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Abstract
We report new results on the magnetic properties of the Fex Co1−xTa2O6 series of compounds.
Essentially using neutron-diffraction and magnetic measurements we study, in more detail, the
low-x limit of the temperature versus x phase diagram, where a new bicritical point is observed.
The complete phase diagram shows three different magnetic phases at low temperature, for a
high, intermediate and very low iron content. These phases consist of distinct antiferromagnetic
orderings, characterized by different pairs of propagation vectors. We obtain information about
the intraplane exchange interactions by fitting a high-temperature series of the magnetic
susceptibility. Here we improve on a previously employed model, showing that two
non-equivalent next-nearest-neighbor interactions must be taken into account in order to allow
for in-plane magnetic orderings that are consistent with the neutron-diffraction results.

1. Introduction

The ATa2O6 trirutile compounds with A = Co, Ni or Fe
present a rich variety of magnetic phases, dominated by
low-dimensionality effects. Since the original investigation
of the magnetic properties of FeTa2O6 by Eicher et al
[1], many studies have followed, not only using magnetic
measurements [2] but also Mössbauer spectroscopy [3], and
elastic as well as inelastic neutron scattering techniques on
powder or single-crystal samples [4, 5]. The magnetic ordering
in Co and Ni isotype compounds has also been the subject of
complementary investigations [6–10]. Recently, the CoTa2O6

compound has been reported to exhibit a different magnetic
structure [11] than the one previously suggested [8]. In
addition to its interesting magnetic properties, NiTa2O6 has
also been found to be an interesting candidate for applications
as a water-splitting photocatalyst [12]. Bicriticality has been
discovered [13] in the Fex Co1−x Ta2O6 series for x = 0.46,
showing another interesting property of these compounds.
Studies of magnetic properties have also been reported on
FexNi1−x Ta2O6 compounds [14, 15].

At this point it is worth summarizing the main features of
the Fex Co1−xTa2O6 compounds. The entire series crystallizes
in the trirutile structure, which is tetragonal with the P42/mnm
space group [16]. In such a structure, Fe2+ or Co2+ cations
are located at the corners and center of each unit cell, i.e., at
positions (0, 0, 0) and (1/2, 1/2, 1/2). These cation layers
are separated by two layers of Ta5+, at positions z ∼ 1/6
and z ′ ∼ 1/3 measured along the c direction. Each cation
is surrounded by O2− anions occupying the vertexes of an
octahedron. The oxygen octahedra are distorted, having a
shorter principal axis lying on the ab plane, and rotating by 90◦
upon a translation of (1/2, 1/2, 1/2). These materials exhibit
quasi-two-dimensional magnetic characteristics. They are
paramagnetic at room temperature, present a broad maximum
of the magnetic susceptibility near 15 K (a signature of short-
range magnetic correlations), and order antiferromagnetically,
with Néel temperatures between 5 and 9.5 K. FeTa2O6 presents
a magnetic structure described by two propagation vectors,
(1/2, 0, 1/2) and (0, 1/2, 1/2) [1], associated to magnetic
ions at the corner and center of the structural unit cell, whose
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magnetic moments are oriented perpendicularly to one another.
In the following we will refer to this structure as AFF (F for
Fe). On the other hand, CoTa2O6 presents a magnetic structure
indexed by the propagation vectors (±1/4, 1/4, 1/4) [11],
which we will call AFC (C for Co). A previous study of the
FexCo1−xTa2O6 series [13] showed that the magnetic ordering
observed for FeTa2O6 is stable for high x values, from 1.0
down to 0.46, while the magnetic structure of CoTa2O6 is no
longer present for iron concentrations as low as 9%, where a
third phase appears that remains stable up to x ∼ 0.46. This
phase is described by the propagation vectors (±1/4, 1/4, 0),
and will be called AFI (I for intermediate).

