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Abstract
Motivated by the superconducting properties of the metallic oxide Cd2Re2O7, whose crystal
structure is of the pyrochlore type, we propose an electronic model on a checkerboard lattice,
which can be viewed as a two-dimensional analog of the pyrochlore lattice. Including only
charge degrees of freedom, we treat the model via a Bardeen–Cooper–Schrieffer (BCS)
approximation, decoupling the interaction terms in real space. Going over to reciprocal space
yields a BCS model with two coupled bands. Characteristic properties such as order parameters
and specific heat as functions of temperature are obtained. We also discuss the symmetry
properties of the superconducting gap in wavevector space and the behavior of the critical
temperature as a function of the electronic doping for various values of the interaction strength.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The pyrochlore lattice, a three-dimensional (3D) network of
corner-sharing tetrahedra [1], belongs to a class of structures
generally know as geometrically frustrated lattices [1–4]. In
compounds of the type A2B2O7, where A is typically a
rare-earth (but can be a metal) and B is a transition metal,
both A and B ions occupy the corner sites of pyrochlore
sublattices. Extensive experimental studies of such compounds
have reported observation of exotic magnetic behavior such as
spin liquid or spin ice (for a review see [5]).

Cd2Re2O7 was the first compound among pyrochlore
oxides that was found to present superconductivity [6–14],
with a critical temperature Tc ≈ 1 K. Other superconducting
pyrochlores have been discovered, mostly in the AB2O6 family
(now A is typically an alkali metal); for example, KOs2O6

(Tc ≈ 9.6 K) [15], RbOs2O6 (Tc ≈ 6.3 K) [16, 17], and
CsOs2O6 (Tc ≈ 3.3 K) [18]. The related spinel compound
LiTi2O4 was already known to be superconducting below
13 K [19, 20]. As often happens, the pairing mechanism
is still an open question. In particular, based on the
observation of a gap with zeros, Koda et al [21] suggested
an unconventional superconducting mechanism in KOs2O6,
driven by spin fluctuations.

From a theoretical point of view, the discovery of
superconducting pyrochlores opened new possibilities, as it
is interesting to study the nature of superconductivity in a

geometrically frustrated lattice. Even though the concept
of frustration is only meaningful for magnetic interactions,
the underlying lattice topology is relevant to electronic band
structure, and to interaction patterns in real space that may be
involved in superconducting pairing.

In the case of Cd2Re2O7, band-structure calculations
indicate the presence of a strongly hybridized band, composed
of rhenium 5d and oxygen 2p states, with a total width of
approximately 3 eV [12, 13]. This relatively large bandwidth
may rule out strong-correlation effects [14], suggesting that
the superconductivity in Cd2Re2O7 is of the conventional type.
In agreement with this, measurements of specific heat as a
function of temperature find out that the data are consistent
with a BCS superconductor [22] in the weak-coupling limit.

Motivated by the above considerations, we present in this
work a detailed study of the BCS superconducting solution for
a fermion model on the checkerboard lattice, which is usually
viewed as a two-dimensional (2D) analog of the pyrochlore
lattice. The checkerboard ‘dark squares’, with next-nearest-
neighbor connections along the diagonals, can be viewed as
resulting from flattening the tetrahedral network in a way that
maintains the local connectivity. Spin models on this 2D lattice
have been studied in connection with the physics of magnetic
frustration in pyrochlores [3, 4]. Fermionic models on this
lattice have also been the subject of investigation, mostly with
the focus on strongly correlated systems [23–28].
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In our approach we decouple the interaction terms in
real space [29, 30], starting from a Hamiltonian in Wannier
representation. Going then to k-space, a two-band BCS model
is obtained. Self-consistent equations for the relevant order
parameters are determined and solved numerically for varying
temperature. We also determine the specific heat behavior with
temperature, and construct phase diagrams by plotting Tc as a
function of band filling for various coupling values.

The article is organized as follows. In section 2, we
present the model Hamiltonian and its treatment within the
BCS mean-field scheme, which generates two coupled bands.
Section 3 contains our main results for the superconducting
gap, specific heat, and phase diagram. Final remarks and
conclusions are presented in section 4.

