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Simplified periodic Anderson model: Exact solution in infinite dimensions

R. Consiglio and M. A. Gusma˜o
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil

~Received 5 September 1996; revised manuscript received 6 November 1996!

We present a diagrammatic perturbative treatment of the hybridization for the periodic Anderson model that
recovers the dynamical mean-field equations in the limit of infinite dimensions. The resulting effective single-
site problem is naturally addressed by perturbation theory on the dynamical mean field. We introduce a
simplified version of the model in which only electrons with a given spin orientation hybridize. The perturba-
tion series can be summed in this case, yielding an exact solution for the single-particle Green’s functions.
Electronic and transport properties are analyzed, showing the existence of a metallic regime with non-Fermi-
liquid behavior.@S0163-1829~97!03711-9#
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I. INTRODUCTION

Despite the intense research activity of the past decad
two, the physics of heavy-fermion materials still poses int
esting challenges. The success of the exactly solved
impurity Kondo problem in explaining features that are o
served in dilute rare-earth alloys has not been matched in
study of concentrated Kondo systems.1,2 In addition to a
high-temperature behavior more or less consistent with in
pendent magnetic impurities, these systems present a
temperature coherent regime, where the resistivity dr
down to a very small residual value. In this region, the s
tem can behave as a normal Fermi liquid with enhanced
fective mass, or undergo a phase transition to a super
ducting or a magnetically ordered state, with possi
coexistence of the two.

It is generally accepted that the relevant physical ingre
ents of the problem are contained in the so-called perio
Anderson model~PAM!, or Anderson lattice. This mode
describes a noninteracting conduction band that hybrid
with localized levels~intended to representf levels of rare-
earth ions!. A strong on-site Coulomb repulsion reduces t
probability of double occupancy of these levels. For simp
ity, the hybridization is usually considered as a local proce
In addition, orbital degeneracy is often neglected, wh
would be justified by a strong crystal-field splitting of th
levels. In contrast to the single-impurity model,3 there is no
exact solution of the Anderson lattice, and many appro
mate treatments have been developed in the past.4,5 Different
approaches have focused on distinct aspects of the prob
but none of them has been able to produce a complete
herent picture.

The limit of infinite spatial dimensionality for fermions o
a lattice, introduced by Metzner and Vollhardt,6 has attracted
much interest due to the simplifications that it brings to
analysis of strongly correlated systems. Similarly to what
been done for the Hubbard model, self-consistent equat
for the Green’s functions of an effective single-site proble
in the presence of a dynamical mean field have been
tained for the Anderson lattice.7,8 Even though the self-
consistency equations areexact in d5`, one still has to
solve the effective single-site problem. Numerical solutio
for both the Hubbard and Anderson models have been
550163-1829/97/55~11!/6825~7!/$10.00
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tained, and analytical approximate solutions based on exp
sion on the Coulomb interaction have also been worked
~see Ref. 9 and references therein!.

Starting with perturbation theory on the hybridizatio
term, we recover here the exact dynamical mean-field eq
tions for the periodic Anderson model in infinite spatial d
mensionality. In addition, the perturbative series on the
bridization term is naturally transformed in this limit into
perturbative series on the local dynamic mean field. Due
the inclusion of the Coulomb interaction in the unperturb
Hamiltonian, this perturbation series constitutes a stro
coupling approach to the problem that may complem
weak-coupling methods as far as analytical solutions
concerned. Of course, it is not possible to sum the en
perturbation series, and all analytic solutions are appro
mate. However, in a similar treatment10,11 the corresponding
series can be summed for the Falicov-Kimball~FK! model,12

which can be viewed as a simplified Hubbard model, and
an exact solution.13,14In analogy with this, we introduce her
a simplified periodic Anderson model~SPAM! in which only
f andc electronswith a given spin orientationhybridize. For
this model we were able to calculate exactly the relev
Green’s functions, using them to study spectral and trans
properties. We restrict our analysis to the paramagnetic s
and remain in the half-filling case, related to the physics
Kondo insulators.15

The exact solution of the SPAM ind5` shows some
expected features of the physics of heavy-fermion materi
although some important ones are missing. For instance
single-particle density of states~DOS! shows narrowf bands
resulting from the broadening of the initially localizedf lev-
els, and a hybridization gap opens in the middle of the c
duction band for sufficiently large hybridization, but the e
pected Kondo resonance at the Fermi level is absent. W
there is no gap, the low-frequency optical conductivity
enhanced at low temperatures, although a true Drude pe
not formed. Consistent with this, the static resistivity dro
down in a low-temperature ‘‘quasicoherent’’ regime. The r
sistance varies linearly with temperature in this region, a
has a finite zero-temperature limit, showing that the syst
is not in a Fermi-liquid state.

