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Topics to be Covered
•

 
Lecture 1: AGN properties and taxonomy, 
fundamental physics of AGNs, AGN structure 

•
 

Lecture 2: The broad-line region, emission-
 line variability, reverberation mapping 

principles, practice, and results, the radius–
 luminosity relationship, AGN outflows and 

disk-wind models 
•

 
Lecture 3: AGN luminosity function and its 
evolution, role of black holes, direct/indirect 
measurement of AGN black hole masses, 
relationships between BH mass and 
AGN/host properties, “industrial scale”

 reverberation mapping
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A Caveat: “Buyer Beware”

•
 

The AGN phenomenon is complicated.
•

 
Any attempt to cover it in a few lectures 
will be biased.

•
 

In these lectures, I will try to focus on very 
fundamental properties, black hole 
masses in particular.
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“Active Galactic Nuclei (AGN)”
•

 
The phrase “active nucleus”

 
was originally used by V.A. 

Ambartsumian
 

in 1968
–

 

“the violent motions of gaseous clouds, considerable excess 
radiation in the ultraviolet, relatively rapid changes in brightness, 
expulsions of jets and condensations”

 

Ambartsumian 1970

•
 

First use in paper title: Dan Weedman
 

(1974)
–

 

“nuclei that contain extensive star formation or luminous non-

 
thermal sources”

 

BAAS, 6, 441

•
 

First use in PhD dissertation title: Jean Eilek
 

(1975)
–

 

“Cosmic Ray Acceleration of Gas in Active Galactic Nuclei”
University of British Columbia
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“Active Galactic Nuclei (AGN)”
•

 
“Activity”

 
was usually taken to mean “radio source”, 

although sometimes also meant “starburst”
•

 
Came to be used to encompass “Seyfert galaxies”

 
and 

“quasars”
–

 

“…energetic phenomena in the nuclei, or central regions, of 
galaxies which cannot be attributed clearly and directly to stars.”

 
Peterson 1997, An Introduction to Active Galactic Nuclei 

•
 

Modern definition: “Active nuclei are those that emit 
radiation that is fundamentally powered by accretion 
onto supermassive (> 106

 

M

 

) black holes.”
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Properties of AGNs

•
 

Strong X-ray emission
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Properties of AGNs

•
 

Strong X-ray emission
•

 
Non-stellar 
ultraviolet/optical 
continuum emission

X-rays

-rays
Radio

Infrared Optical/UV
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Properties of AGNs

•
 

Strong X-ray emission
•

 
Non-stellar 
ultraviolet/optical 
continuum emission

•
 

Relatively strong radio 
emission
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Properties of AGNs

•
 

Strong X-ray emission
•

 
Non-stellar 
ultraviolet/optical 
continuum emission

•
 

Relatively strong radio 
emission

•
 

UV through IR spectrum 
dominated by strong, 
broad emission lines.

Not every AGN shares all of these characteristics.



AGN Classification
•

 
There are three major 
classes of AGNs:
–

 

Seyfert galaxies
–

 

Quasars
–

 

Radio galaxies

Radio galaxies

Object Quasars Seyferts FR I FR II

Luminosity High Low Low High

Accretion 
rate

High High Low Low

LINERs are somewhat problematic in this classification.
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Seyfert Galaxies

•
 

Spiral galaxies with 
high surface 
brightness cores
–

 
Spectrum of core 
shows strong, broad 
emission lines

NGC 4151
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Quasars

•
 

“Quasar”
 

is short for 
“quasi-stellar radio 
source”.
–

 
Discovered in 1960s 
as radio sources.

–
 

Radio astronomy was 
an outgrowth of radar 
technology developed 
in the Second World 
War
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Radio Galaxies

•
 

Most radio sources 
were found to be 
associated with 
galaxies.

•
 

However, some of the 
radio sources were 
high Galactic latitude 
(out of the Galactic 
plane) star-like 
sources.

The radio galaxy
Centarus

 
A
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Quasars
•

 
These “radio stars”

 had a somewhat 
“fuzzy”

 
appearance.

•
 

Some radio stars 
had linear features 
like “jets”.

