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1. Introduction

Geometrical frustration of magnetic order has been a long-
standing research subject of great interest [1]. Experimentally, 
many compounds have been investigated, including three-
dimensional (3D) pyrochlores [2], and quasi-two-dimensional 
compounds containing planar structures generally identifiable 
as triangular or kagomé lattices [3–5].

From the theoretical point of view, starting with localized-
spin models, the absence of long-range magnetic order and the 
appearance of a spin-liquid ground-state are well-established 
features [1]. Allowing for charge degrees of freedom, the 
standard Hubbard model [6], with a local Coulomb repulsion 
U and nearest neighbor hopping is the natural choice, but the 
theoretical complexity is substantially augmented. For bipar-
tite lattices at half filling (one electron per site) it is well known 
that the ground-state is antiferromagnetic (AF), approaching 
the Heisenberg limit at large-U. This is well described, for 
example, by dynamical mean field theory (DMFT) [7], which 
employs a purely local self-energy to evaluate single-particle 
Green’s functions. However, DMFT cannot account for inter-
site correlations, which must be taken into account if one 
wants to look for geometrical-frustration effects. So, the rel-
evant minimal unit is not a single site but a triangular cluster, 

the smallest structure that shows magnetic frustration. Many 
methods have been proposed in the literature [8–11] to use 
clusters as building blocks for lattices. Some applications for 
frustrated planar structures like the kagomé and triangular lat-
tices have been reported [12, 13], but the amount of clear-cut 
results is still small. One of the main difficulties in going from 
triangular clusters to lattices lies in the fact that the above 
mentioned two-dimensional (2D) lattices present flat bands 
and/or van Hove singularities in the uncorrelated density of 
states (DOS). Correlations tend to mix these singular parts 
with the smooth ones, even more if a Mott gap opens up in the 
strong-coupling regime where geometrical frustration plays 
a role. Consequently, the chemical potential often falls in a 
region of strongly varying DOS, which is not a friendly situa-
tion for numerical methods.

Here, instead of attempting to develop connected-cluster 
approximations, we investigate in detail what happens inside a 
single cluster, aiming to detect signatures of geometrical frus-
tration. To this purpose, we compare exact-diagonalization 
results for three-site clusters in triangular and linear geome-
tries. We focus on thermodynamic properties, particularly the 
specific heat, which tends to show already in small clusters the 
overall behavior observed in lattice systems. A characteristic 
feature of the Hubbard model is a two-peak structure of the 
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electronic specific heat as a function of temperature [7, 14–
17]. Our main finding is a significant difference in this two-
peak structure when we compare frustrated (triangular) and 
non-frustrated (linear) geometries. A reduction of the low-
temperature spin-excitation peak is observed in the presence 
of geometrical frustration, essentially with no effect on the 
high-T charge peak. This reduction is suppressed by doping 
away from half-filling in the frustrated cluster, but no impor-
tant changes occur in the non-frustrated one. These results 
suggest that specific-heat measurements may be an important 
tool to detect geometrical-frustration effects in correlated-
electron systems.

Complementary to the specific-heat results, we study the 
temperature behavior of spin correlations for various interac-
tion regimes. We also include a nearest-neighbor repulsion V  
in order to investigate its effect on frustration-related proper-
ties. It should be noted that such a non-local interaction intro-
duces further difficulties to the lattice problem since it is not 
restricted to a cluster. This implies that cluster connections 
are no longer associated to hopping only, as supposed, for 
instance, by DMFT. Therefore, an evaluation of the impor-
tance of inter-site interaction at the cluster level is of high 
relevance.

2. Model and method

We use a cluster version of the extended Hubbard model with 
local (U) and nearest-neighbor (V) Coulomb interactions. It is 
defined by the Hamiltonian

H = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ + V
∑
〈ij〉

ninj,

 (1)
where we employ the usual notation for creation, annihila-
tion, and number operators in the Wannier representation, 
i = 1, 2, 3 labels the sites of a cluster of triangular or linear 
geometry with 〈ij〉 indicating nearest-neighbor pairs, σ refers 
to spin states (up or down), ni = ni↑ + ni↓, and t is the hopping 
parameter. We adopt a units system in which Boltzmann’s 
constant kB and Planck’s constant � are omitted, implying 
that energy and temperature have the same unit, and spins are 
dimensionless variables.

