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Abstract
We propose a three-dimensional model to describe magnetic interactions in a class of tantalite
compounds of compositions AxA′1−xTa2O6, with A,A′ = Fe, Co or Ni. Due to the
quasi-two-dimensional nature of the magnetism in these compounds, experimental data have
been previously interpreted using two-dimensional models. These are anisotropic Heisenberg
models or Ising models and include competing exchange interactions from different neighbors.
Taking into account all the relevant exchange terms, which include interplane interactions, we
show that the latter allows us to understand the various low-temperature magnetic phases
observed by neutron diffraction in this family of compounds. This is done by studying the
eigenvalues of the exchange-interaction matrix in wavevector space for different sets of
coupling parameters, of which those relative to in-plane interactions have been obtained from
high-temperature series analysis of the magnetic susceptibility. This approach is rather general
and the model presented here is directly applicable to isostructural compounds like ASb2O6.

(Some figures may appear in colour only in the online journal)

1. Introduction

The magnetic properties of a class of tantalite compounds,
AxA′1−xTa2O6 with A,A′ = Fe, Co or Ni have been the
subject of extensive studies [1–10]. Their lattice structure is
tetragonal, with two magnetic cations per unit cell, being
classified in the P42/mnm crystallographic group. Their
magnetism is markedly two-dimensional, due to the presence
of two planes of non-magnetic ions separating the magnetic
ones, all of them stacked along the c axis. The magnetic
ions are surrounded by distorted oxygen octahedra, with
a short principal axis that yields an easy magnetic axis
resulting from crystal-field single-ion anisotropy. These short
octahedron axes change their orientation by 90◦ between the
two magnetic positions in the cell, so that two neighboring
magnetic planes present perpendicular anisotropy axes. These
characteristics, as well as competition between nearest-
neighbor (nn) and next-nearest-neighbor (nnn) exchange

interactions, lead to a variety of non-Néel antiferromagnetic
(AF) phases, observed by neutron diffraction at temperatures
typically below 11 K.

Here we briefly review the main observations previously
reported. CoTa2O6 presents a magnetic structure indexed by
the propagation vectors (±1/4, 1/4, 1/4) [6–9], associated
with magnetic ions at the corner and center of the structural
unit cell. Following [10], we call this magnetic ordering
AFC (C for Co). This phase is strongly unstable against
Fe substitution, so that already slightly above 1% Fe it is
replaced by a phase described by the propagation vectors
(±1/4, 1/4, 0), which remains stable up to intermediate
compositions, x ' 0.46. We call this structure AFI [10]. The
iron-rich compounds of the FexCo1−xTa2O6, for x > 0.46,
present the magnetic structure of FeTa2O6, which we call
AFF, and is described by the propagation vectors (1/2, 0, 1/2)
and (0, 1/2, 1/2) [1–3]. The same magnetic structures are
observed in the FexNi1−xTa2O6 series, but a new ordering
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appears for Ni-rich compounds, with propagation vectors
(±1/4, 1/4, 1/2) [11–13]. which we will call AFN.

Both the low-dimensional character and the strong
in-plane easy-axis anisotropy are very robust features of
all these compounds. The magnetic moments always lie on
the ab plane, alternating along the directions [1, 1, 0] and
[1, 1̄, 0] from one plane to the next. These are the easy-axis
directions, which follow the corresponding rotation of the
oxygen octahedra in the trirutile structure.

Previous interpretations of the observed magnetic
properties of these compounds were based on anisotropic
Heisenberg models or on Ising models, in both cases
involving competing exchange interactions among different
neighbors [10, 14, 15]. The quasi-two-dimensional nature
of these magnetic systems was confirmed by fittings
of susceptibility data with high-temperature-series (HTS)
expansions for planar versions of those models [10, 14].
Exchange parameters obtained from the fittings proved to be
consistent with the magnetic orderings observed for the ab
planes. However, as we have reviewed above, the magnetic
structures obtained from neutron-diffraction experiments are
three-dimensional, and some of them differ only along the c
direction. This means that the interplane interactions, even
though weak, do play a relevant role in stabilizing the
low-temperature magnetic structures.