•
 

These unusual 
sources were thus 
“quasi-stellar radio 
sources”. The brightest (still!)

quasi-stellar source, 3C 273
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Optical Studies of Quasi-
 Stellar Radio Sources

•
 

Optical observations of 
these sources were 
made with the Hale 5-

 m telescope on Mt. 
Palomar.

•
 

Early spectra were 
confusing. In 1963, 
Maarten Schmidt 
identified features as 
redshifted emission 
lines.

Maarten Schmidt (left) and
Allan Sandage
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H H H

4000 Å 5000 Å 6000 Å

First Spectrum of 
3C 273

HH H

3C 273

Comparison

HH
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Quasi-Stellar Sources
•

 
The spectral lines in 
3C 273 are highly 
redshifted:

•
 

This is comparable 
to the most distant 
clusters of galaxies 
known in 1963.

3C 273

0.158z 



 
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The Brightest Objects in the 
Universe

•
 

For 3C 273, the large 
redshift implies:
–

 
D 

 
680 Mpc

–
 

3C 273 is about 100 
times brighter than 
giant galaxies like the 
Milky Way or M 31.

The Andromeda Galaxy M 31
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And Now Another Surprise...

•
 

Shortly after their 
discovery, quasars 
were found to be 
highly variable in 
brightness.

•
 

Rapid variability 
implies that the 
emitting source must 
be very small.
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Source “Coherence”

•
 

A variable source must be smaller than 
the light-travel time associated with 
significant variations in brightness.

t

time

br
ig

ht
ne

ss

D = ct
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Amplitude of Optical Variability

The mean absolute
value at each t is
the “structure function”.
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Sizes of Quasars
•

 
Variability on time scales as short as one day implies 
sources that are less than one light day in size.

•
 

A volume the size of our Solar System produces the 
light of a nearly a trillion  (1012 ) stars!

•
 

This ushered in a two-decade controversy about the 
nature of quasars redshifts.
–

 

Weedman's

 

premise: this wouldn’t have happened had not 
the original Seyferts

 

and original quasars been such extreme 
members of their respective classes



Seyferts
 

and Quasars
•

 
Modern view:
–

 

Seyferts

 

are lower-luminosity AGNs
–

 

Quasars are higher-luminosity AGNs
•

 
View in the 1960s:
–

 

Seyferts

 

are relatively local spiral galaxies with rather abnormally bright 
cores

–

 

Quasars are mostly unresolved, high redshift, highly luminous, 
variable, non-stellar radio sources

NGC 4051
z = 0.00234

log Lopt

 

= 41.2

PG 0953+414
z = 0.234

log Lopt

 

= 45.1

Mrk 79
z =0.0222 

log Lopt

 

= 43.7
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Finding Quasars
•

 
That quasars are 
very blue compared 
to stars was 
recognized early.

Optical color selection allows
us to bypass the difficult 
radio identification by using
“UV excess”.



Quasi-Stellar Objects

•
 

Most of these blue 
star-like sources are 
like the radio-selected 
quasars, but are 
radio-quiet. 

•
 

These became 
generically known as 
“quasi-stellar 
objects”, or QSOs.

Spitzer-era mean SED from 
Shang et al. (2006)

“Big Blue Bump”

Elvis et al. (1994)

Big 
Blue

Bump 
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AGN Taxonomy

•
 

Khachikian
 

and 
Weedman

 
(1974) 

found that Seyfert 
galaxies could be 
separated into two 
spectroscopic 
classes.
–

 
Type 1 Seyferts

 
have 

broad and narrow 
lines
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AGN Taxonomy

•
 

Khachikian
 

and 
Weedman

 
(1974) 

found that Seyfert 
galaxies could be 
separated into two 
spectroscopic 
classes.
–

 
Type 1 Seyferts

 
have 

broad and narrow 
lines

–
 

Type 2 Seyferts
 

have 
only narrow lines



28

AGN 
Taxonomy

•
 

Narrow-line Seyfert 1 
(NLS1) galaxies are 
true broad-line objects, 
but with an especially 
narrow broad 
component, FWHM < 
2000 km s-1

Osterbrock & Pogge 1985
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AGN 
Taxonomy

•
 

Heckman (1980) 
identified a class 
of Low-Ionization 
Nuclear Emission 
Region (LINER) 
galaxies.
–

 
Lower ionization 
level lines are 
stronger than in 
Sy

 
2
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AGN Taxonomy
•

 
BL Lac objects 
share many quasar 
properties (blue, 
variable, radio 
sources), but have 
no emission or 
absorption lines.
–

 
Appear to be 
quasars observed 
along the jet axis

–
 

Are often subsumed 
into a larger class 
called blazars.