In Sec. II we write down the Hamiltonian for the PAM
and introduce the relevant Green’s functions and their ca
6825 © 1997 The American Physical Society
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6826 55R. CONSIGLIO AND M. A. GUSMÃO
lation by means of a perturbation expansion on the hyb
ization term. The infinite dimension limit is addressed in S
III. In Sec. IV we introduce the simplified periodic Anderso
model, and discuss its exact solution. Our final remarks
conclusions appear in Sec. V.

II. MODEL AND PERTURBATION APPROACH

The basic version of the periodic Anderson model, wi
out orbital degeneracy and with a local hybridization, can
represented by the model Hamiltonian

H52t (
^ i j &s

cis
† cjs1E(

is
nis
f 1U(

i
ni↑
f ni↓

f

1V(
is

~cis
† f is1 f is

† cis!, ~1!

in usual notation. We have chosen to write the conduct
band in a tight-binding form, with a nearest-neighbor ho
ping amplitudet, because this will allow extension to th
infinite dimension limit. The first three terms on the righ
hand side of Eq.~1! will be considered as the unperturbe
HamiltonianH0, which is a sum of a local and a band term
that can be solved independently. Thus, the unperturbed
sis states span the product of two decoupled spaces: the
eigenstates of thef -electron Hamiltonian, and the conductio
band Bloch states. The last term in Eq.~1! will be taken as
the perturbation.

We will be interested in the temperature-dependent o
particle Green’s functions

Gi j s
c ~t![2^T̂cis~t!cjs

† ~0!& ~2!

and

Gi j s
f ~t![2^T̂f is~t! f js

† ~0!&. ~3!

We use a diagrammatic representation of the perturba
series for these functions in which there are vertices co
sponding to local cumulant averages off operators, and lines
representing the unperturbed Green’s function of the cond
tion band, with a factorV associated with each ‘‘contact’
between a line and a vertex.16 It is possible to define an
irreducible f-electron Green’s function, that we will repre
sent ~in wave vector and Matsubara’s frequency space! by
Gks( ivn), which is the sum of all diagrams that are not sep
rated in two disconnected parts after a single line is c
Some example diagrams of this function are shown in Fig
It is straightforward to show that the perturbation series
both conduction andf -electron Green’s functions can be fo
mally summed in the form of Dyson-like equations:

Gks
c ~ ivn!5gks

c ~ ivn!1gks
c ~ ivn!VGks~ ivn!VGks

c ~ ivn!
~4!

and

Gks
f ~ ivn!5Gks~ ivn!1Gks~ ivn!Vgks

c ~ ivn!VGks
f ~ ivn!,

~5!

where gks
c ( ivn)51/(ivn1m2«k) is the unperturbed

conduction-electron Green’s function,«k being the tight-
binding energies of the unhybridized conduction band, wh
-
.
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assume the form«k522t(m51
d coskm , for a hypercubic lat-

tice in d dimensions~with a unit lattice parameter!. Equa-
tion ~5! has precisely the same structure found for t
Green’s function in the Hubbard model when the hopp
term is treated as a perturbation,10 provided we substitute
V2gks

c ( ivn) for the tight-binding energies of that mode
With this, all formal relations obtained for the Hubbard ca
can be employed here to thef electrons, with the replace
ment just mentioned. We will make full use of this in th
next sections. Equations~4! and ~5! allow us to write

Gks
c ~ ivn!5

1

ivn2«k1m2V2Gks~ ivn!
~6!

and

Gks
f ~ ivn!5Gks~ ivn!1Gks~ ivn!VGks

c ~ ivn!VGks~ ivn!.
~7!