The aim of the present work is to complement our
understanding of these systems by adding interplane exchange
interactions to the above-mentioned models, and determining
ranges of interplane coupling values that are compatible with
each of the observed structures. Unfortunately, the existence
of two magnetic ions per unit cell of the crystal structure and
the need to take into account competing interactions among
first- and second-nearest neighbors in each direction make the
task of extending the HTS treatment extremely difficult. For
this reason, we have chosen a simpler approach, essentially
based on the ability of the mean-field approximation to
capture the correct periodicity of a magnetic structure. For
a single spin per unit cell, and isotropic exchange of the
form JijSi · Sj, the Fourier components of the mean-field
paramagnetic susceptibility are given by

χ(q) =
C

T − 2CJ(q)
, (1)

where C is the Curie constant, T is the temperature and
J(q) denotes the Fourier transform of the exchange couplings
Jij. Thus, the q-dependent susceptibility that diverges at the
highest temperature (TN) corresponds to a wavevector Q such
that J(Q) ≡ max[J(q)]. This is the wavevector that describes
the ordered magnetic structure, i.e. the Fourier component
M(Q) of the magnetization is non-zero below TN in the
absence of an applied field.

When there are more than one magnetic atoms per unit
cell, and/or in the presence of anisotropy, the exchange
constants define an exchange matrix for each wavevector. If
we have r magnetic atoms per unit cell and in the anisotropic
case, we end up with a square matrix of dimension 3 r,
since the three spin components are not equivalent. The
largest eigenvalue of this matrix, λ(Q), gives the Q vector

corresponding to the magnetic order that is stabilized at
the transition, while the corresponding eigenvector v(Q)
provides information about the arrangement of magnetic
moments within the unit cell. This approach was employed
in various studies of magnetic ordering in solids a few
decades ago [16–20] and presented in a systematic form
by Bertaut [21, 22]. Here we will use it in connection
with a generalization of previously proposed models for the
AxA′1−xTa2O6 system, studying the existence and stability of
the various magnetic phases described above.

2. Three-dimensional model

Based on the planar models previously developed [10, 14,
15], we will construct an anisotropic Heisenberg model with
first- and second-neighbor exchange interactions both in the
ab plane and between planes. We start by noticing that the two
families of magnetic planes correspond to the two structural
sublattices of the P42/mnm structure, which we will label
α and β. Since the anisotropy axes of α and β sites are
perpendicular, we will define the spin coordinates so that the x
and y axes correspond to the lattice directions [110] and [1̄10],
respectively, while the z axis lies along [001].

We write the Hamiltonian separating the planar (pl) and
interplane (ip) contributions:

H = Hα
pl +Hβ

pl +Hip, (2)

where

Hα
pl = −2J1

nn∑
〈ij〉

Siα · Sjα − 2J2

[110]∑
〈ij〉

Siα · Sjα

− 2J′2

[ 1̄10]∑
〈ij〉

Siα · Sjα − D
∑

i

(Sx
iα)

2, (3)

Hβ

pl = −2J1

nn∑
〈ij〉

Siβ · Sjβ − 2J′2

[110]∑
〈ij〉

Siβ · Sjβ

− 2J2

[ 1̄10]∑
〈ij〉

Siβ · Sjβ − D
∑

i

(Sy
iβ)

2, (4)

Hip = −2J3

nn∑
〈ij〉

Siα · Sjβ − 2J′3

nnn∑
〈ij〉

Siα · Sjβ

− 2J4

[001]∑
〈ij〉

Siα · Sjα − 2J4

[001]∑
〈ij〉

Siβ · Sjβ . (5)

For a better visualization of the various exchange couplings,
they are schematically depicted in figure 1. It should
be noticed that the interplane Hamiltonian contains inter-
sublattice terms (with J3 and J′3) as well as intra-sublattice
terms (with J4). The notation 〈ij〉 stands for the pair of sites
that are nearest along the direction specified on the sum,
except for nearest neighbors in a plane (J1 terms), and for the
inter-sublattice sums, where we refer to nearest neighbors (nn)
and next-nearest neighbors (nnn) in adjacent planes.