AGN Paradigm circa 1995

•
 

Black hole plus 
accretion disk

•
 

Broad-line region
•

 
Narrow-line region

•
 

Dusty “obscuring 
torus”

•
 

Jets (optional?)

Urry & Padovani 1995
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Driving Force in AGNs

•
 

Simple arguments suggest AGNs are 
powered by supermassive black holes
–

 
Eddington limit requires M 

 
106 M

 

for
 moderately luminous Seyfert galaxy with L 

 1044

 
ergs s-1

–
 

Requirement is that self-gravity exceeds 
radiation pressure

Key insights: Salpeter 1964; Zel’dovich & Novikov 1964; Lynden-Bell 1969
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•
 

Energy flux

•
 

Momentum flux

•
 

Force due to radiation

•
 

This must be less than 
gravity

rad 24
F LP
c r c

 

24
LF
r



rad rad 24
e

e
LF P

r c



 

2 2

38 -1

4
4 1.26 10 ergs s

e

e

L GMm
r c r

Gcm ML M
M









 
    

 

“The Eddington Limit”
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–
 

Potential energy of infalling
 

mass m is 
converted to radiant energy with some 
efficiency 

 
so E = mc2

–
 

Potential energy is U = GMBH

 

m/r
–

 
Energy dissipated at ~10 Rg

 

where Rg

 

= 
GMBH

 

/c2

 
(to be shown)

–
 

Available energy:

–
 

Thus the efficiency of accretion   0.1

2BH BH
2

BH

0.1 0.1
10 /g

GM m GM mU mc
R GM c

  

Compare to hydrogen fusion 4H  He with = 0.007
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Eddington Rate

•
 

Accretion rate 
necessary to attain 
Eddington luminosity 
is the maximum 
possible

•
 

Eddington rate is ratio 
of actual accretion 
rate to maximum 
possible

17
-1Edd BH

Edd 2

1.47 10 gm sL MM
c M 

 
   

 



Edd

Mm M   
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Accretion Disks

•
 

Angular momentum of 
infalling

 
material will 

lead to formation of 
an accretion disk.

2 4BH

1/4

BH
3

2
2

( )
4

GM ML r T
r

GM MT r
r

 



 

 
  
 




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3/41/4

5 1/4
8

g

( ) 3.7 10 K
10

BHM rT r m
M R

   
         



Assuming that QSO SED 
peak at 1000 Å

 
represents 

accretion disk, Wien’s law 
tells us T 

 
5105

 

K.

For MBH

 

= 108

 

M

 

, 
R 

 
10 Rg

 

.
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Other Quasar Properties
•

 
Quasars as radio sources
–

 
High spin, conservation of 
B field leads to jet 
formation

–
 

Jets are common, but 
apparently not mandatory

•
 

Quasars as X-ray sources
–

 
All highly accreting objects 
are X-ray sources

–
 

Hard X-rays (~ 10 keV) are 
the surest identifier of an 
active nucleus
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Even Quiescent Galaxies Should 
Harbor Black Holes

•
 

The comoving
 

space 
density of quasars was 
much higher in the past 
(z ~ 2 –

 
3); where are 

they now?
•

 
Integrated flux density of 
quasars reveals the 
integrated accretion 
history of black holes. 
(Soltan 1982)
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Evidence for Supermassive Black 
Holes

•
 

NGC 4258: H2

 

O megamaser 
radial velocities and proper 
motions give a mass 4 ×107M

 

.

