• Maximum likelihood 

gives upper limit to 
intrinsic scatter       
log MBH ~ 0.17 dex.
– Smaller than 

quiescent galaxies 
(log MBH ~ 0.38 dex).



Black Hole Mass Measurements 
(units of 106 M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ± 0.1 N/A N/A
Stellar dynamics 33 ± 2 7–20 47+11

-14 †
Gas dynamics 25 – 260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ± 1.7 46 ± 5

Quoted uncertainties are statistical only, not systematic.

References: see Peterson (2010) [arXiv:1001.3675]
† Onken et al., in preparation
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Reverberation-Based Masses
• Combine size of BLR with 

line width to get the 
enclosed mass:

MBH = f (r V 2 /G)
• Without knowledge of the 

BLR kinematics and 
geometry, it is not possible 
to compute the mass 
accurately or to assess 
how large the systematic 
errors might be.
– Low-inclination thin disk (f 

 1/sin2 i ) could have a huge 
projection correction.
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Plausible BLR Geometry
• Unified models suggest 

that Type 1 AGNs are 
observed at inclinations 
0º 

 
i 

 
~45º.

– Lags are unaffected if 
axial symmetry and 
isotropic line emission

– Line widths can be 
severely affected by 
inclination.

• A “generalized thick 
disk” parameterization:

A plausible disk-wind concept
based on Elvis (2000)


2 2

1
( sin )f a i

Collin et al. (2006)
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Evidence Inclination Matters
• Relationship between R 

(core/lobe) and FWHM.
– Core-dominant are more face-on 

so lines are narrower.
Wills & Browne 1986

• Correlation between radio and 
FWHM
– Flat spectrum sources are closer 

to face-on and have smaller line 
widths

• radio > 0.5: Mean FWHM = 6464 
km s-1

• radio < 0.5: Mean FWHM = 4990 
km s-1

• Width distribution for radio-quiets 
like flat spectrum sources (i.e., 
closer to face-on)
Jarvis & McLure 2006
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Stellar and gas dynamics requires resolving the black hole radius of influence r*

Quiescent galaxies (stellar, gas dynamics, megamasers)

Reverberation AGNs

BH
2*
*

GMr 
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Masses of Black Holes in Quasars
• Stellar and gas dynamics 

requires higher angular 
resolution to proceed 
further.
– Even a 30-m telescope will 

not vastly expand the 
number of AGNs with a 
resolvable r*.

• Reverberation is the 
future path for direct AGN 
black hole masses.
– Trade time resolution for 

angular resolution.
– Downside: resource 

intensive. • Quiescent galaxies
• RM AGNs

To significantly increase number of 
measured masses, we need to go to 

secondary methods.
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The RL Relation

• Empirical slope ~0.55 ± 
0.03

• For H
 

over the calibrated 
range (42 

 
log L5100 

(ergs s-1) 
 

46 at z 
 

0), 
R-L is nearly as effective 
as reverberation.

Bentz+ 2013
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Measuring the Emission-Line 
Widths

• Trickier in “mean” or 
“single-epoch” spectra 
because of blending.

• Another important 
issue is how to 
characterize the line 
width:
– FWHM?
– Line dispersion?

Grier+ 2012, ApJ, 755:60
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Characterizing Line Widths
FWHM:


 

Trivial to measure


 

Less sensitive to blending 
and extended wings

Line dispersion line :


 

Well defined


 

Less sensitive to narrow-line 
components



 

More accurate for low-contrast lines

  2
0

22
0

2
line /     dPdP


line

FWHM


6 2/1)2ln2(2 32 22
2.45 2.833.462.35

Some
trivial

profiles:
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H
 

Profiles in NLS1s 
Have Low Values of 

FWHM/line
• This matters 

because their black 
hole masses 
depend on the line 
width measure 
(squared!).