An important point concerning the magnetic phases
revealed by neutron diffraction in Fex Co1−x Ta2O6 compounds
is that they imply the existence of strong magnetic (crystal-
field) anisotropy. All magnetic moments lie on the ab plane,
alternating along the directions [1, 1, 0] and [1, 1̄, 0] from
one plane to the next, these easy-axis directions coinciding
with the orientation of a shortened principal axis of the
oxygen octahedron surrounding each magnetic ion. This 90◦
rotation of the moments from one magnetic plane to the
next follows the corresponding rotation of the octahedra in
the trirutile structure. Both the low-dimensional character
and the strong in-plane easy-axis anisotropy are very robust
features of these compounds. In fact, they are also evident
in the paramagnetic phase where the susceptibility data can
be fitted to a high-temperature series evaluated for a two-
dimensional (2D) Heisenberg model with an in-plane easy
axis and competing nearest-neighbor (nn) and next-nearest-
neighbor (nnn) exchange interactions [2, 13].

Despite the large amount of information partially
summarized above, gaps still exist in our understanding of
the magnetism in the (Fe, Co)Ta2O6 series. In this paper, we
will concentrate on two aspects. First, we will experimentally
investigate the stability region of the AFC magnetic phase,
and its coexistence with the AFI phase for samples with very
low iron content. Second, we will revisit the 2D model
employed for the paramagnetic susceptibility, which, as we
will show, needs to be reformulated in order to yield values
of exchange interactions that are consistent with the observed
in-plane magnetic structures at low temperature.

2. Magnetic phases for low iron content

In order to determine more precisely the composition limit
between the AFC and AFI magnetic phases, we prepared new
powder samples of Fex Co1−x Ta2O6, with x = 0.01, 0.02, and
0.04. The samples were prepared as previously described [16].
The sample purity was first checked by x-ray diffraction
(XRD) analysis before carrying out magnetic measurements
and neutron-diffraction experiments. The XRD analysis
was performed with a Siemens D500 diffractometer, in
Bragg–Brentano geometry, using Cu Kα radiation, λ(Kα1) =
1.540 56 Å and λ(Kα2) = 1.544 39 Å, with a scan step of
0.02◦ and an angular 2θ range from 10◦ to 120◦. The structure
parameters were confirmed to be in agreement with those
previously obtained for the whole series [13].

2.1. Magnetic measurements

The magnetic measurements were carried out using an
extraction magnetometer, in a wide temperature range, from
1.5 to 300 K. Both the isothermal magnetization, M(H ),
and the temperature-dependent susceptibility, χ(T ), were
measured. The M(H ) curves were recorded in a magnetic
field ranging from 0 to 100 kOe. χ(T ) was obtained by field-
cooling the samples at a constant magnetic field of 5 kOe, then
keeping the field fixed and measuring the magnetization while
raising the temperature. Above 50 K, for better accuracy, the
values of magnetic susceptibility were extracted from ‘Arrot
plots’ of the isothermal magnetization. In other words, 1/χ(T )

was obtained by extrapolating the linear part of H/M versus
M2 curve down to M = 0 [17].

The samples order with an antiferromagnetic structure
at low temperatures. We achieved a precise determination
of the Néel temperature TN by measuring the susceptibility
at intervals of 0.2 K in the range from 1.5 to 20 K, and
numerically performing the derivative ∂(Tχ(T ))∂T , which
presents a well defined peak at the transition. The Néel
temperature showed a marked reduction from x = 0 to 0.01,
and then started to rise again towards the value previously
obtained [13] for x = 0.09. This is similar to what was
observed near x = 0.46 [13], and can be interpreted as
another bicritical point in the T versus x phase diagram.
This interpretation is corroborated by neutron-diffraction
experiments, as discussed below.

2.2. Neutron diffraction

Neutron-diffraction data were collected with a double-axis,
multicounter, high-flux diffractometer (D1B) at the Institute
Laue Langevin (ILL), in Grenoble, France, using a wavelength
of 2.52 Å selected by a pyrolytic graphite monochromator.
In the configuration employed, the D1B resolution was about
0.3◦ (fwhm), and the multicounter was composed of 400 cells
covering a total angular (2θ ) range of 80◦, from 5◦ to 85◦, with
a detector step of 0.2◦. The 2θ range was checked down to
2◦, enabling us to rule out the possible occurrence of other
magnetic Bragg reflections.

We analyzed our neutron-diffraction data using the
FULLPROF refinement package [18] in order to extract
crystallographic and magnetic parameters. The agreement
factors used in this work are defined according to the guidelines
of the Rietveld refinement [19]. The neutron scattering lengths
used were 0.5803 × 10−12 cm for Ta, 0.9450 × 10−12 cm for
Fe, 0.2490 × 10−12 cm for Co, and 0.5803 × 10−12 cm for O;
the values were taken from Sears [20].

