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Abstract

Systematic measurements of the in-plane fluctuation magnetoconductivity in a YBa2Cu3O72d single crystal are presented.
Fields up to 500 mT were applied either parallel or perpendicular to the Cu–O planes. The data reveal the occurrence of
Gaussian-fluctuation regimes far from the transition. Closer toTc, the results clearly show the occurrence of a genuine critical
regime, where the exponent is consistent with predictions for the 3DXY universality class with model-E dynamics. Still closer
to Tc, evidence is found for a fluctuation regime beyond 3DXY. This new scaling can be interpreted as revealing an ultimate
first-order character of the superconducting transition in YBa2Cu3O72d. q 1999 Elsevier Science Ltd. All rights reserved.
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Thermodynamic fluctuations are observed in equilibrium
and transport properties of high-Tc superconducting
cuprates (HTSC) in large temperature intervals above and
below the normal–superconductor transition [1]. Far above
Tc, experiments can be interpreted in terms of Gaussian
fluctuations of the order parameter [2–5]. Closer toTc, care-
ful studies of the specific heat [6,7], penetration depth [8],
and electrical conductivity [9–11] are now consistently
revealing effects of genuine critical fluctuations for a transi-
tion belonging to the three-dimensional (3D)XY universal-
ity class. It has been shown that the 3D-XY thermodynamics
is robust even under weak to moderate magnetic fields
[9,11–13]. However, the 3DXY model describes the critical
behavior of a neutral superfluid with a two-component
scalar order parameter, such as liquid4He [14]. As a super-
conductor is achargedsuperfluid, coupling of the order
parameter to fluctuations of the electromagnetic field should
be taken into account. Then, the superconducting transition
may become weakly first-order, as suggested from a
renormalization-group analysis by Halperin, Lubensky,

and Ma [15]. It has been presumed that the reduced tempera-
ture interval where the transition reveals its first-order char-
acter, if existing [16], is very small and too close toTc to be
experimentally studied. Indeed, despite the considerable
amount of detailed critical-behavior investigations in
HTSC, authors do not refer to any evidence of a first-
order pairing transition.

It is the purpose of this letter to report the existence of a
power-law regime in the normal-phase fluctuation conduc-
tivity of YBa2Cu3O72d (YBCO) which occur at reduced
temperatures smaller than those where the 3D-XY scaling
is identified. We will argue here that this new fluctuation
regime may be indicating the ultimate first-order character
of the superconducting transition in YBCO.

Our measurements were performed on a single-crystal
sample, grown by a self-flux method in a YSZ crucible
[17]. Oxygenation was performed for 6 days at 5008C.
The crystal is uniformly micro-twined, and presents an
oxygen content between 6.90 and 6.92. In-plane resistivity
measurements were performed with a low-frequency, low-
current AC technique which employs a lock-in amplifier as a
null detector. Four in-line electrical contacts were silver
painted on the sample. Magnetic fields in the range 0–500
mT could be applied either parallel or perpendicular to the
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Cu–O2 layers. The uncertainty in the field orientation is
smaller than 38. Temperatures were determined with a Pt
sensor which has an accuracy of 1–2 mK and was corrected
for magnetoresistance effects. Data points were recorded
while increasing or decreasing the temperature in rates of
3 K/h or smaller, in order to assure that effects of thermal
gradients were absent.

Our method of analysis is based on the numerical deter-
mination of the quantity [9]

xs � 2
d

dT
ln Ds ; �1�

where the fluctuation conductivityDs is obtained by
subtracting from the measured conductivity the high-
temperature regular termsR � 1=�a 1 bT� extrapolated to
the vicinity ofTc. Assuming that for low magnetic fields the
field-dependent fluctuation conductivity diverges as a
simple power-law [18],

Ds�T;B� � A12l
; �2�

where1 � �T 2 Tc�B��=Tc�B�, in analogy with the Kouvel-
Fisher method for analyzing critical phenomena, we obtain

x21
s � 1

l
�T 2 Tc� : �3�

Thus, the simple identification of a linear temperature beha-
vior in plots ofx21

s versusT allows the simultaneous deter-
mination ofTc and the critical exponentl. Once determined
the temperature range where scaling is observed, the critical
amplitudeA may be calculated from Eq. (2).

The main sources of uncertainties in our analysis come
from numerical calculation of temperature derivatives, and
from the extrapolation procedure to estimatesR. These
errors, however, tend to be small at the transition, where a
significant fraction of the total conductivity is due to fluc-
tuations. Moreover, in order to minimize uncertainties, we
performed the measurements, for each applied field, gener-
ally in four runs, two raising and two lowering the tempera-
ture. Power-law regimes were searched for in the data sets
corresponding to each run. The resulting exponents were
then averaged over the runs.