• Systematically shifts 
NLS1s away from 
other AGN masses.
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Incorrect Choice Introduces Bias 
Based on Line Width

• The importance of this 
is that the masses are 
shifted systematically
– In this case, the high- 

Eddington rate objects 
have smaller masses for 
FWHM than for line

• Leads to incorrect BH 
mass function and other 
troubles...
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The Sub-Eddington Limit

Steinhardt & Elvis 2010

• The most massive 
black holes seem to be 
unable to approach the 
Eddington limit.
Steinhardt & Elvis 2010

• Line widths used were 
from Gaussian fits to 
broad emission lines.
Shen, Greene, et al. 2008
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Rafiee & Hall 2011

The sub-Eddington limit vanishes when the masses
are based on line measured directly from the spectra
instead of FWHM from a Gaussian fit.

line -based FWHM-based
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Direct Observational Test: 
Mass Must Be Constant

• Only NGC 5548 has 
much dynamic range
– line is slightly favored, 

but only slightly



Black Hole Mass Measurements 
(units of 106 M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ± 0.1 N/A N/A
Stellar dynamics 33 ± 2 7–20 47+11

-14

Gas dynamics 25 – 260 20+10
-4 30+7.5

-22

Reverberation N/A 7.63 ± 1.7 46 ± 5
Indirect Methods:
MBH –* 13 25 6.1
R–L scaling N/A 15 65

References: see Peterson (2010) [arXiv:1001.3675]
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Cosmological Applications
• Because the RL 

relationship has so 
little scatter, 
cosmological 
applications are 
possible.

• R  L  DL

Watson, Denney, Vestergaard, & Davis 2011
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Reverberation Mapping Goals

• Determine geometry and kinematics of 
BLR

• Determine black hole masses
• Calibrate scaling relationships for indirect 

black hole mass estimates
• Determine/confirm cosmological 

parameters
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Reverberation Mapping Goals
• Geometry and kinematics of BLR

– Velocity-resolved RM (expensive!)
• Black hole masses 

– High accuracy (~50% or better)
• Velocity-resolved RM (expensive!)

– Moderate accuracy (factor of ~35)
• Mean lag measurement (moderately expensive)
• High S/N single spectra + scaling relationships (somewhat 

expensive)

– Low accuracy (order of magnitude)
• Survey-quality single spectra + scaling relationships 

(inexpensive. But you get what you pay for)
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Reverberation Mapping Goals
• Calibrate scaling relationships for indirect 

black hole mass estimates
– H

 
RL well-characterized with intrinsic 

scatter ~0.13 dex
– Still somewhat of an open issue for other lines

• Or is it?
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Guerras, Kochanek + 2012

Independent confirmation 
of RL from microlensing,
including high-ionization
lines.

RM measurements,
low ionization lines

Microlensing,
Low-ionization lines

RM measurements,
high-ionization lines

Microlensing,
high-ionization lines
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Reverberation Mapping Goals
• Calibrate scaling relationships for indirect 

black hole mass estimates
• Cosmological applications

These require measurement of BLR size, 
preferably in a large number of sources.
Are there less expensive ways to do this?
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Sparse 
Sampling

• If you have a good 
continuum light 
curve, you can get 
by with more 
sparsely sampled 
line light curves
– Especially if you use 

multiple lines with 
different lags

Barth+ 2011

Zw 229-015 (Kepler field)
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“Stacked Spectra” 
or Extremely Sparse Sampling

• A minimal number of 
line measurements 
can be probabilistically 
matched to a 
particular lag with 
good continuum 
sampling.
– Can be done with as 

few as two spectra, 
though fidelity low.

Fine+ 2013
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Photometric Reverberation
• The Great Hope:

– If we can get emission-line lags from ground- 
based broad-band data, we can get 
thousands of BLR radii and black hole 
masses efficiently.

– With surveys like Pan-STARRS and LSST, we 
can get the monitoring data essentially for 
free.

• R-L for cosmology for free!
• Add one (high-quality) spectrum per target to get 

masses.
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Photometric Reverberation
• The Great Challenge: 

– The line flux is typically a small part of the 
total waveband flux.