Figure 1 shows the neutron spectra for three samples
in the limit of very low iron concentration: x = 0, 0.01,
and 0.02. We have cut off the intensity scale in order to
make the magnetic reflections more visible. The first sample,
which is just CoTa2O6, is indexed by the propagation vectors
of the AFC structure, i.e., (±1/4, 1/4, 1/4). The last one
is already completely indexed by the propagation vectors
corresponding to the AFI structure, (±1/4, 1/4, 0). For the
sample with x = 0.01 we observe the presence of both
kinds of reflection, indicating the coexistence of these two
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Figure 1. Neutron-diffraction spectra showing phase coexistence at
x = 0.01 for the Fex Co1x Ta2O6 solid solution. The reflections
indicated by solid triangles correspond to the magnetic phase
described by propagation vectors (±1/4, 1/4, 1/4), while open
triangles mark reflections of the phase with propagation vectors
(±1/4, 1/4, 0). The vertical bars locate structural reflections of the
P42/mnm space group. The continuous lines are Rietveld fittings to
the data points.

magnetic phases. A similar coexistence pattern was observed
earlier for concentrations near x = 0.46 [13], in this case
involving the AFI and AFF phases. The above result confirms
that a bicritical point exists at x � 0.01 in the T versus x
phase diagram. It is worth mentioning that the Rietveld fitting
of magnetic reflections is poorer for the sample with phase
coexistence, as can be seen in figure 1. Even though the
peaks are clearly present, they appear somewhat smeared out
or slightly distorted. We believe that this is due to the existence
of magnetic frustration, so that parts of the sample might not
develop long-range magnetic ordering. The main point is that
we have two different coexisting magnetic structures, and the
change from one to the other is induced by the Fe content.
One can suppose that there must be regions in which the Fe
concentration is enough to suppress the AFC ordering, but not
enough to stabilize the AFI phase.

2.3. Phase diagram

Putting together the information about the Néel temperature,
obtained from susceptibility measurements, and about the
ordered magnetic phases, obtained from neutron diffraction,
we can complement the magnetic phase diagram of the
FexCo1−xTa2O6 solid solution, first appearing in [13]. The
complete diagram, with two bicritical points, near x = 0.01
and x = 0.46, is shown in the top panel of figure 2.
At various temperatures along the two vertical dotted lines
neutron-diffraction experiments revealed the coexistence of
the two phases that are stable on each side. This T versus
x phase diagram correlates well with the variation of low-
temperature magnetic moments with composition, as obtained
from neutron-diffraction data, which can be seen in the bottom
panel of figure 2. It is noticeable that there is a dramatic
reduction of the magnetic moment for the two compositions

Figure 2. Top: T versus x phase diagram of the Fex Co1−x Ta2O6

series. The solid circles are values of TN obtained from
magnetic-susceptibility measurements. The broken lines are guides
to the eye. PM stands for the paramagnetic phase, while the ordered
phases are labeled as defined in the text. Bottom: variation of the
low-temperature magnetic moment as a function of concentration
along the Fex Co1−x Ta2O6 solid series, as deduced from refinement of
neutron-diffraction data.

exhibiting coexistence of the magnetic phases, x = 0.46 and
0.01. An average Fe/Co magnetic moment of only 2.2 and
2.5 μB/atom is obtained for x = 0.46 and 0.01, respectively.
This is to be compared with 3.8 μB for FeTa2O6 and about 4 μB

in CoTa2O6 [10, 11]. The origin of this reduction is probably
the same as that mentioned in connection with the neutron-
diffraction fittings of figure 1. The values of the magnetic
moments are estimated from peak intensities assuming that the
whole sample is magnetized in one or other of the two phases.
Thus, the existence of a sizable fraction of the sample without
long-range magnetic ordering certainly reduces the observed
intensities, and hence the apparent local moment estimated
from them.