2. Model Hamiltonian

The starting point of our model is a checkerboard structure with
identical ions at each site. In Cd2Re2O7, these would be Re
ions, the only ones with a partially filled shell. For simplicity,
we consider that there is a single, non-degenerate orbital per
ion, which would be true for a strong local crystal field of
sufficiently low symmetry. There are two nonequivalent sites
(A and B) per unit cell of the underlying square lattice, defining
two interpenetrating sublattices, as illustrated in figure 1.

We use a tight-binding formulation, with hopping
and intersite interactions between connected sites. The
Hamiltonian is written as

H =
∑

i,δ

∑

α,β

∑

σ

tαβc†
iασ ci+δ,βσ + 1

2

∑

i,δ

∑

α,β

∑

σ,σ ′
Vαβnα

iσ nβ

i+δ,σ ′ ,

(1)
with the standard notation for creation, annihilation, and
number operators in the Wannier representation. As usual, σ

denotes the spin state, α and β are sublattice labels (either A
or B), and δ refers to position vectors δ (not necessarily lattice
vectors) relative to site i .

We are not going to discuss the microscopic nature of
superconducting coupling, which probably involves electron–
phonon interactions in the weak-coupling limit, and could
be due to spin fluctuations for strong coupling. We take
Vαβ in the second term of equation (1) as an effective
(attractive) interaction that allows for superconducting pairing.
We consider only intersite attraction since on-site attractive
interactions should be prevented by correlations, even if
electron–electron interaction is not strong. For symmetry
reasons (see figure 1), we can make the choices tAA = tB B ≡ t ,
tAB = tB A ≡ t ′, VAA = VB B ≡ −V , VAB = VB A ≡ −V ′.
With this notation, non-primed symbols refer to the same
sublattice (diagonal bonds). Notice that tAA is non-zero only
along the direction of a, tB B is non-zero only along b, while
tAB and tB A connect sites of one sublattice with their nearest-
neighboring sites on the other one.

3. Noninteracting band structure

Initially, let us analyze only the hopping term. Viewing the
Hamiltonian, equation (1), as a sum H = Ht + HV , we rewrite

Figure 1. Possible choice of site labeling on the checkerboard
structure, showing a pair of primitive vectors that define a square
lattice unit cell.

the first term in k-space as

Ht = 2t
∑

kσ

[cos(k · a)c†
Akσ cAkσ + cos(k · b)c†

Bkσ cBkσ ]

+ 4t ′ ∑

kσ

cos(k · a/2) cos(k · b/2)

× [c†
Akσ cBkσ + c†

Bkσ cAkσ ]. (2)

Diagonalizing with respect to A and B indexes, gives us the
energy bands

ε a
b
(k) = t

[
F0(k) ±

√
F2

1 (k) + 16α2 F2
2 (k)

]
, (3)

where α ≡ t ′/t , and we defined

F0(k) = cos(k · a) + cos(k · b),

F1(k) = cos(k · a) − cos(k · b),

F2(k) = cos(k · a/2) cos(k · b/2).

(4)

These energies and the corresponding densities of states are
shown in figure 2 for α = 0.8. The narrow low-energy band
is a consequence of the lattice geometry. In fact, it becomes
completely flat if we choose α = 1. Despite the simplicity
of our model, the main qualitative features of the energy
spectrum are consistent with those obtained through band-
structure calculations [13] for Cd2Re2O7. On the other hand,
the van Hove singularities seen in the right panel of figure 2
are a two-dimension artifact, and their possible physical effects
have no counterpart in the pyrochlore lattice.

We can write the hopping Hamiltonian, equation (2), in its
diagonal form,

Ht =
∑

k

[εa(k)na
kσ + εb(k)nb

kσ ], (5)
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Figure 2. (a) Energy bands in the absence of interactions along the line kx = ky . The wide and narrow bands are, respectively, a and b (see
equation (3)) for α = 0.8. (b) Densities of states. We chose 2t as the energy unit and 1/a as the wavevector unit, where a ≡ |a| = |b|.

where the number operators are written in terms of new
creation and annihilation operators for electrons in the a and
b bands. The relations between these new operators and the
original ones are

akσ ≡ 1

rk
(cAkσ + φkcBkσ ),

bkσ ≡ 1

rk
(cBkσ − φkcAkσ ),

(6)

where

φk ≡ εa(k)/2t − cos(k.a)

2αF2(k)
, rk =

√
1 + φ2

k. (7)

4. Interaction terms—BCS decoupling

We focus now on the interaction term of equation (1),

HV = 1
2

∑

σσ ′

∑

αβ

∑

iδ

Vαβ nα
iσ nβ

i+δ,σ ′ , (8)

with Vαβ assuming either the value −V or −V ′, for intra- and
inter-sublattice interactions respectively, with V , V ′ > 0, as
introduced in section 2.