We have written the last equations in a convenient form
apply the infinite-dimension formalism to be developed ne

III. THE INFINITE DIMENSION LIMIT

When considering the limitd→`, in order to preserve a
finite energy per particle in the conduction band, one has
scale the hopping amplitude6 such thatdt25 const. Here we
choose 4dt2[t* 251, which means that all energies will b
measured in units oft* .

In this limit, the diagrammatic series is greatly simplifie
Equivalently to what has been shown for the Hubba
model,11 only the site-diagonal part of the irreducib
Green’s functionGs( ivn)[(1/N)(kGks( ivn) survives in
the limit d5`, and only diagrams with independent loop
as shown in Fig. 2, are nonvanishing. The site-diago
Green’s function for thef electrons,Gii s

f ( ivn) can also be
evaluated from the same set of diagrams asGs( ivn), with a
slight reinterpretation of each diagram.11 It is then clear from
the diagrammatic series that the problem of obtaining
site-diagonalf -electron Green’s function has been reduc
to a single-site problem. The loops that go in and out of
vertex corresponding to this site can be viewed as a lo
dynamic mean-field connecting the site to aparticle bath
~the rest of the lattice!. Since an electron leaves or enters

FIG. 1. Some representative diagrams of thef -electron irreduc-
ible Green’s function. The vertices~dots! are cumulant averages o
f -electron creation and annihilation operators, and the internal l
represent conduction-electron unperturbed Green’s functions~the
external lines are just a guide for the eye!.
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55 6827SIMPLIFIED PERIODIC ANDERSON MODEL: EXACT . . .
local f level through a hybridization process that takes it
or brings it from the conduction band, at first sight the loc
field should beÃs( ivn)[V2Gii s

c . However, when going
from a local cumulant average to a regular one we subt
all ‘‘visits’’ to the original site in the renormalization of the
conduction-electron Green’s function. The true local fie
that we represent here byAs( ivn), can then be written as

Ãs5As1AsGsAs1AsGsAsGsAs1•••5$As
212Gs%21.

~8!

Self-consistency is achieved through the Fourier tra
form, by imposing that quantities calculated directly for t
effective single-site problem are identical to the correspo
ing ones for the lattice. For instance, Eqs.~6! and ~7! yield

Gii s
c ~ ivn!5

1

N(
k

1

ivn1m2V2Gs~ ivn!2«k
~9!

and

Gii s
f ~ ivn!5Gs~ ivn!@11Gs~ ivn!V

2Gii s
c ~ ivn!#. ~10!

From Eqs.~8! and~10! and the definition ofÃs one obtains

As5Gs
212@Gii s

f #21. ~11!

Equations~9!–~11!, together with an explicit solution of the
single-site problem forGii s

f ( ivn) in terms ofAs( ivn), con-
stitute a self-consistent set of equations for all the relev
Green’s functions and the local dynamic mean field. Not
that from Eqs.~5! and ~11! we can write

Gii s
f 5

1

N(
k

1

Gs
212V2gks

c 5
1

Gs
212As

, ~12!

where the role ofAs as a mean field is made explicit.
Since all k dependence is now restricted to the tigh

binding energies«k , we can replace the sum overk in Eq.
~9! by an energy integral in the form

Gii s
c ~ ivn!5E d«

D0~«!

ivn1m2V2Gs~ ivn!2«
, ~13!

whereD0(«) is the uncorrelated density of states of the co
duction band ind5`. For a hypercubic lattice~with the
choice of t*51 that we have made! one has6

D0(«)5(1/Ap)exp(2«2).
Our method yields an approach to solve the single-

effective problem as a perturbation series in the fieldsAs

FIG. 2. Diagrammatic series for the irreducible Green’s funct
Gs or the site-diagonal Green’s functionGii s

f in d5`. Each line
forming a closed loop represents a fully renormalized conduct
electron Green’s function in the case ofGs , or the dynamic mean
field As( ivn) for Gii s

f .
l

ct

,

-

-

nt
e

-

e

~see Fig. 2!. Starting with the unperturbed loca
Green’s function 2^T̂f s(t) f s

†(0)&0, each even order
in perturbation theory introduces a product
the type As1

(t12t18) f s1

† (t1) f s1
(t18), so that in gen-

eral one has to calculate averages of the fo
^ f s1

† (t1) f s1
(t18) f s2

† (t2) f s2
(t28)•••&0. Since this is exactly

the same as in the Hubbard model, we are not going to
cuss it here, and we refer the reader to Ref. 11.