3. Two-dimensional model revisited

Our previous discussion makes it clear that the Fex Co1−x Ta2O6

compounds present three-dimensional AF ordering at low
temperatures. Nevertheless, their crystal structure, low values
of TN, and overall shape of the magnetic susceptibility [13]
provide strong evidence of quasi-two-dimensional character-
istics. Thus, it is reasonable to expect that a purely two-
dimensional model would be sufficient to describe their
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Figure 3. Superexchange paths between nearest and next-nearest
neighbors on a magnetic ab plane (adapted from [5]).

high-temperature behavior. Such a model must take into
account the observed strong crystal-field anisotropy, and
include competing exchange interactions, since the in-plane
magnetic ordering is not a Néel state.

The first model to show some success in interpreting
the susceptibility behavior in FeTa2O6 was a two-dimensional
anisotropic Heisenberg model proposed by Muraoka et al [2].
It involves nearest-neighbor (nn) and next-nearest-neighbor
(nnn) exchange interactions, and is defined by the Hamiltonian

H = −2J1

nn∑

〈i j〉
Si · S j − 2J2

nnn∑

〈i j〉
Si · S j

− D
∑

i

S2
i z − μB

∑

i

(g‖ Hz Siz + g⊥Hx Six). (1)

The first two terms describe exchange interactions
between spins Si and S j occupying, respectively, nn and nnn
lattice sites, J1 and J2 being the corresponding exchange
constants. A single J2 was used in [2] despite the existence
of two non-equivalent exchange paths, sketched in figure 3
(labeled by J2 and J ′

2), as pointed out by Hague et al [5]. In
the third term, where D measures the anisotropy strength, the

easy axis z (in spite of this notation) lies on the ab plane, along
the direction [1, 1, 0] or [1, 1̄, 0], as discussed before. The last
term accounts for the effect of an applied magnetic field, with
anisotropic g-factor.

Thanks to our knowledge about the magnetically ordered
structures, obtained through neutron diffraction as described in
the previous sections, we can check whether the observed spin
configurations are consistent with that model. Even though the
model is strictly two-dimensional, while the observed magnetic
phases are also ordered along the c axis, we should expect
in-plane interactions to be dominant in determining the spin
configurations on the ab plane.

Two in-plane spin structures appear in the (Fe, Co)Ta2O6

system, one for the Fe-rich samples and one for the Co-
rich ones, shown in figure 4. The structure observed
in the Fe-rich samples (AFF phase) is characterized by
ferromagnetic lines along the a (or b) direction which alternate
antiferromagnetically along the transverse direction. This
structure has been denominated super-antiferromagnetic in
the context of the planar Ising model [21], and we will
refer to it as SAF1. The structure appearing for Co-rich
samples (both in the AFC and AFI phases) is a different
kind of super-antiferromagnetic ordering, which we will call
SAF2, characterized by pairs of ferromagnetic lines along
the diagonal direction perpendicular to the easy axis, which
alternate antiferromagnetically along the easy axis. If we
make a simple balance of exchange couplings for the bonds
connecting each spin to its nearest and next-nearest neighbors
on the plane, we easily see that (i) nn interactions are frustrated
for both structures, and (ii) nnn interactions are also frustrated
in the SAF2 structure, whose energy balance amounts to
zero. This structure, then, could never be stable against
SAF1. However, the energy of SAF2 would not sum to zero
if we allowed for two distinct nnn couplings, as implied from
figure 3. Allowing for different J2 and J ′

2, respectively along
the easy axis (dotted line in figure 3) and perpendicular to it,
we now analyze the relative stability of the SAF1 and SAF2
structures, also in comparison to the Néel AF ordering (NAF)
and the ferromagnetic (FM) state. The ground-state energy per
spin in each case (leaving aside the spin value) can be written as

εSAF = 2(J2 + J ′
2), εNAF = 4J1 − 2(J2 + J ′

2),

εD2SAF = 2(J2 − J ′
2), εFM = −4J1 − 2(J2 + J ′

2).
(2)

Figure 4. Spin patterns on the ab plane observed in the (Fe, Co)Ta2O6 system. Left: Fe-rich samples (SAF1). Right: Co-rich samples
(SAF2). For clarity, we represent opposite spins in different shades.
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Figure 5. Phase diagrams on the α, α′ plane for fixed J1 < 0 (left) and J1 > 0 (right).