We can view the anisotropy as a ‘local exchange’
coupling involving a single spin component. With this, the
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Figure 1. Two unit cells of the ATa2O6 structure, showing the
magnetic sites α and β, as well as representative pairs of magnetic
ions interacting via the exchange couplings appearing in (3)–(5).

Hamiltonian can be written in a compact form:

H =
∑

ij

∑
αβ

∑
µν

Sµiα Jαµ,βνij Sνjβ , (6)

where the sum over lattice sites now includes the case i = j
(anisotropy) and all the sites that are connected by exchange
interactions. After Fourier-transforming, we can arrange the
exchange matrix in the form

J (k) =



η(k) δ(k) 0 0 0 0

δ(k) γ0(k) 0 0 0 0

0 0 η0(k) δ(k) 0 0

0 0 δ(k) γ (k) 0 0

0 0 0 0 η0(k) δ(k)

0 0 0 0 δ(k) γ0(k)


, (7)

where each of the 2 × 2 blocks corresponds to a given spin
component (in the order x, y, z along the diagonal) for both
magnetic sites, and the matrix elements can be written as
follows:

η0(k) = 2J1[cos ka + cos kb] + 2J2 cos(ka + kb)

+ 2J′2 cos(ka − kb)+ 2J4 cos kc, (8)

η(k) = η0(k)+ D, (9)

γ0(k) = 2J1[cos ka + cos kb] + 2J2 cos(ka − kb)

+ 2J′2 cos(ka + kb)+ 2J4 cos kc, (10)

γ (k) = γ0(k)+ D, (11)

δ(k) = 8 cos(ka/2) cos(kb/2) cos(kc/2)

× {J3 − 2J′3[3− 2 cos2(ka/2)− 2 cos2(kb/2)]},

(12)

where we defined the dimensionless wavevector components
ka ≡ k·a, kb ≡ k·b, kc ≡ k·c, in terms of the usual orthogonal
primitive lattice vectors of the tetragonal lattice, for which

we have |a| = |b| 6= |c|. With this notation, the Q vector of
a given magnetic structure, i.e. the k vector corresponding to
the global maximum of all the eigenvalues, differs by a factor
of 2π from the usual propagation vector of neutron-diffraction
analysis.

The blocks of J (k) can be diagonalized separately, so
that the six eigenvalues can be written as

λ1±(k) = 1
2 {[η(k)+ γ0(k)]

±

√
[η(k)− γ0(k)]2 + 4δ2(k)},

λ2±(k) = 1
2 {[η0(k)+ γ (k)]

±

√
[η0(k)− γ (k)]2 + 4δ2(k)},

λ3±(k) = 1
2 {[η0(k)+ γ0(k)]

±

√
[η0(k)− γ0(k)]2 + 4δ2(k)}.

(13)

The corresponding normalized eigenvectors are

v1+(k) =
1

ξ1(k)
(1 , φ1(k), 0, 0, 0, 0),

v1−(k) =
1

ξ1(k)
(−φ1(k), 1, 0, 0, 0, 0),

(14)

and similarly for v2±(k) and v3±(k) in terms of ξ2(k), ξ3(k),
φ2(k), and φ3(k), at the respective positions in the four-
component vectors, with the definitions

φ1(k) = [λ1+(k)− η(k)]/δ(k)

= − [λ1−(k)− γ0(k)]/δ(k),

φ2(k) = [λ2+(k)− η0(k)]/δ(k)

= − [λ2−(k)− γ (k)]/δ(k),

φ3(k) = [λ3+(k)− η0(k)]/δ(k)

= − [λ3−(k)− γ0(k)]/δ(k),

ξl(k) =
√

1+ φ2
l (k) (l = 1, 2, 3).