Previous studies of the triangular-cluster Hubbard 
model [18, 19] showed the appearance of noncollinear spin 
ordering when using an unrestricted Hartree–Fock approxi-
mation. Since we are interested in investigating spin frustra-
tion, we must resort to exact diagonalization. A convenient 
basis for a matrix representation of H is provided by the 
energy eigenstates for t = V = 0. They are obtained from 
the particle vacuum by the usual construction of Fock-space 
Wannier states, applying products of creation operators c†iσ 
with the appropriate site and spin subscripts and in a well 
defined order. Thus, each basis state specifies number and 
spin states of electrons at each site, which are organized by 
total number of particles (N) and by a component (Sz

T ) of the 
total spin.

Exact diagonalization of the Hamiltonian matrix of a three-
site cluster gives us a set of energy eigenvalues and corre-
sponding eigenvectors. The single-particle eigenvalues (E1,α) 
are easily found analytically, with the results

ET
1,1 = −2t, ET

1,2 = ET
1,3 = t,

EL
1,1 = −

√
2t, EL

1,2 = 0, EL
1,3 =

√
2t,

 
(2)

respectively for the triangular (T) and linear (L) clusters. The 
empty- (N  =  0) and full-cluster (N  =  6) problems are trivial, 
and some subspaces are related by particle-hole transforma-
tion. Detailed analyses of the energy spectrum and various 
physical properties of these kind of clusters (as well as other 
geometries) have been reported in the literature [20–26], either 
for the same model considered here or variants including other 
terms, like spin–spin coupling or external fields. In some of 
these previous works analytical expressions of energy eigen-
values are obtained. For our purposes, it is more convenient to 
numerically diagonalize the full 64 × 64 Hamiltonian matrix 
for all possible occupations, even though it is built up as block-
diagonal in N and Sz

T . Upon diagonalization, the energy eigen-
values yield the cluster partition function and density matrix 
in the energy representation, while the eigenvectors provide 
the transformation matrix that relates this representation to the 
original basis. Then, besides global thermodynamic quantities 
like average energy and entropy, evaluation of site-dependent 
ones, as double-occupancy or spin correlations, can be readily 
performed.

Some differences are observed depending on whether we 
fix the particle number (canonical ensemble) or its average 
value by adjusting a chemical potential (grand canonical 
ensemble). We will show results for both cases, with com-
ments on the differences when relevant. It is arguable which 
one is best suited to apply to clusters if one wants to make 
comparisons with real systems. It is certainly simpler to 
work with a fixed number of particles for numerical calcul-
ations, but it is mandatory to adjust the chemical potential, for 
instance, to investigate doping effects by imposing fractional 
filling factors.

3. Thermodynamic properties

3.1. Specific heat

We evaluate the electronic specific heat (C) through a numer-
ical derivative of the average energy per particle with respect 
to temperature. Examples are presented in figure  2, which 
shows plots of specific heat as a function of temperature 
for some representative values of U, in the half-filling case 
(number of electrons fixed at N  =  3). We keep V = 0 for now, 
and discuss the effects of inter-site interaction later on.

For large U, a two-peak structure characteristic of strongly 
correlated systems is observed. As the strength of the Coulomb 
interaction increases, the initial single peak centered at T ∼ t, 
reflecting charge excitations, moves to higher temperatures, 
while a low-T spin-excitation peak appears. This can be 
understood by inspecting the behavior of energy eigenvalues 
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with U, figure 1. At small U, all the excited states are close in 
energy, and at a distance to the ground-state that is consistent 
with the broad high-temperature peak of C(T). In the large-
U region, the S  =  1/2 ground-state subspace lies close to the 
first-excited triplet of S  =  3/2, and does not change much with 
U. Thus, low-energy spin excitations are easily generated, 
yielding the small peak that becomes detached from the main 
one as the energies of the other states grow with U.

From the above comments, it is clear that the low-temper-
ature specific-heat peak can be recognized as Schottky-type 
[27]. In particular, the peak heights at large U for the triangular 
cluster are in very good agreement with the general results 
for a two-level system using table 1 of [27]. The temperatures 
of the maxima are also reproduced using the obtained gap 
between the two states involved. The agreement is not so good 
for the linear cluster due to the existence of a pair of exited 
levels very close in energy in the large-U limit. In this case, 
a rough estimation considering them as a single level, with 
added degeneracies and an average gap, still gives fairly con-
sistent values for the position and height of the low-T peak.

It is also worth mentioning that in the large-U limit, and 
at low temperatures, where charge fluctuations are essentially 
frozen, the specific-heat behavior that we obtain reduces 
to that of the spin-1/2 Heisenberg model, as expected. For 

instance, our low-temperature peak reproduces the C(T) curve 
for the Heisenberg model in a triangle reported by Isoda [28], 
provided that we reescale the temperature axis to have it in 
units of the exchange coupling J, here given by t2/U.