Defining α ≡ J2/J1 and α′ ≡ J ′
2/J1, we can construct

the phase diagrams shown in figure 5. There we can see that
the SAF2 ordering is not stable along the line α′ = α. Thus,
the simplified model of equation (1) cannot account for the
magnetic structure observed in Co-rich samples. Nevertheless,
a fitting of the susceptibility data to the corresponding high-
temperature series up to order T −4 has been performed
before [13] for the entire (Fe, Co)Ta2O6 series, with seemingly
reasonable results, consistent with the ones originally obtained
for FeTa2O6 [2]. The problem with such a fitting is that
the number of parameters of the Hamiltonian that are being
determined exceeds the number of free adjustable parameters,
since we do not have access to individual components of the
susceptibility tensor in the case of powder samples. With
model (1) one has to determine the values of five parameters
(J1, J2, D, g‖, and g⊥) from four coefficients of the high-
temperature series. The result is then highly dependent on
the initial values, and many different sets of parameters give
comparable fittings.

We have just concluded that we need to take into account
one extra parameter, J ′

2. This makes the situation even
worse, since deriving terms beyond fourth order in the high-
temperature series is a huge task. However, thanks to the
strong easy-axis anisotropy observed for the whole series of
compounds, it should be reasonable to utilize an Ising model.
With this assumption, we keep only terms involving the z
component of spin operators in equation (1) and drop the
anisotropy term, writing the Hamiltonian as

H = −2J1

nn∑

〈i j〉
Sz

i Sz
j − 2J2

nnn‖∑

〈i j〉
Sz

i Sz
j

− 2J ′
2

nnn⊥∑

〈i j〉
Sz

i Sz
j − gHz

∑

i

Sz
i , (3)

where ‖ and ⊥ are relative to the anisotropy axis. Notice that
by assuming an effective Ising model the only allowed values
of Sz

i are ±S, even though we are dealing with S > 1/2.
We are now left with four parameters: three exchange

constants and one g-factor. Writing the susceptibility series
as

χ = c

T

(
1 + a1

T
+ a2

T 2
+ a3

T 3
+ · · ·

)
, (4)

we recalculated the four coefficients c, a1, a2, and a3 in terms
of the parameters J1, J2, J ′

2, and g of equation (3). A detailed
revision of high-temperature series expansions would be out of
place here. We just mention the basic aspects of the method.
The susceptibility is evaluated as the second derivative of the
free energy with respect to the applied magnetic field in the
limit where this field goes to zero. The free energy, in turn, is
related to the partition function, whose expansion in powers
of 1/T involves averages of increasingly higher powers of
the Hamiltonian. These averages are evaluated at infinite
temperature, i.e., with equally probable spin states. Employing
this procedure with the model of equation (3), we obtain the
relations listed below.

c = g2μ2
B S2/kB,

a1 = 4S2(2J1 + J2 + J ′
2),

a2 = 8S4[6J 2
1 + J 2

2 + J ′2
2 + 8J1(J2 + J ′

2) + 4J2 J ′
2],

a3 = 8
3 S6[104J 3

1 + 4(J 3
2 + J ′3

2 )

+ 96J1(J 2
2 + J ′

2
2 + 6J2 J ′

2)

+ 40(J 2
2 J ′

2 + J2 J ′
2

2
) + 198J 2

1 (J2 + J ′
2)].

(5)

Equations (4) and (5) allow us to fit our susceptibility data
and determine the model parameters. Actually, in the case of
powder samples a factor of 1/3 has to be included in the right-
hand side of the first line in equations (5) due to averaging over
the field orientations.

We want to emphasize that a careful procedure is needed
to achieve trustful fittings. First, we perform a fitting to the
Curie–Weiss law, χ = C/(T − θW), in the range of higher
temperatures, obtaining accurate values for the constants C
and θW. These determine, respectively, the values of the
coefficients c and a1 of equation (4), which are kept fixed in
the subsequent fitting procedure. Next, we adjust the formal
susceptibility series typically up to order T −6, enforcing
the above mentioned constraints on c and a1. We assume
an effective uniform system, with the spin S obtained by
averaging the corresponding high-spin values for Fe and Co.
Finally, using equations (5), we obtain the g-factor from the
adjusted value of c, and the three exchange constants from the
values of a1, a2 and a3. This last step involves numerically
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Figure 6. Susceptibility as a function of temperature for the
Fe0.75Co0.25Ta2O6 composition. The circles are experimental points
while the continuous line is the high-temperature series fitting with
model (3). The Néel temperature of 7.6 K for this sample is indicated
by the arrow.

solving a system of three nonlinear equations, the last three of
equations (5). To illustrate the fitting results, we present typical
susceptibility data together with the corresponding fitted curve
in figure 6. Notice that the fitting extends down to very near
the Néel temperature.

