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The approximation method to obtain the static properties of a system of interacting localized
magnetic moments, called “reaction field approximation” (RFA), which is previously used for
the paramagnetic phase, is extended to cover the ordered phase of a spin system with Heisenberg
interaction. The presence of a small anisotropy is also considered and an application to MnF,
is made.

La méthode d’approximation utilisée pour obtenir les propriétés statiques d’un systéme de mo-
ments magnétiques localisés interactuants, dite ,.Approximation du Champ de Réaction™, déja
appliquée a la phase paramagnetique, est ici éténdue a la phase ordonnée d'un systéme de spin
avec interaction d’Heisenberg. La présence d'une petite anisotropie est aussi considerée et une
application au MnF, est faite.

1. Introduection

The most well-known method to calculate the susceptibility and other variables of
a system of localized magnetic moments in a solid, with given interaction Hamiltonian,
is the molecular field approximation, MFA. Being extremely simple, both conceptually
and mathematically, it also has the merit of giving very good quantitative results at
high temperatures, besides giving rather good qualitative results at all temperatures.
A number of effective field theories which are improved versions of MFA can be found
in the literature [1 to 6]. The “correlated effective field”” (CEF) [3] and the “reaction
field approximation” (RFA) [5, 6] are essentially the same method, and we will refer
to them in this paper as RFA. Its name comes from Onsager’s suggestion [7] that the
part of the molecular field on a given moment g; which comes from the reaction of
the neighbours, g, to the instantaneous orientation of u;, should not be included in the
effective orienting field. This “‘reaction field”” simply follows the motion of g; and thus
does not favour one orientation over another.

Since the actual value of the reaction field is not known a priori, the procedure fol-
lowed in practice consists in adding to the MFA effective field a correlation-dependent
term, the magnitude of which is determined at the end of the calculation by imposing
consistency of the theory with a sum rule for the susceptibility y(q), obtained from the
fluctuation—dissipation theorem. Unfortunately this sum rule is valid only in the para-
magnetic phase and in abscence of strong fields. In the present paper we extend the
procedure of RFA to the ordered phase of a Heisenberg magnet. The difficulty with the
sum rule is avoided by substituting it by another relation (a generalized sum rule),
obtained from the internal consistency of the theory, and which reproduces the original
sum rule in its region of validity.
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Tn Section 2 we introduce the model Hamiltonian and describe the method to cal-
culate the spontaneous (or sub-lattice) magnetization and the g-dependent suscep-
tibility. In Section 3 an application to MnF, is made, and the results are compared
with experimental data.

2. RFA for the Heisenberg Magnet

Consider a solid with atomic spins §; and corresponding magnetic moments —yS;.
The interaction Hamiltonian will be assumed to be of the form

,7{:———*—%—Z;Jijsi'Sj*f—VZASg'Hi, (l)
ij i

where H, is a very small dosition-dependent external field. The effective field on S,
is defined in such a way that the Hamiltonian (1) may be approximated by

K =y %S, HEE (2)
In RFA H{Y is written in the form
= Ly gesy i :
i —'7—72_, ij<*-7'>+ﬁy*<* v+ H;, (3)
J

where {...> means ensemble average. The second term above is the negative of the
reaction field. It is natural to assume it to be parallel to (S;> because this is the only
preferred direction of the system of spins with isotropic interaction. The form in which
equation (3) is written does not imply that the reaction field is linear in {(S;) because
we will allow .1; to be a function of [{S;)].

Equation (3) may be separated in its unperturbed and perturbation part:
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Here <{...», means ensemble average in the absence of the perturbation field H,. Since
the unperturbed system is translationally invariant, 4, is independent of ¢. The ten<or A
could be dependent on the position ¢ because H; destroys the homogeneity of the systen,
However, if we write

A BSD = (A L SN - (S, ()

where 8A; is the deviation of A; from its unperturbed value A, then the second term of
(6) has to be neglected because it is quadratic in H; and we are considering the liniit
of linear response. On the other hand, if the only preferred direction of the unpertirhed
system, that of the spontaneous magnetization (S;», is chosen as one of the axis (xay z)
of the reference frame, then all physical tensors, including A, are diagonal. We will
denote by 2 and 4 the elements of A.Since the sum of (4) and (5) has to reprodnc= (3),
choosing H; in the x-direction we obtain