Dynamic and static conductivity

Now we briefly review the calculation of the frequenc
dependent conductivity for the Anderson model in infin
dimensions. The conductivity tensor in linear respon
theory is given by Kubo’s formula in terms of the curren
current correlation function. Due to the absence of hopp
for the f electrons in the Anderson model, the current ope
tor refers to the conduction electrons only. In infinite dime
sions the difficulties related to momentum conservation d
appear, and the optical conductivity~reduced to a scalar du
to the hypercubic symmetry! assumes the simple form17

s~n!5p(
s

E d«D0~«!E dvAs~«,v!As~«,v1n!

3
@ f ~v!2 f ~v1n!#

n
, ~14!

where f (e) is the Fermi function andAs(«,v) is the one-
particle spectral density, obtained by replacing«k by « in

As~«k ,v![2
1

p
ImGks

c ~v1 i01!, ~15!

where we perform the analytic continuation of th
conduction-electron Green’s function, Eq.~6!, to real fre-
quencies.

One can obtain the static limit (n→0) of Eq. ~14!,

s~0!5pbE d«D0~«!E dv@A~«,v!#2f ~v!@12 f ~v!#,

~16!

where b[1/T stands for the inverse of the temperatu
From Eq. ~16! the static resistivityr[1/s(0) can also be
calculated.

IV. THE SIMPLIFIED PERIODIC ANDERSON MODEL

Inspired by the fact that the perturbation series inAs for
the effective single-site problem ind5` can beexactly
summed in the case of the Falicov-Kimball model, we intr
duce here a similar simplification of the Anderson model t
will allow us to find an exact solution. The periodic Ande
son model can be simplified by considering a spin-depend
hybridization such that only electrons with a given spin o
entation ~say, spin up! hybridize. In this case, the Hamil
tonian ~1! can be rewritten in the form

-
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H52t (
^ i j &s

cis
† cjs1E(

is
nis
f 1U(

i
ni↑
f ni↓

f

1 V(
i

~ci↑
† f i↑1 f i↑

† ci↑!. ~17!

Actually, the dynamics of the spin-down conduction ele
trons is completely decoupled from that of the other el
trons, and they behave as a free gas. However, they are
modynamically coupled to the system, and their number
lattice site is nota priori fixed. Here we will only consider
the paramagnetic, half-filled case in the particle-hole sy
metric situation (E52U/2). This fixes the chemical poten
tial atm50, and we will completely neglect the existence
the spin-down conduction electrons.

As far as thef electrons are concerned, we are faced w
exactly the same problem as in the Falicov-Kimball mod
Summation of the perturbation series inA↑ yields

Gii ↑
f ~ ivn!5

12^n↓
f &

ivn2E1m2A↑~ ivn!

1
^n↓

f &
ivn2E2U1m2A↑~ ivn!

. ~18!

For the case that we are considering, this reduces to
simple form

FIG. 3. Densities of states for thef and c electrons~top and
bottom, respectively! in the half-filled SPAM in infinite dimension
for U52 and some values ofV.
-
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Gii ↑
f ~ ivn!5

1/2

ivn1U/22A↑~ ivn!
1

1/2

ivn2U/22A↑~ ivn!
.

~19!

The self-consistent solution of Eqs.~10!, ~11!, ~13!, and~19!
is easily performed numerically. We can extend these eq
tions to real frequencies by the direct substituti
ivn→v1 i01, which allow us to obtain single-particle den
sities of states,Da(v)52(1/p)ImGii ↑

a (v1 i01), wherea
refers toc or f electrons.