(15)

In the case of strong anisotropy, since only γ (k) and
η(k) contain D, the maximum eigenvalue can only be λ1+(k)
or λ2+(k). Inspecting equation (8)–(13), one can see that
these latter eigenvalues are equivalent to each other upon
exchanging J2 ↔ J′2, with the accompanying exchange of
x and y components of the eigenvectors v1± and v2±. This
corresponds to moving between the two families of magnetic
planes that differ by a 90◦ rotation of the anisotropy axis.
Due to this equivalence, we choose to focus on λ1+(k), for
which the anisotropy axis lies along the direction [1, 1, 0],
i.e. α planes in the notation of (3)–(5). Obviously, the
complete solution must combine both λ1+(k) and λ2+(k),
which determine respectively the x and y components of the
magnetization.

3. Analysis of the magnetic structures

With the model established and the exchange matrix
determined, we now apply the mean-field Bertaut’s method
to analyze the observed magnetic structures in AxA′1−xTa2O6
compounds. Since there are many coupling parameters and,
in principle, the whole first Brillouin zone to explore, we
will choose the following strategic approach. Given that the

3



J. Phys.: Condens. Matter 24 (2012) 256005 E G Santos et al

Figure 2. Left: color map and some contours of the eigenvalue λpl
1+(ka, kb) for decoupled planes. The color scale indicates values measured

in units of the anisotropy constant, which has been chosen as D = 10 K for the plots. The exchange parameters are J1 = 0.48 K,
J2 = −1.3 K and J′2 = −0.05 K, previously obtained [10] for FexCo1−xTa2O6 with x ' 0.6. Right: plot along two crossing lines near the
maximum, confirming its position at (π, 0).

paramagnetic phase of the entire family of compounds was
well described by a planar model with strong anisotropy (Ising
model) [10], we will start by checking whether the exchange
parameters determined by fittings of the susceptibility with the
planar model actually correspond to maxima of the eigenvalue
λ1+(k) for decoupled planes. We will then turn on interplane
coupling and study the maxima also along the transverse
direction. This will be particularly important to compare the
AFC, AFI and AFN phases, which have the same planar
structures but different ordering along the c axis.

3.1. Magnetic structures for decoupled planes

As we mentioned before, the relevant eigenvalue of our
exchange-coupling matrix is λ1+(k). When the interplane
exchange constants J3, J′3 and J4 are set to zero in (8)–(13),
it assumes the form

λ
pl
1+(ka, kb) = D+ 2J1(cos ka + cos kb)+ 2J2 cos(ka + kb)

+ 2J
′

2 cos(ka − kb). (16)

Equating to zero the derivatives of λpl
1+(ka, kb) with respect to

its arguments, we can sum and subtract the resulting equations
to obtain

J1(sin ka + sin kb)+ 2J2 sin(ka + kb) = 0,

J1(sin ka − sin kb)+ 2J
′

2 sin(ka − kb) = 0.
(17)

One can easily see that these equations have solutions for
(0, 0) (ferromagnetic), (π, π) (simple Néel AF) and (0, π) or
(π, 0), the latter corresponding to the in-plane part of the AFF
structure discussed in section 1. Apart from these, we have
‘non-trivial’ solutions for ka = kb ≡ κ , with

cos κ = −
J1

2J2
, (18)

and for ka = −kb ≡ κ
′, with

cos κ ′ = −
J1

2J
′

2

, (19)

for |J1| < 2|J2| or |J1| < 2|J′2|, respectively. These last two
solutions differ by a 90◦ rotation of the wavevector and by the
interchange of J2 and J

′

2 . Therefore, when the solution (κ, κ)
is stable in the α planes, the solution (−κ, κ) will be stable in
the β planes, since the latter corresponds to substituting J2 for
J′2 in (19), as discussed after (15).