-1Z<Sz> S )‘O<Sf>0 2 'J'r‘ ;»l 8<Awf> 5: . (7)

Equation (7) is a vector equation which implies that both 2, and /.. are equal to _1;,
which yields

Jo= Ay (8)
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leaving us with only two undetermined parameters, say 4, and 4, to be determined
later.
Fourier-transforming (5) in space we obtain

. 1
SHiMq) = — o ((q) — %] 3Su(q)> + Hu(q) » (9)

where u stands for || or | and n = N/V is the number of spins per unit volume.
By the same symmetry argument as above we see that the susceptibility is also
a dlagonal tensor and that the induced part of the magnetization may be written as

SM(q) = y.q) H.(q) = % SHS(q) - (10)

The quantity y¢ is the susceptibility of a system of non-interacting loc alized spins in
presence of an external field equal to HEL.
From (9) and (10) and the identification

N/ Q 1 N
we obtain
x’t:‘tf

y = 2
2l = Gelfnyy 1 (q) — 2, 12
This expression is similar to that for the paramagnetic phase [5], when one has y,
instead of 4¢f and /. instead of 2,. A sum rule relating 2 with y, was derived from the
fluctuation—dissipation theorem for the paramagnetic phase. A similar relation may
be obtained invoking again the concept of reaction field, which reproduces in the
paramagnetic phase the original sum rule, but is also valid in the ordered phase. The
susceptibility in R-space,

1 .

1 =N %: Ko (q) efa Ri= D, (13)
relates the “response’ at site ¢ to a local field applied at site j. In particular 4, which
relates §¢.S4) with the field H% applied at the same site ¢, may be identified with y¢*
because the deviation of the internal field on S; from H due to the influence of
5¢S%> on the neighbour spins is precisely the reaction field, Whlch does not contribute
to the effective orienting field. From this identification and (13) we obtain

—————— ) = zt (14)

The susceptibility y¢fisa w ell defined function of Hlf, which is related to (S by (4)
and (8). Since the spontaneous magnetization is assumed to be along the z-axis, we
have

eff 1 ). -
Ho! = — ST 5(S + 2 (S (15)
Vi Y

For a homogeneous ferromagnet all (S, are equal, and for an antiferromagnet
there is a sign change when we go from one sub-lattice to the other. In both cases we
may suppress the subscript ¢ in (15) and write

eff 1. '
H' = = Q) = 711¢5%, "

39%
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where Q is the wave vector that characterizes the spontaneous magnetization (Q = 0
for the ferromagnet). (S%), is a known function of H¢, namely
N

S o exn (— eff,,

X m exp ( ﬁyHO m)

(8% = trgyS* = - N R (17)
N exp (— By et

X \'(:\p( ByH ')

Equations (16) and (17) are not sufficient to determine H:;ff and {(S?), because 2| is

also unknown. We have to use the “sum rule” (14) to complete the set. The susceptibil-

ity %.(q), equation (12), may be written in a more convenient form by introducing

new variables s, defined by

1 ny? .
Sy = O [//’“ -+ /.,,] . (18)

Equations (12) and (18) give

ny?lJ(Q
1ulq) = 5 _/f]/(q()’/v])(Q) , (19)
and equation (14) may be written as
L
Gl = J(Q) 2o, (20)
where ’
o) = 1 % L (21)

N 7 s—Jq)J(Q)
is known as “lattice Green’s function” and is tabulated for the cubic lattices [8].
Eliminating xfff/nyz hetween (18) and (20), we obtain a simple relation hetween 7, and
s, namely
N 1
/L‘u = '](Q) I:S“” — '(:;T(;*")‘:l . (22)
For a system of magnetic moments in isotropic environment, except for the presence

of a magnetic field H, having magnetization M, the susceptibility to a test field per-
pendicular to H, is

0 {l{p ¢
XJ. - []0 M (23)

Recalling the definition ot 4¢f, we see that an equation analogous to (23) applies to it,

namely -
off ny<S%q 24)
1 Haff . 2

From (16), (18), and (24) we obtain
s, =1 (25)

for any temperature in the ordered phase. This result agrees with the intuitive notion
that the perpendicular uniform susceptibility of the Heisenberg ferromagnet should
diverge (see (19)) at any temperature.
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From (16), (22), and (25) it follows that