Results

As far as electronic properties are concerned, our m
results are presented in Figs. 3 and 4. As we mentioned
fore, we have restricted our analysis to the paramagn
state in the half-filling case. In Fig. 3 we show densities
states for the~spin-up! f andc electrons forU52 and some
values ofV. One can see that the very narrow peaks t
mark the singly and doubly occupied localizedf levels are
broadened and reduced in height as the hybridization is
creased. Spectral weight is displaced from these sate
peaks to the central region of the spectrum. On the ot
hand, the conduction-band spectral weight is partially shif
to the satellite peaks. Eventually, for large enoughV, a gap
opens in the center of the band. AsV increases from zero
the f -electron DOS at the Fermi level first increases, reac
a maximum, and then decreases towards zero when the
appears. This is best seen in Fig. 4, where it is clear that
critical value ofV for which the gap appears approaches z
asU is lowered. Of course, forV strictly zero the two bands
are decoupled, and there is no gap. The most striking c

FIG. 4. Densities of states at the Fermi level forf ~full ! andc
~dotted! electrons in the SPAM as a function of the hybridizatio
parameter for some values ofU.
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FIG. 5. Frequency dependence of the optical conductivity of the symmetric SPAM.~a! General behavior forT51.031023 and some
values ofV andU. ~b! Detailed view of the low-frequency region with varying temperature~for U53.0 andV50.5) showing the absenc
of a Drude peak.~c! Low-frequency region for large hybridization (V50.9), wheres increases with temperature, in contrast with t
behavior observed in~b!.
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trast between the DOS for the SPAM and numerical res
for the complete Anderson model9 is the absence of a Kond
peak at the Fermi level with a hybridization gap in t
middle of it. The enhancement of the DOS at the Fermi le
is weak, and the hybridization gap is absent for cert
ranges of parameters~largeU, low V).

The frequency-dependent conductivity, shown in Fig. 5
consistent with the electronic structure, reflecting the gap
the Fermi level when it exists, and showing a finite value
zero frequency when the system is a conductor. Notice
the conductivity enhancement observed in the low-freque
region in Fig. 5~a! is not the beginning of a Drude peak: th
limiting value at zero temperature and frequency is alw
finite, as can be seen in Fig. 5~b!. This limiting value is
lowered by increasing temperature in the low-hybridizat
regime. In contrast, for large values ofV the conductivity is
depleted in the low-frequency region, and its limiting val
increaseswith temperature@Fig. 5~c!#. This reflects the ex-
istence of apseudogapin the density of states, as can be se
in Fig. 3. Thermal excitation of carriers across the Fer
surface enhances the conductivity in this situation.

A complementary view of the conduction properties in t
zero-frequency limit is provided by the static resistivity~Fig.
6!, which shows a low-temperature ‘‘quasicoherent’’ regim
with an approximatelylinear decrease towards anonzero
limit, signaling a breakdown of Fermi-liquid behavior in th
SPAM. This is consistent with the fact that the self-energy
ts

l
n

s
at
t
at
y

s

n
i

,

f

the spin-up conduction electronsremains finiteat zero fre-
quency, and does not depend on temperature. The
energy is just given byV2G↑ , as can be seen by the form o
Gks
c , Eq. ~6!. Notice that the temperature dependence of

resistivity in the SPAM comes exclusively from the explic
factor b and the Fermi functions in Eq.~16!. The Green’s
functions depend on temperature only through the Matsub
frequencies, and this dependence disappears upon ana

FIG. 6. Temperature dependence of the static resistivity
U53 and various values ofV. Left: change in behavior with hy-
bridization. Right: detailed view of the low-V regime.
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6830 55R. CONSIGLIO AND M. A. GUSMÃO
continuation to real frequencies. Of course, the spectral fu
tion in Eq. ~16! plays an important role in defining the re
evant integration region, with an~indirect! effect on the tem-
perature dependence of the conductivity. The tempera
independence of real-frequency Green’s functions is a c
acteristic of the SPAM, since the ‘‘loops’’ in Fig. 2 are n
really closed: the only frequency going around all of them
the external one. The situation would change for the co
plete PAM, when summation overinternal Matsubara fre-
quencies in the loops should produce a temperature de
dence that could survive the analytic continuation to r
frequencies.