When more than one maximum exist in k space, the
actual solution corresponds to the highest one, which will
depend on the specific values of the model parameters. Here
the anisotropy parameter D plays an important role, even
though it is not present in the equations obtained from
derivatives of the eigenvalues.

As a check of consistency, we take from [10] two
sets of values of exchange constants, determined with the
planar model, for two representative compositions in the
FexCo1−xTa2O6 series. Following the common usage, we
quote exchange constants in units of temperature, omitting the
Boltzmann constant factor. For a Fe-rich sample near x = 0.6
we have J1 = 0.48 K, J2 = −1.3 K and J′2 = −0.05 K. For a
Co-rich sample near the transition between the AFC and AFI
phases (x . 0.2) the values are J1 = −0.45 K, J2 = −2.8 K
and J′2 = 0.3 K. Utilizing these exchange values in the present
model, we choose a large anisotropy (D = 10 K) to approach
the Ising limit and take the interplane couplings as zero in
this first check. Although one should expect different values
of D for different compositions, we used the same reference
value for all the numerical results. The role of the anisotropy
is essentially to select λ1+(k) as the relevant eigenvalue and
to set the scale of its values, without significant effect on the
positions of the maxima.

On the left panel of figure 2 we show an intensity plot
and some contours of λpl

1+(ka, kb) for the Fe-rich case. Even
though the maximum is very extended along a ridge line
nearly perpendicular to the direction kb = ka, its location at
the point (π, 0) is clearly seen. To confirm this, the panel on
the right figure 2 shows that the point (π, 0) is a maximum
along both lines. The corresponding plots for the Co-rich case
are shown in figure 3, where the position of the maximum is
consistent with the κ value calculated from (18).
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Figure 3. Plots like those shown in figure 2, but now for the parameter values J1 = −0.45 K, J2 = −2.8 K and J′2 = 0.3 K, obtained [10]
for FexCo1−xTa2O6 with x . 0.2. The value of κ is determined using (18). Notice that the maximum is at an incommensurate wavevector,
slightly displaced from (π/2, π/2), the ordering vector observed by neutron diffraction.

Notice that (κ, κ) is an incommensurate wavevector (κ '
0.52π ), although it is close to (π/2, π/2), which corresponds
to the ab plane components of the propagation vectors for
both the AFC and the AFI magnetic structures. Inspecting the
eigenvectors v1+(k) and v2+(k) (equations (14) and (15)), we
can easily see that each spin lies essentially along the local
anisotropy axis when D is large and the planes are weakly
coupled. Thus if Q is incommensurate, the value of the local
moment |〈Si〉| is modulated. This could be a possible state
just below TN, but at low temperatures the magnetic moments
cannot be modulated because |〈Si〉| → S, which implies
that the magnetic structure becomes commensurate. With the
parameters considered above, the incommensurate structure is
very close to the commensurate one with (π/2, π/2), which
becomes the stable structure. As the temperature rises towards
TN, since the average values of the spins no longer need to
be maximal, one could see commensurate–incommensurate
transitions. In this sense, our model is qualitatively similar to
the well-studied ANNNI model [23], which shows a sequence
of such transitions generating the famous devil’s staircase.

3.2. Effect of interplane coupling

Following our strategy, we now study the stability of the
in-plane solutions shown in figures 2 and 3 in the presence
of interplane coupling, also determining which periodicity is
favored in the c direction.

Keeping in mind that we are analyzing the eigenvalue
λ1+(k), given by the first line of (13), we can see from (12)
that the effect of the nearest plane (inter-sublattice coupling)
goes to zero if any of the wavevector components is equal to
π . In this case, kc = π is favored for J4 < 0, as shown by (8).
This is consistent with the experimental results for Fe-rich
compounds in the FexCo1−xTa2O6 series, for which the AFF
structure presented in section 1 was observed, its propagation
vector (1/2, 0, 1/2) corresponding to (ka, kb, kc) = (π, 0, π).