\ J(Q) o)
Hift = — 37 9% (26)
Equations (17) and (26) may be solved numerically for {(S%),, giving the spontaneous
or sub-lattice magnetization. The only difference between this set of equations and the
usual MFA result is that the constant G(1) appearing in (26) is not present in MFA.
The values of G(1) for s.c., b.c.c., and f.c.c. lattices with nearest-neighbour interaction
are, respectively, 1.516, 1.393, and 1.345. Once H{T is determined, x4t = yj(H") is
also known. From (20) and (19) we then determine s, and y,(q), respectively.

3. The Anisotropic Case — Application to MnF,

The completely isotropic Hamiltonian studied above is an idealization which rarely
describes well a real physical situation. For many svstems, the presence of sonie aniso-
tropy may be simulated by adding to the Hamiltonian a single-particle term of the
form D(S%)2. In this case the use of (8), which was obtained as a consequence of the
rotational invariance of the interaction Hamiltonian (see (3) and the comments follow-
ing it), is no longer justified. However, when the anisotropy energy is small compared
to the exchange energy, considering that the reaction field is a correction to the ex-
change field, one may argue that the anisotropy has only a secondary effect on the
values of the ’s and equation (8) may be maintained as a reasonable approximation.
So, the term D(S5%)% will only be introduced where it has a direct effect, namely, on the
explicit form of the single-particle susceptibilities 4" and on (17), which will be sub-

stituted by

> mexp [—L(yHm + Dm?)]
3z _om o 27
(8% = Y exp [—B(yH™m + Dm?)] (27)
m

The antiferromagnetic MnF, has, indeed, a very small anisotropy. Thus, the method
described above may be used to determine its properties. The magnetic lattice of
MnF, is body-centered tetragonal such that the nearest neighbours to a Mn atom are
the two Mn just above and below it along the c-axis. The most important interaction
of an atom, say, at the centre of the unit cell is an antiferromagnetic exchange with
the eight n.n.n. at the corners. There is also a weak ferromagnetic exchange with the
two n.n. The exchange constants are represented by J and J', respectively. The values
usually found in the literature for J (—3.52 K), J’ (0.64 K), and D (—0.212 K) were
determined in a slightly inconsistent way: First, Trapp and Stout [9] determined
J from the experimental value of the Curie-Weiss temperature, § = —82 K, neglecting
J"and D then Okazaki and Turberfield [10] determined J " and D from inelastic neutron
scattering experiment at low temperatures using a spin wave theory and the J-value

Fig. 1. Sub-lattice magnetization of MnF, versus temper-
ature. The solid line represents the experimental result
[13], the dashed line is our RFA-calculated value, and
the dotted line is the MFA result with the same values
of J, J’, and D
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obtained by Trapp and Stout. We prefer to derive the values of these three parameters
from the experimental results for the Curie-Weiss temperature 6 = —82 K, the Néel
temperature Ty = 67.3 K [11], and the spin flop field Hgr = 9.3 x 107% Oe [12], ob-
taining J = —3.73 K, J" = 0.86 K, and D = —0.20 K. Using these values and the
procedure described above, we calculated the sub-lattice magnetization of MnF,,
which we show in Fig. 1 together with the experimental result [13] and the MFA
result, for comparison.

4. Conclusions

From the results of this work and of previous publications [3 to 6] we conclude that
RFA is a good method to treat systems of localized spins with exchange and other
types of interactions. The agreement with the experimental results is considerably bet-
ter than the usual mean field approximation for temperatures close to the phase transi-
tion temperature 7', and tends to the same result as MFA for temperatures far from 7'..
In particular, we have shown in this paper how to apply RFA for the ordered phase
when the spin-Hamiltonian is isotropic or has a very small anisotropy. The applicabil-
ity of RFA at T < T', on systems with a strong anisotropy is still an unsolved problem.
Other extensions of the theory, e.g., to compounds with non-equivalent spins, alloys
or glasses, still remain to be done. Finally we want to remark that the same results as
obtained by RFA may be obtained by other techniques, like Green’s function equations
with RPA decoupling, but the advantage of the former is its conceptual and mathemat-
ical simplicity.
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