It is interesting to compare our results for the optical co
ductivity or static resistivity with experimental observatio
in f -electron materials that show non-Fermi-liquid grou
states.18,19 This happens for Kondo alloys, such a
Y12xUxPd3 or Y12x2yThyUxPd3. Depending on the concen
tration parameters, the resistivity versus temperature p
can show the same kind of changes of the general tren
observed in Fig. 6, where the parameter that is varied is
hybridization strength. As a possible explanation for suc
similarity, we must notice that the SPAM~at least for non-
magnetic phases, as considered here! has anintrinsic disor-
derbuilt into it, since the frozen spin-downf electrons act as
randomly distributed scattering centers. We have fixed
concentration of these frozen electrons by fixing the ba
filling. So, the strength of their effect on the conduction ele
trons depends on the hybridization: it is only through th
acquiredf character that the moving electrons can inter
with the frozen ones via the Coulomb repulsion. In real co
pounds the effectiveness of the scattering mechanism is
erned by the concentration of impurities. Thus, varying
hybridization in the model or the concentration of impuriti
in real materials amounts to varying the scattering rate
conduction electrons, which explains the similarity betwe
the resistivity behavior with temperature in both cases. E
though a quantitative comparison would not be justifia
here, we can at least check orders of magnitude. Our u
are such that energy, frequency, and temperature are all
sured in units oft* , which is essentially one-half of th
bandwidth. On the other hand, our conductivity must be m
tiplied by t* 2. Choosing a bandwidth of;1 eV, and insert-
ing all the relevant universal constants we obtain tempe
tures between 0 and 1000 K, a unit frequency correspond
;104 cm21, and our conductivities are of the order
103 (V cm)21. This is more or less the right order of ma
nitude to compare with the experimental results. Of cou
changes by a factor of 1 to 10 can be produced by o
choices of parameter values.

V. CONCLUSIONS

In conclusion, we have presented a diagrammatic met
to handle the perturbation series in the hybridization term
one-particle Green’s functions of the Anderson lattice.
the relevant equations can be written in terms of an irred
ible f -electron Green’s function, whose diagrammatic rep
sentation can be formally related to the corresponding
for the Hubbard model treated by perturbation around
atomic limit.11 With this, the reduction to a single-site effe
tive problem ind5` is easily obtained. Besides reproducin
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the exact self-consistency equations satisfied by the Gre
functions of both kinds of electrons and the local dynam
mean-field,9 the method provides a perturbation series on t
mean field for the site-diagonalf -electron Green’s function
We have introduced a simplified version of the period
Anderson model for which this perturbation series isexactly
summable. Inspired by the relationship between the Falic
Kimball and Hubbard models, we defined the SPAM
eliminating the hybridization of down-spin electrons in th
Anderson model. We want to emphasize that the SPAMcan-
not be reduced to the Falicov-Kimball model, even thou
we defined the former in analogy with the latter. Also, a
though the tight-binding solution of the Hubbard model
infinite dimensions has been used here to deal with the
grammatic representation of thef -electron Green’s func-
tions, the self-consistency conditions are different, reflect
the existence of the conduction band, which leads to diff
ent solutions.

A summary of the exact results that we have obtained
the SPAM is as follows: There is broadening of the localiz
f levels, with exchange of spectral weight between the lo
and high-energy regions of the spectrum. Above a criti
value ofV ~which increases with increasingU) a hybridiza-
tion gap opens up at the center of the conduction band
Kondo peak doesnot appear. For small values of the hybrid
ization parameter, the optical conductivity is enhanced in
low-frequency region, but a true Drude peak is absent. T
finite zero-frequency value of the conductivity is reduc
with increasing temperature in this regime. We have thu
metallic regime where the static resistivity shows a sh
drop with temperature, but the system isnot a Fermi liquid:
the dependence of the resistivity with temperature is appr
mately linear, and there is a finite residual resistance. W
the hybridization parameter is large, as one approaches
limiting value for the formation of a hybridization gap, the
is a reversal of the temperature behavior of the lo
frequency conductivity due to the contribution of therm
excitations across a pseudogap appearing in the densit
states. The overall features of the conductivity behavior w
temperature in the SPAM are qualitatively similar to what
experimentally observed in disordered heavy-fermion s
tems such as Y12xUxPd3 and related compounds.18 This
similarity can be traced back to the existence of an intrin
disorder in the model due to the presence of randomly
tributed scattering centers: the~nonmobile! down-spin f
electrons.

