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Finite temperature static susceptibility of the Anderson lattice* 
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The static magnetic susceptibility of the Anderson lattice in the symmetric Kondo case is calculated within an approach 
that leads to exact results in the limits of zero bandwidth, zero hybridization or zero Coulomb repulsion. The susceptibility 
agrees with the expected behavior of a Kondo system for high and intermediate temperatures. At low temperatures a 
partially compensated magnetic moment is obtained, which is probably an artifact of the approximation. 

The low-temperature behavior of some heavy- 
fermion rare-earth compounds, like CeAl,, Ce- 
Cu,Si,, etc., has been extensively studied in the 
last few years [l]. At such temperatures these 
compounds show anomalies in a series of phys- 
ical properties. In particular, the static suscep- 
tibility indicates the existence of a large effective 
magnetic moment [2,3] and deviates from 
Curie’s law at very low temperatures. 

Heavy-fermion behavior is usually explained 
on the basis of a mixing between localized, 
strongly correlated f-states and extended conduc- 
tion states. Here, we calculate the static homoge- 
neous susceptibility for a system described by the 
Periodic Anderson Model (PAM). Our ap- 
proach, as described in previous works [4-61, 
consists in solving exactly the atomic part (zero- 
bandwidth limit) and introducing the hopping 
term as a perturbation, within a temperature 
Green’s function technique. The homogeneous 
susceptibility is calculated from a spin-spin cor- 
relation function as described below. 

We write down the periodic Anderson Hamil- 
tonian in the form, 

H=zH;+H’, 
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where the atomic term is 

H’, = CEf i’,_& + EBc,;c,, 
v 

+V(f l&7 + drhv)l + wr 4l 
and the band term is 

H’ = 2 t;,c,;cjn . 
i#j,v 

(2) 

(3) 

The parameters of the Hamiltonian are: E(E,) is 
the energy of the atomic f-(c-)level, V the hy- 
bridization, U the Coulomb repulsion for f-elec- 
trons in the same site, and tij the hopping matrix 
element. 

The homogeneous static susceptibility is 

X = k C Xij 3 (4) 
‘I 

with 

Xi, = (Siisj,>lT > (5) 

where Si, is the z-component of the total (f plus 
c) spin operator on site i. Writing Si, in terms of 
fermion operators, eq. (5) becomes 

xij=cx;” 
a0 

=&z ](ns&t > - (Q& >I 7 

where (Y and /3 stand for either f or c. 

(6) 
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In the absence of local Coulomb repulsion, the 
averages in eq. (6) may be decoupled [7] and the 
homogeneous susceptibility can be evaluated 
from 

X = - & c 2 2 G”‘(k, w,)G@(k, 0, + %) I 
ap”m k 

(7) 

where w, and E, are fermionic and bosonic 
Matsubara frequencies, respectively, and 
G”‘(k, wn) is a one-particle Green’s function, 
calculated within an approximate diagrammatic 
expansion described in refs. [4-61. However, 
inclusion of the Coulomb interaction leads to the 
breakdown of Wick’s theorem [8] and, conse- 
quently, the correlation functions appearing in 
eq. (6) cannot be decoupled in terms of one- 
particle Green’s functions. Taking into account 
that the correlation U is local, we use a decou- 
pling scheme like that of eq. (7) only for the 
non-local contribution to the susceptibility, while 
the local part, 

(8) 

is evaluated by means of new local Matsubara 
Green’s functions 

Aa,P,Y(r) = ((12;(+2:(7); a,‘;Y>> ) 

where u”, stands for either cV or f,. 

(9) 

The averages in eq. (8) can be calculated 
through the limit 

Using the same approximate diagrammatic 
method as in refs. [4-61, one obtains 

A;:,(k) = A;:,,, + A~~r,,E(k)Gcf(k) , (114 

A:;.(k) = AC;.,, + AF;t,“E(k)G”(k) , (lib) 

A:;,(k) = A?;,,, + A$&E(k)Gcf(k) , (114 

A;;,(k) = A;;,,, + AC,&,E(k)GCC(k) , (114 

In the numerical calculations, the k-depen- 
dence in eqs. (7) and (11) is eliminated through 
the transformation 

$ T @(E(k)) 

= ; dE 2 6(E - E(k)) @(E(k)) 
k 

= dE p”(E) Q(E), 
I (12) 

p’(E) being a model density of states for the 
unhybridized conduction band. Here we adopt 

where W is the half-width of the conduction 
band. 

We present in figs. 1 and 2 typical results for 
the dependence of the susceptibility on tempera- 
ture in the symmetric (Kondo) case with two 
electrons per site. Figure 1 shows the exact 
results for the atomic limit [9], and fig. 2, the 
finite bandwidth case. The susceptibility de- 
creases at high temperatures in both cases. As 
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Fig. 1. Atomic susceptibility vs. temperature in the symmet- 

ric Kondo case for three different values of the hybridization 

parameter, V= 0.1, V= 0.3, V= 0.5. The bare f-level energy 

E = -2.0 and the Coulomb repulsion I/ = 4.0. All energies 

are measured in units of the unhybridized conduction band. 
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Fig. 2. Same as fig. 1 but taking the band into account. 

the temperature is lowered it presents a max- 
imum, and while the atomic susceptibility goes to 
zero with T, the band susceptibility initially de- 
creases but eventually turns up and diverges as 
l/ T at very low temperatures. 

For a more detailed analysis, we plot in fig. 3 
an effective Curie constant versus temperature. 
We can distinguish three different regimes [lo]: 

(i) A high-temperature one, in which all states 
contribute to the susceptibility and the effective 
Curie constant tends to the value 4 (characteristic 
of a pair of free orbitals) independently of hy- 
bridization. 

(ii) An intermediate temperature regime in 
which the main contribution comes from levels 
with energy just about the ground state. In this 
situation, a maximum value for the Curie con- 
stant is obtained and a dependence on the hy- 
bridization is observed. 

(iii) A low-temperature regime, which is 
reached as the singlet ground-state progressively 
dominates and the effective Curie constant tends 
to zero. 

We can conclude that the exact results for the 
atomic susceptibility agree with the idea of com- 
pensation of localized magnetic moments. How- 
ever, when the band effects are taken into ac- 
count we observe that the effective Curie con- 
stant does not go to zero, apparently indicating 
an incomplete compensation of the local mo- 
ments. We believe that this result is an artifact of 
the approximation, since important correlations 
have been neglected in this scheme. 

Finally, we want to remark that the present 
approach is exact in the limits V= 0 and/or 
U = 0. New results for the susceptibility and for 
the electronic specific heat within a slightly dif- 
ferent treatment will be reported soon. 
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Fig. 3. Twice the effective Curie constant as a function of 

temperature, with the same set of parameters of fig. 2. 
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