Explicitly writing the number operators that appear in
equation (8) in terms of creation and annihilation operators,
and performing the usual BCS decoupling, we have

c†
αiσ cαiσ c†

β,i+δ,σ ′ cβ,i+δ,σ ′ � 〈c†
αiσ c†

β,i+δ,σ ′ 〉cβ,i+δ,σ ′ cαiσ

+ 〈cβ,i+δ,σ ′ cαiσ 〉c†
αiσ c†

β,i+δ,σ ′

− 〈c†
αiσ c†

β,i+δ,σ ′ 〉〈cβ,i+δ,σ ′ cαiσ 〉. (9)

We now define

�αβ ≡ −Vαβ〈cβ,i+δ,σ ′ cαiσ 〉. (10)

With the above notation, we approximate the product of
number operators in equation (8) as

nα
iσ nβ

i+δ,σ ′ � {[�αβ c†
αiσ c†

β,i+δ,σ̄ + h.c.] − |�αβ |2}δσ ′σ̄ , (11)

where h.c. represents the Hermitian conjugate of the previous
term, and we are restricting our analysis to singlet pairing
(σ̄ ≡ −σ ).

Similarly to what we did with the hoppings in section 2,
we choose �AA = �B B ≡ � and �AB = �B A ≡ �′. This
is not the most general choice, as one could allow for different
signs of the gap parameters along orthogonal directions in the
lattice, with consequences to the gap symmetry in k-space,
as we will discuss later. With these choices, the interaction
Hamiltonian becomes

H BCS
int = −

∑

iα

∑

δ

(� c†
αi↑c†

α,i+δ,↓ + h.c.)

−
∑

i

∑

α,β
α 
=β

∑

δ

(�′ c†
αi↑c†

β,i+δ,↓ + h.c.) + Ē0, (12)

where

Ē0 ≡ 2N

( |�|2
V

+ |�′|2
V ′

)
. (13)

Fourier transforming to k-space, we obtain

H BCS
int = −2

∑

k

{�[cos(k · a)c†
A,k↑c†

A,−k↓

+ cos(k · b)c†
B,k↑c†

B,−k↓] + 2�′ cos(k · a/2) cos(k · b/2)

× [c†
A,k↑c†

B,−k↓ + c†
B,k↑c†

A,−k↓] + h.c.} + Ē0. (14)

Finally, using equations (6) to rewrite the interaction part
in terms of the a and b band operators, adding the hopping
term, equation (5), and adopting the usual simplified notation
k↑ ≡ k and −k↓ ≡ −k, we can write the full Hamiltonian as
a two-band BCS model of the form

H =
∑

k

[εa(k)(a†
kak + a†

−ka−k)−�aa
k a†

ka†
−k − (�aa

k )∗a−kak]

+
∑

k

[εb(k)(b†
kbk+b†

−kb−k)−�bb
k b†

kb†
−k−(�bb

k )∗b−kbk]

−
∑

k

[�ab
k (a†

kb†
−k + b†

ka†
−k)

+ (�ab
k )∗(b−kak + a−kbk)] + Ē0. (15)

The gap functions �aa
k , �bb

k , and �ab
k are written as

�aa
k = [2� Fa(k) + 8�′ φk F2(k)]/r 2

k,

�bb
k = [2� Fb(k) − 8�′ φk F2(k)]/r 2

k,

�ab
k = [4�′(1 − φ2

k)F2(k) − 2� φk F1(k)]/r 2
k,

(16)
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Figure 3. Variation of the gap parameters with temperature for the stoichiometric case n = 2.0 (a), and a typical case at high filling, n = 3.4
(b), with an arbitrary choice of V = V ′ = 0.6 (in units of 2t).

in terms of the previously defined F0(k), F1(k), F2(k), φk, rk

(see equations (4) and (7)), and two additional definitions:

Fa(k) = cos(k · a) + φ2
k cos(k · b),

Fb(k) = cos(k · b) + φ2
k cos(k · a).