Up to now, we have restricted our calculation to t
particle-hole symmetric case in the paramagnetic phase
should be interesting to investigate the existence of orde
phases, as well as the spectral and transport propertie
other band fillings. Although the breakdown of spi
symmetry inherent to the simplified Anderson model
highly non-physical, the fact that there is an exact solution
the problem is very important. In particular, this solution c
be a checking point for approximation schemes devised
the complete model. For instance, the exactly calcula
quantities for up-spin electrons in the SPAM can be cons
ered as a reasonable approximation for electrons with b
spin orientations in the PAM. The simplified model coul
then, be a starting point for studies that included correcti



e

ith
n

lian

os
o

55 6831SIMPLIFIED PERIODIC ANDERSON MODEL: EXACT . . .
taking into account the hybridization of the other spin sp
cies.

ACKNOWLEDGMENTS

We are indebted to Luis Craco for his valuable help w
the computation routines, as well as for interesting comme
W

b

et

ev
-

ts

and discussions. We acknowledge support by the Brazi
agencies Conselho Nacional de Desenvolvimento Cientı´fico
e Tecnolo´gico ~CNPq!, Financiadora de Estudos e Projet
~FINEP!, and Fundac¸ão de Amparo a` Pesquisa do Estado d
Rio Grande do Sul~FAPERGS!. R.C. thanks Fundac¸ão Uni-
versidade do Rio Grande~Brazil! for providing conditions
that allowed his participation in this work to begin.
lit-
G.

D.
C.
1A. C. Hewson,The Kondo Problem to Heavy Fermions~Cam-
bridge University Press, Cambridge, 1993!.

2G. R. Stewart, Rev. Mod. Phys.56, 755 ~1984!.
3P. B. Wiegmann, J. Phys. C14, 1463~1981!.
4G. Czycholl, Phys. Rep.143, 277 ~1986!.
5P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J.
Wilkins, Comments Condens. Matter Phys.12, 99 ~1986!.

6W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324~1989!; E.
Müller-Hartmann, Z. Phys. B74, 507 ~1989!. For a review see
D. Vollhardt, in Correlated Electron Systems, Proceedings of
the Jerusalem Winter School of Theoretical Physics, edited
V. J. Emery~World Scientific, Singapore, 1993!.

7M. Jarrell, H. Akhlaghpour, and Th. Pruschke, Phys. Rev. L
70, 1670~1993!.

8M. Jarrell, Phys. Rev. B51, 7429~1995!.
9A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, R
Mod. Phys.68, 13 ~1996!.

10L. Craco and M. A. Gusma˜o, Phys. Rev. B52, 17 135~1995!.
11L. Craco and M. A. Gusma˜o, Phys. Rev. B54 1629 ~1996!.
.

y

t.

.

12L. M. Falicov and J. C. Kimball, Phys. Rev. Lett.22, 997~1969!.
13U. Brandt and C. Mielsch, Z. Phys. B75, 365 ~1989!.
14P. G. J. van Dongen and D. Vollhardt, Phys. Rev. Lett.65, 1663

~1990!; V. Janis, Z. Phys. B83, 227 ~1991!; V. Janis and D.
Vollhardt, ibid. 91, 317 ~1993!.

15T. Takabatakeet al., Phys. Rev. B41, 9607~1990!; M. F. Hun-
dley et al., ibid. 42, 6842 ~1990!; A. Severinget al., ibid. 44,
6832 ~1991!.

16Other cumulant expansions of the PAM had appeared in the
erature. See, for example, M. S. Figueira, Me. E. Foglio, and
G. Martinez, Phys. Rev. B50, 17 993~1994!.

17Th. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B47, 3553
~1993!.

18M. B. Maple, M. C. de Andrade, J. Herrmann, Y. Dalichaouch,
A. Gajewski, C. L. Seaman, R. Chau, R. Movshovich, M.
Aronson, and R. Osborn, J. Low Temp. Phys.99, 223 ~1995!.

19L. Degiorgi, H. R. Ott, and F. Hulliger, Phys. Rev. B52, 42
~1995!.