•
 

Milky Way: 
Stars orbit a 
black hole of 
2.6 ×106M

 

.
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Evidence for Supermassive Black 
Holes

•
 

In the case of AGNs, 
reverberation 
mapping of the broad 
emission lines can be 
used to measure 
black hole masses.
–

 
Later elaboration

2
1/2

BH
V RM V R
G


   
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The Broad-Line 
Region

•
 

UV, optical, and IR 
permitted lines have 
broad components
–

 
1000 ≤

 
FWHM ≤

 25,000 km s–1

–
 

Spectra are typical of 
photoionized gases at 
T 

 
104

 

K
–

 
Absence of forbidden 
lines implies high 
density

•

 

C III] 1909 

 
ne

 

<1010

 

cm–3 
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Photoionization Equilibrium 
Modeling

•
 
Tool of long standing in AGNs 

Davidson & Netzer 1979

•
 
Simple photoionization models are 
characterized by:

1)
 

Shape of the ionizing continuum
2)

 
Elemental abundances

3)
 

Particle density
4)

 
An ionization parameter U that is proportional to 
ratio of ionization rate to recombination rate
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The (Dimensionless) Ionization 
Parameter U

ion

ion ( ) LQ H d
h









 

ion
2

H

( )
4
Q HU

r cn


Rate at which H-ionizing photons
are emitted by source.

Ratio of ionizing photon density
at distance r from source to 
particle density.

Davidson 1972
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A Simple Model

•
 

Assumptions:
–

 

AGN-like continuum
–

 

Solar abundances
–

 

Fixed density 1011

 

cm–3

–

 

Maximum column 
density

•
 

Output product:
–

 

Predicted flux ratios as 
a function of U

•
 

Conclusion:
–

 

Best fit to AGN 
spectrum is U 

 

10–2



Photoionization Model of the BLR 
in NGC 4151

•
 

Limitations:
–

 

Single-cloud model cannot 
simultaneously fit low and 
high-ionization lines.

–

 

Energy budget problem: 
line luminosities require 
more than 100% of the 
continuum energy

Ferland & Mushotzky 1982
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Broad-Line Profiles

•
 

For the most part, 
broad-line profiles tell 
us little about 
kinematics.



Double-Peaked Emission Lines
•

 
A relatively small 
subset of AGNs have 
double-peaked profiles 
that are characteristic of 
rotation.
–

 
Tendency to appear in 
low accretion-rate 
objects

–
 

Disks are not simple; 
non-axisymmetric.

–
 

Sometimes also seen in 
difference or rms 
spectra.

NGC 1097
Storchi-Bergmann et al. 2003
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Luminosity Effects
•

 
Average line spectra 
of AGNs are 
amazingly similar 
over a wide range of 
luminosity.

•
 

Exception: Baldwin 
Effect
–

 
Relative to continuum, 
C IV

 

1549 is weaker 
in more luminous 
objects

–
 

Origin unknown SDSS composites, by luminosity
Vanden

 

Berk

 

et al. (2004)
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Dust Reverberation
•

 
Near-IR continuum 
variations follow 
those of the 
UV/optical with a 
time-delay:
–

 
Time delays are 
longer than broad-

 lines
–

 
Time delays 
consistent with dust 
sublimation radius:

Suganuma et al. 2006

1/2 2.8

UV sub
sub 46 -11.3 pc

10 ergs s 1500 K
L Tr


   

    
   
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Dust Reverberation

•
 

IR continuum is due to 
reprocessed UV/optical 
emission at the closest 
point to the AGN that dust 
can survive.

•
 

This probably occurs at the 
inner edge of the obscuring 
torus.

•
 

All emission lines are 
inside rsub

 

: the BLR ends 
where dust first appears.

H

All lines

Suganuma et al. 2006



52

The Narrow-
 Line Region
•

 
200 < FWHM < 1000 km s–1

•
 

Partially resolvable in 
nearby AGNs

•
 

In form of “ionization cones”

Falcke, Wilson, & Simpson 1998
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NLR Spectra characterized by 
very high ionization lines
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Photoionization Modeling

•
 

Advantages relative to BLR:
–

 
Kinematics less ambiguous 

–
 

Can use forbidden-line temperature and 
density diagnostics

–
 

Forbidden lines are not self-absorbed
•

 
Disadvantage relative to BLR:
–

 
Dust! 
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Measuring 
Density

•
 

Low density: radiative de-
 excitation, emissivity 

 
ne

2

•
 

High density: collisional
 

de-
 excitation competes, so 

emissivity 
 

ne

•
 

Cross-over point occurs at 
critical density ncrit

 

where 
radiation de-excitation rate = 
collisional

 
de-excitation rate

–

 

ncrit

 