– Line flux variations are relatively small. 
line

var
filter

EWF FF FWHM
  

60 Å (0.10 0.06) 0.006 0.004
940 Å

F
F

       
 

Estimating these quantities for H
 

in Johnson B-band:

Typical photometric errors are /F ~ 0.01



53

Photometric Reverberation
• Approaches: 

line
var

filter

EWF FF FFWHM
   

Stronger line, e.g., H

Narrower filter
Reduce photometric errors

Caution: As with spectroscopic reverberation, time sampling and
duration remain important issues.



R-L Relationship for Mg II 2798
• Little reverberation 

data on Mg II 2798
– Existing lag data 

ambiguous, 
particularly those that 
are contemporaneous 
with Balmer lines.

– Relies on assumption 
that Mg II arises co- 
spatially with Balmer 
lines.

Metzroth, Onken, & Peterson (2006)
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R-L Relationship for Mg II 2798
• From SDSS spectra, 

Shen et al. (2008) find

with scatter ~0.11 dex.

McGill et al. (2008)

McLure & Jarvis (2002)

 
 

 

FWHM(H )log 0.0062 dex
FWHM(Mg II)

Shen et al. (2008)
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R-L Relationship for Mg II 2798

• Onken & Kollmeier 
find that the line width 
ratio has dependence 
on Eddington ratio 
and is correctable.

Onken & Kollmeier 2008
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R-L Relationship for C IV 1549
• First used by Vestergaard 

(2002) to estimate BH masses 
at high-z.

• Pros:
– Limited data suggest same R-L 

slope as H

 

(despite Baldwin 
Effect).

– Consistent with virial relationship, 
at least in low-luminosity AGNs.

• Cons:
– Often strong absorption, usually in 

blue wing.
– Extended bases (outflows), 

especially in NLS1s.

Kaspi et al. 
(2007)



Other Scaling 
Relationships

Bonning et al. 2005

• The width of the narrow [O III] 5007 
line can be used as a surrogate for 
the stellar velocity dispersion. 

• Intrinsic scatter: 0.10 – 0.15 dex.

Greene & Ho 2005

Bonning et al. 2005, Gaskell 2009



Other Scaling 
Relationships

• There are other luminosity 
indicators that can be used 
as proxies for RBLR :
– 2-10 keV flux. Scatter: 0.26 

dex
– Flux H

 

broad component. 
Scatter: 0.22 dex.

– Flux [O III] 5007. Scatter: 
0.29 dex.

– Flux [O IV] 25.8m. Scatter: 
0.35 dex.

• These are useful when 
uncontaminated continuum 
is difficult or impossible to 
measure.

Greene et al. 2010



Phenomenon: Quiescent
Galaxies

Type 2
AGNs

Type 1
AGNs

Measurement of Central Black Hole Masses: The Mass Ladder

Direct
Methods:

Stellar, gas
dynamics

Stellar, gas
dynamics

MegamasersMegamasers 1-d
RM
1-d
RM

2-d
RM
2-d
RM

Fundamental
Empirical
Relationships:

MBH – * AGN MBH – *

Indirect
Methods:

Fundamental
plane:

e , re  * 
 MBH

[O III] line width
V  *  MBH

Broad-line width V
& size scaling with

luminosity
R 

 

L1/2  MBH

Application:
High-z AGNsLow-z AGNs

BL Lac 
objects
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Scaling Relationships: 
Use with Caution

• When you think you’re measuring mass, 
you’re really measuring

• When you think you’re measuring 
Eddington ratio, you’re really measuring

   2 1/2 2
BH ( ) ( )M R V L V

  
 

1/2
1/2 2 2

Edd BH ( )
L L L L
L M L V V
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Summary of Key Points

• Direct methods of mass measurement:
– Most dynamical methods are limited by angular 

resolution to nearest tens of Mpc.
– Reverberation mapping is effective even at large 

distances, but currently limited by systematics and 
dependence on other methods for calibration.

• Indirect methods:
– Can be used for large samples, but less reliable for 

individual sources.
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