Even though the inter-sublattice couplings J3 and J′3
do not affect the value of λ1+(π, 0, π), we must check
the stability of this structure upon increasing values of

these parameters, since other solutions could yield a higher
eigenvalue. Since the other possible maximum for decoupled
planes occurs at (ka, kb) ' (π/2, π/2), we must study how
it changes with interplane coupling. From (12) we see that
the inter-sublattice couplings do contribute in this case,
predominantly in the combination J3 − 2J′3, so that they
maximize δ(k) when their signs are opposite. We verified
numerically that the AFF structure is stable if all the interplane
couplings are weak, i.e. if their absolute values are one order
of magnitude smaller than those of the dominant in-plane
interactions J1 and J2. However, if J3 and/or |J′3| become
comparable to |J2|, the maximum near (π/2, π/2, 0) becomes
the dominant one. This is shown in figure 4, where we plot
the variation of the λ1+(k) as a function of kc for (ka, kb)

fixed at the observed maxima for decoupled planes. In the
left panel of figure 4 the global maximum is at (π, 0, π),
corresponding to the AFF magnetic structure. Increasing the
combination J3–2J′3 (in this case, by a small increase of |J′3|),
we see in the right panel that the global maximum becomes the
one at (π/2, π/2, 0), which characterizes the AFI structure,
as discussed in section 1. The fact that this structure is not
observed experimentally for Fe-rich compounds is consistent
with the above analysis, as one would need very strong
interplane interactions to stabilize it.

We now repeat this analysis using in-plane exchange
constants obtained for Co-rich samples of the same
series [10], for which a transition between the AFC and AFI
structures (see section 1) was observed as the composition
changed. First of all, we observed that the in-plane position
of the maximum near (π/2, π/2), shown in figure 3, is
very stable against interplane coupling. We can understand
this if we notice that the square root containing δ(k) in
the expression for λ1+(k) (see (13)) is dominated by the
anisotropy D and by the strongest in-plane exchange constant
J2. The two competing structures in the Co-rich region of
compositions, AFC and AFI, differ only by their periodicity
along c, as we have kc = π/2 in AFC and kc = 0 in AFI. For
reasonable values of J3 and J′3, i.e. substantially smaller than
the in-plane couplings, the choice between these two magnetic

5
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Figure 4. Behavior of the eigenvalue λ1+(k) as a function of kc for (ka, kb) fixed at the two positions of the maxima obtained for decoupled
planes. The values of the exchange parameters used in the left panel are J1 = 0.48 K, J2 = −1.3 K, J′2 = −0.05 K, J3 = 0.30 K,
J′3 = −0.10 and J4 = −0.05 K, for which the global maximum is seen to be at (π, 0, π). The only difference in the right panel is that the
absolute value |J′3| increases from 0.10 to 0.15. Now the previously secondary maximum at (π/2, π/2, 0) becomes the global one.

structures is made by J4, which does not contribute to AFC but
favors AFI when assuming a positive value, as can be checked
through (8).

As we mentioned before, besides the AFC and AFI
magnetic structures, the AFN phase appearing in the
FexNi1−xTa2O6 series also shows the same in-plane spin
pattern, but with kc = π . For this reason, the stability of the
AFC structure presents some subtleties that deserve further
analysis. From (8)–(13), we can write an equation for λ1+(k)
as a function of kc with fixed ka = kb = π/2:

λ1+

(π
2
,
π

2
, kc

)
=

1
2 [D+

√
[D− 4(J2 − J′2)]

2 + 64(J3 − 2J′3)
2cos2(kc/2)]

+ 2J4 cos kc. (20)

Now, replacing kc by 0, π/2 and π , we obtain, respectively:

λ1+

(π
2
,
π

2
, 0
)

=
1
2 [D+

√
[D− 4(J2 − J′2)]

2 + 64(J3 − 2J′3)
2]

+ 2J4,

λ1+

(π
2
,
π

2
,
π

2

)
=

1
2 [D+

√
[D− 4(J2 − J′2)]

2 + 32(J3 − 2J′3)
2],

λ1+

(π
2
,
π

2
, π
)
= D− 2(J2 − J′2)− 2J4.