([S

 

II] 6716) = 1.5 103

 

cm–3

–

 

ncrit

 

([S

 

II] 6731) = 3.9 103

 

cm–3
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Measuring 
Temperature

•
 

As temperature 
increases, [O III] 
4363 increases in 
strength relative to [O 
III] 4959, 5007 
because of increasing 
collisional

 
excitation 

of 1S0

 

level.
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Narrow-Line Profiles
•

 
Typically blueward

 asymmetric, 
indicating outflow and 
obscuration of far 
(redward) side.
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Narrow Line Widths
•

 
Correlate with:
–

 
Critical density

•

 

Gas near ncrit

 

emits most 
efficiently

–
 

Excitation potential
•

 
Interpretation:
–

 
Consistent with higher 
densities and higher 
excitation closer to 
accretion disk, in 
deeper gravitational 
potential
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Size of the Narrow-Line Region

2 -1 -3 -1(H ) = (H ) ergs s cm ster
4e eff
hj n   


R

r

r

r

r

r

For Nc

 

clouds, total emitting volume is Nc

 
 

4r 3/3
Define filling factor 

 
such that 4R3/3 = 

Nc

 

4r 3/3
2

25 3 -14H ) (H ) 1.24 10 ergs s
3

( enj d dVL R     

For L(H) = 1041

 

ergs s–1, ne

 

= 103

 

cm –3, we get R = 20 1/3

 

pc.
Typically, R 

 
100 pc, so   0.01.
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Mass of the Narrow-Line Region

3 6
NLR e

4 10
3 pM R n m M   
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The “Obscuring Torus”
•

 
The answer to the 
question: “why don’t 
Seyfert 2s have broad 
lines?”

•
 

Osterbrock
 

(1978) 
suggested this since a 
simple absorbing medium 
would:
–

 

Redden the continuum
–

 

Completely obscure the 
continuum as well as the 
BLR

Type 1 Type 2
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The “Obscuring Torus”
•

 
The key to making 
this work is scattering 
by material in the 
throat of the torus.
–

 
Prediction: scattering 
introduces 
polarization, with E 
vector perpendicular to 
axis

Type 1 Type 2
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Spectropolarimetry of Seyfert 2 
Galaxies

•
 

Spectropolarimetry of 
the nuclei of Type 2 
Seyferts

 
shows Type 

1 spectra in polarized 
light, as predicted.
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Unification Issues and the NLR

•
 

Problems with the 
torus:
–

 
Theoretical size much 
larger than IR cores of 
nearby AGN

–
 

Models are unstable
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Unification Issues and the NLR

•
 

Solution: replace “doughnut”
 

with system of 
small, dusty clouds
–

 
Increase emitting area

–
 

Better reproduces spectrum
–

 
Increases emitting area, smaller system

–
 

Can explain changes of AGN type

Elitzur 2006
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Unification Issues and the NLR

•
 

A naïve expectation is that the narrow-line 
spectra of Sy

 
1 and Sy

 
2 are the same.

•
 

Type 1 objects have stronger high-ionization 
lines.

•
 

These are probably formed in the “throat”
 

of 
the torus.

Elitzur 2006

High-ionization narrow lines
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Unification Issues and the NLR
•

 
At low luminosity, Type 2 AGNs outnumber Type 1 
AGNs by 3:1

•
 

High luminosity Type 2s (“Type 2 quasars) are 
exceedingly rare.

•
 

Can be explained by a “receding torus”.
–

 

Model below can explain apparent difference in how the 
projected size of the NLR scales differently in Type 1 and Type 
2 objects.

Type 1: r 
 

L0.44

Type 2: r 
 

L0.29

Bennert et al. 2006
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Summary of Key Points
•

 
Apparently all massive galaxies have 
supermassive black holes at their 
centers.

•
 

Black holes accreting mass are “active 
galactic nuclei”.

•
 

A broad range of AGN phenomena are 
attributable to differences in inclination, 
luminosity, and Eddington accretion 
rate.
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