We wish to point out the striking difference in intensity of 
the low-temperature peaks when we compare linear and tri-
angular clusters in figure 2. The linear-cluster peaks resemble 
much more closely what is obtained, for instance, in DMFT 
[7] or in a two-site cluster [22], with the narrow low-T peak 
higher than the broad high-T one. We interpret a reduced spin 
peak as indicative of spin frustration in the triangular geometry. 
In fact, this difference in specific-heat behavior can be directly 
correlated to the ground-state entropies of the two clusters, as 
we have seen in the discussion of the Schottky nature of the 
first peak. As shown in figure 1, the triangular geometry pre-
sents a ground-state degeneracy equal to 4, twice as large as 
that of the linear case. This shows up in the zero-temperature 
residual entropy, which in this case is corre spondingly twice 
as large, as can be seen in figure 3. An interesting feature of 
these entropy results is the nearly perfectly defined crossing 
points of all curves. The existence of such points in the evo-
lution of thermodynamic quantities as functions of some 
param eter has been largely discussed in the literature [29, 30]. 
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Figure 1. Dependence of energy eigenvalues on the local interaction U (with V = 0) for three electrons on three-site clusters of linear and 
triangular geometries. The horizontal lines correspond to states with the spin eigenvalue S  =  3/2 (degeneracy 4). The remaining lines are for 
states with S  =  1/2, with additional degeneracy (also amounting to 4) in the triangle due to the equivalence of all sites.
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Figure 2. Behavior of the electronic specific heat with temperature, for the quoted values of the Coulomb interaction U, in half-filled 
isolated three-site clusters of linear and triangular geometries.
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Here, it is quite clear that they mark a crossover between spin 
and charge excitations as the temperature rises.

The entropy results of figure 3 were obtained for isolated 
clusters. Although the overall shape of the curves is similar, 
no crossing point is seen with calculations performed using 
the grand canonical ensemble. This is probably due to addi-
tional (uncorrelated) charge fluctuations that are introduced 
in this case. For the same reason, differences on the entropy 
curves appear at low temperatures for certain values of U. In 
particular, a higher residual entropy is observed for U  =  0 
in the open triangular cluster, shown in figure 4, reflecting a 
near coincidence of the lowest grand canonical eigenvalues 
(E − µN) for 2, 3, and 4 particles as T → 0 when the chem-
ical potential µ is adjusted to an average occupation number 
〈N〉 = 3.

As a further check that geometrical frustration is associ-
ated to the reduced low-T specific-heat peak in triangular clus-
ters, we studied the effect of doping away from half-filling. 
Figure 5 shows that changes in occupation number have little 
effect on the low-T peak in the linear cluster, while a fast 
growth of this peak is observed in the triangle as the amount 
of doping increases. As mentioned before, in order to choose 
fractional site occupations we must use the grand canonical 
ensemble. An observed side effect is that the broad maximum 
of the specific heat for n  =  1 is substantially higher in com-
parison to the isolated cluster (figure 2), which once more can 
be attributed to particle-number fluctuations. In contrast, in 
the absence of doping the low-T peaks are essentially equal in 
isolated and open clusters for each geometry.

3.2. Spin correlations

Investigating spin correlations is a necessary complement 
of our study of geometrical-frustration effects. Due to the 
absence of spin anisotropies or magnetic order, we may focus 
on a single spin component, evaluating the average 〈Sz

i S
z
j 〉 for 

two distinct sites of a cluster. All pairs of sites are equivalent 
in the triangle, while center-border and border-border correla-
tions should be different in the linear three-site cluster. The 
calculation is straightforward since our basis states are eigen-
vectors of Sz

i .

Typical results are presented in figure 6. It can be seen that 
reasonably strong AF correlations exist between border and 
center sites in the linear cluster, while the two border sites are 
ferromagnetically correlated. This correlation pattern is con-
sistent with a tendency to AF ordering, which is easily under-
stood by the usual exchange mechanism, with virtual hopping 
processes allowed between neighboring singly occupied sites 
only if the electrons have opposite spins. By the same mech-
anism, but with different result, correlations in the triangular 
cluster are always AF, and their substantially lower values 
are indicative of geometrical frustration of nearest-neighbor 
AF interactions. As U increases, the zero-temperature limit 
approaches the exact Heisenberg value on the triangle [12], 
〈Sz

i S
z
j 〉 = −1/12. The results shown in figure 6 have been gen-

erated for open clusters, but we checked that the outcome of 
calculations for isolated clusters do not show any significant 
differences.