(17)

Two-band BCS models have been studied by several
authors (see, for example, [31–35]). Here, we explore the
specific aspects of our model, associated with the lattice
topology.

4.1. Superconducting solution

Continuing with the usual procedure, we can write the
Hamiltonian (15) in its diagonal form,

H =
∑

k

[E1(k)(α
†
1kα1k + β

†
1kβ1k)

+ E2(k)(α
†
2kα2k + β

†
2kβ2k)] + Ē, (18)

where we define

Ē =
∑

k

[ε̄a(k) + ε̄b(k) − E1(k) − E2(k)] + Ē0. (19)

The energy eigenvalues E1(k) and E2(k) are given by

E2
1
2
(k) = 1

2 [E2
a(k) + E2

b(k) + 2|�ab
k |2 ∓

√
Rab

k ], (20)

where

E2
a(k) = ε̄2

a(k) + |�aa
k |2, E2

b(k) = ε̄2
b(k) + |�bb

k |2,
(21)

Rab
k = [E2

a(k) − E2
b(k)]2 + 4|�ab

k |2
× [E2

a(k) + E2
b(k) − 2ε̄a(k)ε̄b(k)]

+ 4(�aa
k )∗(�bb

k )∗(�ab
k )2 + 4�aa

k �bb
k [(�ab

k )∗]2. (22)

We are actually working now with H − μNe, μ being the
chemical potential and Ne the total number of electrons. For
this reason the bare band energies have been replaced by
ε̄a(k) ≡ εa(k) − μ and ε̄b(k) ≡ εb(k) − μ, and μ must be
fixed through the condition

2
1

N

∑

k

[ f (ε̄a(k)) + f (ε̄b(k))] = n, (23)

where n ≡ Ne/N is the number of electrons per unit cell.

The operators α1k, β1k, α2k, β2k in equation (18) are linear
combinations of the operators a†

k, a−k, b†
k, and b−k. These

new operators describe free-fermion excitations out of the
superconducting ground-state. We can thus write the internal
energy and the free energy of the system as

U = 2
∑

λk

Eλ(k) f (Eλ(k)) + Ē + μNe, (24)

F = 2kBT
∑

λk

ln[1 − f (Eλ(k))] + Ē + μNe, (25)

where f (E) is the Fermi–Dirac distribution, and λ = 1, 2.
Self-consistent equations for the order parameters � and

�′ can then be obtained by minimizing the free energy
with respect to these parameters. We adopt the simplifying
assumption that � and �′ are real. Then, the resulting
equations are

� = V

4

∑

k

[
tanh

(
E1(k)

2T

)
∂ E1(k)

∂�

+ tanh

(
E2(k)

2T

)
∂ E2(k)

∂�

]
,

�′ = V ′

4

∑

k

[
tanh

(
E1(k)

2T

)
∂ E1(k)

∂�′

+ tanh

(
E2(k)

2T

)
∂ E2(k)

∂�′

]
.

(26)

Once these equations are (numerically) solved for different
temperatures we can determine the critical temperature Tc, and
calculate the specific heat from the thermal derivative of the
internal energy U .

5. Results

We start by analyzing the variation of the order parameters
� and �′ with temperature in two representative situations:
low and high band filling. Keeping in mind our experimental
motivation, Cd2Re2O7 has basically two compensated
overlapping bands, with the Fermi level located near the top
of a narrow hole-like band, as discussed in section 3. This
corresponds to n = 2 and implies that α < 1 in our
checkerboard lattice model, so that we will keep our choice
of α = 0.8 in all calculations. Figure 3(a) shows the gap

4
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Figure 4. Critical superconducting temperature as a function of band
filling for some values of the coupling V (=V ′) (in units of 2t).

parameters for this situation. Notice the sign reversal of �

with respect to �′, which should be interpreted as a phase
difference, since we are treating these parameters as real. This
sign difference disappears at high band fillings, as exemplified
in figure 3(b). However, there is a wide range of fillings below
n = 2 where a sign reversal of � occurs (either smoothly or
discontinuously) at some finite temperature T ∗ < Tc.

Slightly above n = 2, near the electron concentration
for which the narrow b-band becomes completely filled,
superconductivity tends to be suppressed, but Tc rises again
at higher fillings. For a better visualization of these regimes,
figure 4 shows phase diagrams Tc versus n for different values
of the coupling V . The results presented here are only for
V ′ = V . However, we should mention that the overall scale
of the phase diagram is set by V ′, with little change due to
variations of V .