Fitted values of the exchange constants are shown in
figure 7 as functions of the Fe fraction x . It can be seen that
the dominant exchange interaction is J2, i.e., the nnn coupling
along the easy axis, which is always antiferromagnetic. The
other two exchange constants, J1 and J ′

2 have smaller absolute
values, and change sign around the concentration x = 0.46,
where the planar spin structure changes from SAF2 to SAF1.
These results are in full agreement with the phase diagrams of
figure 5. On the other hand, we can also see significant changes
near the bicritical point at x � 0.01. This may reflect the fact
that a purely two-dimensional model is not enough to describe
the susceptibility, since in the transition at small x involves
two ordered phases that present the same in-plane magnetic
structure.

Concerning the relative intensities of the various exchange
couplings as well as the sign change observed for J1 and
J ′

2, it should be noticed that the latter two are related to
superexchange paths that are not straight lines, in contrast to
J2, as can be seen in figure 3. The dependence of exchange
constants on bond angles was first demonstrated in the
pioneering works of Goodenough [22, 23] and Kanamori [24],
for direct cation–cation coupling, and for the case of one
intervening anion. Here the situation is still more complex,
as there are two intervening anions. In addition, the 3d-t2g

manifold has different fillings for Co and Fe, the orbitals tend
to have different spatial extents as the ion charge changes,
and the crystal-field splitting of these levels is varying with x ,
following the evolution of the distortion index of the oxygen
octahedra [13]. Even though a microscopic analysis of the
relevant superexchange processes has not yet been done, it
is possible to infer from figure 3 that different orbitals are
involved in the processes determining J2 with respect to the

E
xc

ha
ng

e 
co

ns
ta

nt
s 

(k
B

 K
)

Figure 7. Exchange constants of the model Hamiltonian (3) for
varying x values throughout the Fex Co1x Ta2O6 series, as obtained
from fittings of the susceptibility data to the corresponding
high-temperature series. Lines between symbols are just guides to
the eye.

other two couplings, which could be the origin of the observed
differences in sign and strength.

4. Conclusions

In this work, combining information obtained from neutron-
diffraction and magnetic-susceptibility measurements, we
complemented the T versus x magnetic phase diagram of [13]
for the FexCo1−xTa2O6 series. The coexistence of two distinct
magnetic phases was observed around a new bicritical point
located near x = 0.01, similarly to what had been observed
around x = 0.46 [13]. All the low-temperature magnetic
structures reflect the presence of a large magnetocrystalline
anisotropy, with easy axes that alternate between the [110]
and [11̄0] directions on neighboring magnetic planes. These
directions coincide with the shortened principal axes of oxygen
octahedra that surround each magnetic ion. Two in-plane
patterns of magnetic moments appear, for Fe-rich and Co-rich
samples, but the latter also shows two different periodicities
along the c axis, yielding three distinct magnetic phases.

At high temperatures, the paramagnetic susceptibility
can be described within a two-dimensional model of
exchange-coupled localized spins. In contrast to what
was previously done for FeTa2O6 [2], we introduced two
different next-nearest-neighbor exchange interactions (parallel
and perpendicular to the anisotropy axis). We calculated
the coefficients of the high-temperature series of χ(T ) up to
order T −4 for this new model, using it to fit the paramagnetic
susceptibility data. With this we were able to obtain values of
the exchange constants which are consistent with the in-plane
magnetic structures observed by neutron diffraction.

It is worth noticing that all the low-temperature magnetic
phases present well defined periodicities both in the ab plane
and along the c axis. It is thus clear that, despite the quasi-
two-dimensional character of these compounds, they order in
three dimensions. The complex magnetic structures observed
may result from subtle changes in the intraplane and interplane
couplings, within the constraints imposed by a strong magnetic
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anisotropy with alternating orientations of the easy axes. While
the in-plane interactions have been successfully modeled here,
progress must still be made in the understanding of interplane
coupling. For both of these interactions a detailed analysis of
the relevant superexchange processes is also needed in order to
provide microscopic justification for the model.
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