(21)

With the correspondences (π2 ,
π
2 , 0) → AFI, (π2 ,

π
2 ,

π
2 ) →

AFC, and (π2 ,
π
2 , π)→ AFN, we can rewrite these equations

as

λAFI
1+ = λ0 +

1
2

D̃

√1+ 4
(
δ3

D̃

)2

− 1

+ 2J4,

λAFC
1+ = λ0 +

1
2

D̃

√1+ 2
(
δ3

D̃

)2

− 1

 ,
λAFN

1+ = λ0 − 2J4,

(22)

where λ0 ≡ D− 2(J2− J′2) is the eigenvalue in the absence of
interplane coupling, D̃ ≡ D−4(J2−J′2) and δ3 ≡ 4(J3−2J′3).
It is easy to see that J4 > 0 stabilizes the AFI structure, while

J4 < 0 tends to favor AFN, but it is not clear what happens if
J4 is very small and negative, since even the AFI phase can be
stable in this limit. Expanding the square roots up to second
order, we obtain that the AFC phase is stable if J4 is negative
and its absolute value satisfies the conditions

1
2

δ2
3

D̃
−

3
4

δ4
3

D̃3
< 2|J4| <

1
2

δ2
3

D̃
−

1
4

δ4
3

D̃3
. (23)

This narrow stability region of the AFC phase is consistent
with the experimental observation that it is suppressed in favor
of AFI at about 1% substitution of Fe for Co.

Summarizing the above discussion, we can highlight the
following points concerning the observed magnetic phases in
the FexCo1−xTa2O6 and FexNi1−xTa2O6 series.

(i) The AFF structure, with propagation vector (1/2, 0, 1/2),
which is observed in Fe-rich compounds of the
FexCo1−xTa2O6 series, is essentially stabilized by the
intra-plane exchange couplings as obtained from fittings
of the susceptibility [10] and by an intra-sublattice
interplane exchange J4 < 0. This structure is robust
against variations of the exchange interactions between
nearest planes, J3 and J′3, provided they are weak in
comparison with the dominant in-plane coupling J2.

(ii) The AFC and AFI structures, respectively with propa-
gation vectors (1/4, 1/4, 1/4) and (1/4, 1/4, 0), present
the same spin pattern on the ab plane, which differs
from that of the AFF structure due to important changes
observed in the in-plane exchange constants [10] around
x = 0.46 in the FexCo1−xTa2O6 series. These changes
are: (i) sign reversal of the nn interaction J1, which
is positive for x above 0.46 and negative below; (ii)
sign change of the nnn interaction perpendicular to
the anisotropy axis, J′2, which is positive for low x
but becomes small and negative for x > 0.46; (iii)
enhancement of the nnn interaction along the anisotropy
axis, J2, in the low x region (without changing its AF
character). While J4 > 0 favors the AFI phase, one needs
J4 < 0 and a fine tuning of J3, J′3, and |J4| to account for
the transition from AFI to AFC that occurs at very low
Fe concentration (x ∼ 0.01).
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(iii) The AFN structure, with propagation vectors
(1/4, 1/4, 1/2), occurs for compositions with low Fe
content in the FexNi1−xTa2O6 series. Using magnetic
susceptibility data from [12], we performed fittings with
the high-temperature series presented in [10], obtaining
the in-plane exchange constants J1 = −0.66 K, J2 =

−4.9 K and J′2 = 0.92 K for NiTa2O6. The situation
is very similar to the case of CoTa2O6 (see figure 3),
with a maximum of λpl

1+(ka, kb) for ka = kb ≡ κ ' 0.52,
this value being given by (18). The stability of the AFN
phase as a three-dimensional structure implies that the
interplane couplings are such that J4 < 0 and its absolute
value is sufficiently large to fall outside the stability
region of the AFC phase, given by (23).