Figure 4 shows clearly the existence of different regimes
for low and high electron concentrations. For sufficiently
weak-coupling, each of these regimes is limited by a quantum
critical point, where Tc goes to zero at a non-trivial band filling,
i.e. not empty or completely filled band. Given the scale of
temperatures in the phase diagram, the experimentally relevant
situation should correspond to V even smaller, which means
that the superconducting transition in Cd2Re2O7, for which
Tc ∼ 1 K, could occur near a quantum critical point.

The different regimes discussed above can also be
observed in the thermal behavior of the specific heat, as shown
in figure 5. Notice that the large-n case shows the usual
behavior in the presence of an excitation gap for T → 0. In
contrast, for n = 2 one sees no indication of a true gap.

These results indicate that we should see nodes in the zero-
temperature superconducting gap as a function of wavevector.
The actual gap is the minimum value of the lowest energy
E1(k). A three-dimensional plot of this energy, for n = 2 and
T → 0, is shown in figure 6. One can see that it approaches
zero at places near the zone corners where the a-band branch of
the Fermi surface (FS) is located. A better visualization of the
gap zeros is provided by figure 7(a). For large n, as exemplified
in figure 7(b) for a different coupling, the gap is modulated in
k-space along the Fermi surface, but is always finite. We can
classify these symmetries as s − s and s + s, respectively, since
we have extended s-wave symmetry associated to both � and
�′, with opposite phases in one case and the same phase in the
other. The symmetry change occurs across the region around
n = 2.5 where superconductivity is suppressed (see figure 4).
It is worth mentioning that the s − s phase was also found by
Huang et al [28] in the strongly correlated limit (holes in the
t–J model), for the same region of t ′/t (our notation has t and
t ′ exchanged with respect to that of [28]).

Figures 6 and 7 help clarify the scenario already shown by
figure 4. For low band filling, up to slightly above n = 2, there
are FS branches on both bands, but the low-energy physics
in the superconducting state is only connected to the a-band
FS, where the gap is small, and can even have zeros. Notice
in figure 6 that the excitation energy is very large near the
zone center, where the b-band FS is located. For larger n,
the excitation energies continue to be smaller near the only
remaining FS, that of band a, which eventually moves over
to the zone center, turning from electron-like to hole-like.

6. Conclusions

In this work, we developed a detailed study of superconduc-
tivity in an electronic model on the checkerboard structure,
intended to mimic the pyrochlore lattice in two dimensions.
The tight-binding density of states indeed shows some
similarities with band-structure calculations for Cd2Re2O7,
the superconducting pyrochlore compound that motivates our

Figure 5. Specific heat versus temperature for n = 2.00 (a) and n = 3.4 (b), with V = V ′ = 0.6 (in units of 2t).

5
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Figure 6. Surface plot of the lowest energy, E1(k), for n = 2.00, T → 0, and with V = V ′ = 0.6. The energy gap goes to zero at the sharp
minima near the zone corners.

Figure 7. Map plots of E1(k) for n = 2, V = V ′ = 0.6 (a), and n = 3.4, V = V ′ = 0.4 (b). Darker regions correspond to lower energy
values. A closed line shows the normal-state a-band Fermi surface in each case. The small ellipses in (a) are nearly zero contours of E1(k),
identifying the points where the gap vanishes.

investigation. With an effective electron–electron interaction
between neighboring sites, we performed a BCS decoupling
and obtained a two-band BCS model. The superconducting
solutions showed a variety of regimes as the band filling or
coupling are changed, with s − s symmetry at low filling, s + s
symmetry at high n, and a suppression of superconductivity
in between, giving rise to the appearance of quantum critical
points.

We do not claim that all these features are relevant
to the superconductivity observed in Cd2Re2O7, since two-
dimensional features intrinsic to our model may play an
important role. But it could be interesting to perform
experimental investigations on doped samples to check the
behavior of Tc as a function of electron concentration. On the
other hand, the model in itself is very rich, and can be further
explored. For instance, one can easily allow for mixtures of
d- and s-wave symmetries. It would also be interesting to take
into account spin correlations, which we have neglected here,
studying their interplay with superconductivity in the presence
of magnetic frustration.
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