In Fig. 1 we show the resistive transition at zero field for
our YBCO sample. In panel (a) we plot the measured resis-
tivity as a function ofT in a narrow temperature range
around Tc. The inset shows the resistivity in a larger
temperature interval, which allows the determination of
the regular contribution, represented by the fitted straight
line. In panel (b) of Fig. 1 the transition is shown asx21

s

versusT. Two straight lines are fitted to thex21
s data. The

one farthest fromTc is labeled by the exponentlG � 0:5,
and corresponds to a regime dominated by 3D Gaussian
fluctuations [19]. The critical amplitude corresponding to
this regime allows us to calculate the coherence length
perpendicular to the Cu–O2 layers [20]. We obtain
jc�0� � 0:11�^0:01� nm, which falls in the range of the
most accepted values for this quantity. The lower tempera-
ture limit of the Gaussian region gives an estimation of the
Ginzburg number, for which we obtain Gi� 0:005. The
straight line labeled by the exponentl�2�cr � 0:17 identifies
a critical scaling regime beyond 3DXY that will be
discussed in the following paragraphs. The existence of
such a regime was first noticed in Ref. [21]. A fluctuation-
conductivity regime characterized by a small exponent was
also reported in thin films of YBCO/Au composites [22].
Below the temperature region where this new regime is
observed, we can see that the transition is rounded off. We
interpret this as a finite-size effect due to the twin bound-
aries, since the studied sample is uniformly micro-twined, as
we remarked before.

In Fig. 2 we show representative measurements of
x21
s �T�, for low applied fields, in the narrow temperature

interval wherecritical fluctuations of the conductivity are
observed. Both panels show that the genuine critical regime
in YBCO has an internal structure. At least two power law
regimes can be discerned. Fig. 2(a) is typical of results
obtained in very low applied fields (m0H # 4 mT). It
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Fig. 1. Superconducting transition in YBCO plotted as (a) in-plane
resistivity versus temperature and (b) inverse of the logarithmic
derivative of the conductivity,x21

s , versusT. The quoted fluctuation
conductivity exponents are determined from the slopes of the
straight lines shown. The inset in panel (a) shows a representative
measurement in an extended temperature range, with the regular
contribution fitted to a straight line. The uppermost data point of
the main plot is indicated by the arrow in the inset.



shows that when the temperature is decreased towardsTc,
and beyond the GaussianlG-interval, we first observe a
narrow region where the exponent isl�1�cr � 0:33�^0:04�,
followed by a new regimecharacterized by the exponent
l�2�cr � 0:17�^0:02�. This regime, which has a width of at
most 0.1 K, is absent for fields abovem0H � 5 mT (H k ab).
For higher applied fields, and up tom0H . 100 mT when
H k ab and 40 mT whenH k c; x21

s behaves as represented
in Fig. 2(b). The regime withl�1�cr � 0:33 is still observed,
but the applied field enhances the rounding off of the
transition closer toTc, where an effective power-law regime
with exponent ~l . 0:23 can be discerned. The amplitudes
for the two relevant critical power laws are independent
of the magnitude and orientation of the applied field.
We obtain A�1� � 0:75�^0:03�mV:cm and A�2� �
0:34�^0:01�mV:cm, respectively for the regimes asso-
ciated with l�1�cr and l�2�cr .

We turn now to the interpretation of our experimental
observations. The critical exponent for fluctuation

conductivity is given by [23]

l � n�2 1 z2 d 1 h� ; �4�
wheren is the coherence-length critical exponent,z is the
dynamical exponent,d is the dimensionality andh is the
exponent for the order-parameter correlation function.
Renormalization-group calculations for the 3DXY model
give n . 0:67 andh . 0 [24]. The dynamical universality
class of the superconducting transition is a debatable
subject. Recent experiments [9–11,25] indicate that the
model-E theory of Hohenberg and Halperin [26], developed
for the superfluid transition, should be appropriate. This
model predicts thatz . 3=2, yielding a critical exponent
l�1�cr � 0:33 for fluctuation conductivity. This scaling beha-
vior, which we call 3D-XY-E, was previously observed in
polycrystalline [9] and single-crystal [10,11] YBCO, and
also in Bi2Sr2CaCu2O8 [25]. In the present measurements,
however, an additional regime is observed beyond the 3D-
XY-E scaling, corresponding to the exponentl�2�cr � 0:17, as
commented above. We propose, as a possible interpretation,
that this new scaling is associated with a weak first-order
transition, based on the arguments presented below.