The above comments imply that the exchange constant
J4 changes sign twice throughout the FexCo1−xTa2O6 series,
being negative for high or very low Fe content, and positive
in the intermediate region 0.01 < x < 0.46. Sign changes also
occur near x = 0.46 for the in-plane exchange constants J1
and J′2. Similar changes must also occur in the FexNi1−xTa2O6
series. To understand this, we have to keep in mind that we are
dealing with magnetic ions at the center of distorted octahedra
whose vertices are occupied by oxygen ions. Thus, we have
what we could call generalized superexchange interactions,
which in some cases are mediated by two or more of
these oxygen ions, and could also involve the Ta cations.
Only J2 is associated with a straight-line superexchange path
(see figure 1). All the others involve two or more bonds
with relative angles far from 180◦, in which case changes
between AF and FM coupling usually occur [24–26]. As
the magnetic-cation composition changes, the distortions of
the surrounding octahedra are modified, which can lead
to important intensity and sign variations of the exchange
couplings.

It is worth remarking that one would not expect such
a relevant role played by a longer range exchange coupling
as J4, while the shorter range J3 is less effective. This
behavior is tied to the existence of strong anisotropy with
easy axes that are perpendicular to each other in adjacent
planes. It is clear that a Heisenberg exchange interaction,
depending on the scalar product of two spins, tends to be
suppressed if an orthogonal relative orientation of these spins
is favored by the anisotropy. In addition, we checked that a
Dzyaloshinsky–Moriya interaction [27, 28] (dDM · S1 × S2)
between nearest neighbors on adjacent planes would also be
ineffective because, by symmetry reasons, the dDM vector
would be parallel to the planes containing the two easy axes.

4. Conclusions

We presented here the first three-dimensional model to
describe magnetism in the tetragonal tantalite compounds
AxA′1−xTa2O6, mainly focusing on the FexCo1−xTa2O6 series,
for which extensive experimental investigations have been
previously reported [5, 9, 10], but also with consistent
results for NiTa2O6 [12, 13]. With this model, we obtained
information about the possible magnetic structures by

studying the maxima of the k-space exchange matrix,
including single-ion anisotropy.

We were able to check the consistency of the possible
magnetically ordered structures with the exchange constant
values obtained from fittings of magnetic susceptibility data
to high-temperature series for a two-dimensional model [10].
We confirmed that the stability of the solutions is intimately
related to the existence of strong crystal-field anisotropy.
We also verified the stability of the observed magnetic
phases against weak interplane couplings, consistent with
the quasi-two-dimensional nature of the magnetism in these
compounds. Besides that, we were able to identify relevant
relations between interplane interactions to account for
the complete three-dimensional propagation vectors of the
observed magnetic structures.

This analysis can be applied to other compounds in the
general family AB2O6, like those with Nb [29, 30] or Sb [11,
31, 32] in place of Ta. While the model is directly applicable to
the isostructural Sb compounds, a straightforward extension
must be made in the case of Nb, for which the lattice structure
is orthorhombic instead of tetragonal.

It is important to stress that the two-dimensional model
alone could not account for the periodicities of the magnetic
structure along the c axis observed in the tantalites, which
depend exclusively on interplane coupling. The information
we could gather here about interplane exchange constants
was in good part qualitative, restricted to signs and orders
of magnitude. More quantitative results may be achieved via
different approaches. One alternative would be to develop the
high-temperature series for the magnetic susceptibility using
the fully three-dimensional model proposed here, followed
by new fittings of the experimental data. A totally different
line of investigation would involve ab initio calculations of
the exchange integrals and crystal-field anisotropy, taking into
account the actual chemical compositions within the unit cell.
Due to the structural complexity of the compounds, both
approaches are very difficult to pursue, but their results would
be of great value for a broader and deeper understanding of the
magnetic properties of these systems. We must also mention
that detailed experimental data on spin-wave dispersion
relations, as provided by inelastic neutron diffraction in
single crystals, would also be suitable to extract information
on exchange constants and anisotropy parameters with our
model.
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