3.3. Effect of inter-site interaction

We now turn to a brief discussion of how the results that we 
have shown up to here are affected by a nonzero inter-site 
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Figure 3. Entropy versus temperature for both cluster geometries. Note the difference in residual entropy between the two cases, as well as 
the existence of crossing points between the low- and high-temperature regions.
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Coulomb repulsion V . For a small ratio V/U , we mainly see 
an effective reduction of the on-site interaction. By increasing 
the energy of configurations with electrons on nearest-
neighbor sites, V  reduces the penalty for double occupation, 
which is similar to having a weaker on-site repulsion U. We 
exemplify with the thermal behavior of the specific-heat of 
an isolated triangular cluster in figure  7, where we see that 
the charge-excitation peak is displaced to lower temperatures, 
eventually merging with the spin peak. Similar results are 
obtained for the linear cluster.

This low-V  effect is what should be mostly observed in real 
systems. However, from a theoretical point of view, we can 
explore more freely the parameter space, even considering a 
region of dominant inter-site interaction in which we would 
have the formation of local doublons, which have been object 
of some investigation, mainly with focus on dynamic proper-
ties [31, 32]. Similarly to what we discussed for spins with 
large U, in bipartite lattices at half filling a large V  should 
yield charge-density order, with alternating doublons and 
empty sites (holons). But one could argue that this kind of 
order should also be frustrated in triangular-based structures. 
In a single three-site cluster with an average of one electron 
per site we can have at most one doublon, one holon, and a 
single spin. Nevertheless, the difference between linear and 
triangular clusters shows up in the fraction of doubly occupied 

sites, as shown in figure 8, where we see that there is a larger 
stability region of the doublon (density close to 1/3) in the 
linear trimer. This is easily understood by the fact that a dou-
blon and a single electron can stay at the border sites, leaving 
the middle site empty, while the inter-site repulsion V  cannot 
be avoided in a triangular geometry. Obviously the complexity 
increases if these simple units are connected to form a lattice, 
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with V  acting also as inter-cluster interaction, and electron 
motion not restricted to a single cluster.

4. Conclusions

With focus on geometrical-frustration effects, we have per-
formed a detailed study of some thermodynamic properties 
of the extended Hubbard model on three-site clusters. In gen-
eral lines, this investigation was conducted through of a com-
parative analysis of exact-diagonalization results for clusters 
of triangular and linear geometries. Our main finding refers 
to the thermal behavior of the electronic specific heat in a 
regime of strong on-site interaction U. Besides reproducing 
the overall two-peak structure also seen in lattice models and 
real systems, we found that in the triangular geometry there 
is a significant reduction of the low-temperature peak, asso-
ciated to spin degrees of freedom. Our interpretation of this 
feature as indicative of geometrical frustration is based on its 
suppression by doping away from half-filling as well as its 
absence in the linear cluster. On the other hand, even though 
in a probably unrealistic regime (U < V), our analysis of the 
interplay between local and non-local interactions yielded the 
interesting suggestion that charge (instead of spin) order could 
also be geometrically frustrated.

Going back to the large-U behavior of the specific heat, 
which we consider to be our most important result, we were 
able to relate the reduced low-T peak to a higher ground-state 
entropy associated to the cluster geometry, which is consistent 
with the identification of this peak as Schottky-type. Even 
though we presented results for a cluster, a large residual 
entropy is recognized as a distinctive property of frustrated-
lattice phases such as the spin liquid. We should thus expect 
the same kind of specific-heat behavior in real systems.

The above results point to the possibility of using specific-
heat measurements as a probe of geometrical frustration. 
Incidentally, it is worth remarking that a reduction of the spin 
peak might be overlooked in experiments since it is usual 
to plot the ratio C/T, consequently enhancing low-T values. 

Another experimental issue is that 2D frustrated structures 
in real materials are not isolated but actually exist inside 3D 
compounds, characterizing quasi-2D systems. In this case, 
weak interplane coupling usually yields ordered phases at 
very low temperatures, and a sharp peak in the specific heat 
is associated to the ordering transition [33]. 2D geometrical-
frustration effects would then be observed only above this 
transition temperature, provided it was low enough to allow 
such effects to be still visible. On the other hand, it is also 
possible that a sufficiently strong 2D frustration prevented the 
ultimate 3D ordering. Hopefully, all of these interesting sce-
narios will eventually be found in new materials.
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