In a first-order transition, the Ginzburg–Landau free-
energyF varies as a function of the order parameter as
schematically represented in Fig. 3(a), where only non
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Fig. 3. (a) Schematic plot of a Ginzburg–Landau free energy with a
cubic term in the order parameter yielding a first-order transition.
(b) Free energy with the cubic term at the point where the second
minimum starts to appear (full line), and without the cubic term at
the critical temperature (dashed line). The latter is displaced from its
central position to help visualizing the similarity between the two
curves in the region of positive order parameter.
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Fig. 2. Representative results ofx21
s versusT in the critical fluctua-

tion interval. The observed power law regimes are indicated by the
respective exponents, which are discussed in the text.



negative values of the order parameterucu are physically
meaningful for a superconductor. The appearance of a mini-
mum at non-zeroucu is due to the presence of a third-order
term in this parameter in the free energy. According to
Halperin, Lubensky, and Ma [15], such a term originates
from fluctuations of the electromagnetic vector potential.
The transition occurs when the absolute minimum ofF
switches from its high-temperature position atucu � 0 to
the one with non-zeroucu. Above, but at close vicinity to
Tc, the system can fluctuate between the two free-energy
minima, due to the low height of the barrier separating
them. This should affect the dynamics of the system near
the transition, modifying the effective value ofz. For
instance, the critical exponentl�2�cr � 0:17 may be obtained
if z . 5=4 in Eq. (4).

An alternative interpretation that does not involve
changes in the dynamical exponent is based on the analysis
of scaling for first-order phase transitions developed by
Fischer and Berker [27]. They claim that a renormaliza-
tion-group fixed point associated withn coexisting phases
will presentn distinct eigenvalues that scale with the dimen-
sion of the system, yielding a coherence-length critical
exponentn � 1=d when the first-order transition is driven
by the temperature, as is the case here. Then, ford � 3, we
would haven reduced to approximately one-half of its value
for theXY model. From Eq. (4) one sees that, keepingzand
h unchanged, we would have the same reduction inl, in
excellent agreement with the ratio betweenl�2�cr andl�1�cr .

Additional indication of the ultimate first-order character
of the superconducting transition in YBCO is provided by
the increase (,0:25 K) in the extrapolated critical tempera-
ture for thel�2�cr -regime when compared to that obtained for
the 3D-XY-E. In a second-order phase transition,Tc is
reached whenF flattens out around the equilibrium point
at ucu � 0. If the transition is weakly first-order,F would
appear as effectively flat at a higher temperature, when the
minimum at non-zeroucu starts to appear. In Fig. 3(b) we
plot the free-energy corresponding to this situation in
comparison with the one for a purely second order transition
at the critical point, showing their close similarity, mainly in
the physically-significant regionucu $ 0. Thus, if a power-
law behavior is present, the cubic term in the free energy
tends to effectively increase the extrapolated value ofTc

with respect to the one that would be obtained if the transi-
tion remained strictly second-order. This effect could
account for the somewhat paradoxical results of Fig. 2,
where critical fluctuations seem to shift the critical tempera-
ture upwards.

We would like to stress that the temperature range in
which the first-order nature of the transition becomes notice-
able in our data, although smaller than the critical region
itself, has the same order of magnitude. According to Ref.
[15], one should expect it to be smaller by a factorkf, where
k is the Ginzburg–Landau parameter (the ratio between the
penetration depth and the correlation length), andf is a
crossover exponent. The latter should be roughly equal to

the correlation-length exponentn in three dimensions if the
mechanism proposed by Halperin, Lubensky, and Ma [15]
were responsible for the first-order transition. This does not
hold in our case, sincek is very large, predicting a much
narrower width of the first-order transition than the observed
one. Thus, either the crossover exponentf is strongly
changed (e.g. by dynamical effects) or the mechanism
driving the first-order transition in high-Tc superconductors
is a new one, not necessarily related to fluctuations of the
electromagnetic field. A plausible candidate for this
mechanism in the HTSC is discussed in the work of
Blagoeva et al. [28]. These authors present extensive renor-
malization-group calculations on generalized Ginzburg–
Landau models to investigate the transition in superconduc-
tors with unconventional order-parameter symmetries.
According to them, the combined action of cubic and ortho-
rhombic anisotropies creates a favorable scenario for a first-
order superconducting transition induced by thermal
fluctuations.

In summary, our study of fluctuation conductivity in
YBCO under applied magnetic field reveals that: (i) Far
aboveTc the results are well described by the Gaussian
approximation. (ii) Closer toTc, the transition is approached
within the 3D-XY scaling with model-E dynamics. The
observed 3D-XY-E scaling is essentially a zero-field one,
since form0H $ 0:1 T (H k ab) or m0H $ 0:04 T (H k c)
criticality is rounded off. (iii) Still closer toTc and in very
low fields, a scaling regime beyond 3D-XY-E was observed.
The value of the critical exponent for this regime, as well as
the fact that the extrapolated critical temperature is
displaced to a higher value, led us to suggest that this is
indicative of the ultimate first-order character of the super-
conducting transition in YBCO. It would be interesting to
have these results corroborated by measurements of quan-
tities not affected by dynamical aspects, such as the specific
heat or the magnetic susceptibility.
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