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FIP10604 – Text 13 — Magnetism in metals II:
Magnetic excitations

Elementary excitations in the FM phase of metals

In Text 12, we studied the paramagnetic response and the establishment of magnetic order
in metals within the Hartree-Fock approximation. As we did in the case of localized mag-
netic moments (Text 07), we can study more rigorously excitations from the magnetically
ordered ground state.

Starting with FM order, elementary excitations involve spin deviations. As in the case
of localized spins, the operator that creates a spin deviation at a lattice site i (relative to
up ordering) is S−i . Since in metals the magnetic moments are carried by electrons, the
operator that creates a spin-deviation is naturally written in terms of fermionic operators,

S −i = c†i↓ci↑ . (1)

The corresponding annihilation operator is

S+
i = c†i↑ci↓ . (2)

In wave-vector space, we have

S−q =
1√
N

∑
k

c†k+q ↓ck↑ , S+
q =

1√
N

∑
k

c†k+q ↑ck↓ . (3)

Note that the two spin operators in this last equation are not a pair of creation and
annihilation operators. S−q creates an extended spin deviation, with a spatial modula-
tion characterized by the wave vector q. The corresponding annihilation operator is its
Hermitian conjugate, i.e,(

S−q
)†

=
1√
N

∑
k

c†k↑ck+q ↓ =
1√
N

∑
k

c†k−q ↑ck↓ = S+
−q . (4)

The general theory of interacting many-body systems indicates that a spectrum of ele-
mentary excitations is given by the poles of an appropriate Green’s function (GF). The
retarded GF describing the propagation of a spin deviation is

G(q, t) = −iθ(t)〈[S+
−q(t), S−q (0)]〉 , (5)

whose time Fourier transform will be denoted as G(q, ω).

The Matsubara version is
G̃(q, τ) = 〈T̂τS+

−q(τ)S−q (0)〉 , (6)
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where T̂τ is the time-ordering operator in the imaginary-time axis. The corresponding
Fourier transform is G̃(q, νn), involving bosonic Matsubara frequencies νn = 2nπT , for
integer n, because each spin operator is composed by two fermionic ones. The Matsubara
GF is more appropriate to a perturbative formalism. In the end, one can obtain the
retarded GF by analytic continuation in the complex-frequency plane:

G̃(q, νn) −→
iνn→ω+iη

G(q, ω) , η → 0+ . (7)

Using Eqs. (3) and (4) into (6), we have

G̃(q, τ) =
1

N

∑
kk′

〈T̂τ c†k′↑(τ) ck′+q ↓(τ) c†k+q ↓(0) ck↑(0)〉 . (8)

Zeroth order (non-interacting system)

In the absence of interaction, the average on the right-hand side of Eq. (8) satisfies Wick’s
theorem, allowing it to be decomposed into averages involving pairs of operators (single-
particle GF’s), with conservation of particle number and spin. There is only one possibility
for such a decomposition:

G̃0(q, τ) = − 1

N

∑
kk′

G̃0
k↑(−τ) G̃0

k+q ↓(τ) δk′k , (9)

where G̃0
kσ(τ) is the zeroth-order approximation to the one-electron GF

G̃kσ(τ) = −〈T̂τ ckσ(τ) c†kσ(0)〉 . (10)

Equation (9) corresponds to a simple-loop Feynmann diagram,

k+ q ↓

k ↑

0 τ · (11)

The “time” Fourier transform yields

G̃0(q, νn) = − T
N

∑
k,ωl

G̃0
k↑(ωl) G̃

0
k+q ↓(ωl + νn) , (12)

where T is the temperature, and ωl = (2l+ 1)πT (for l integer) are fermionic Matsubara
frequencies. The corresponding diagram is

k+ q ωl + νn ↓

k ωl ↑

q νn → → q νn · (13)
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Using the explicit form of the zeroth-order one-electron GF, G̃0
kσ(ωl) = [iωl − εkσ + µ]−1,

it follows that

G̃0(q, νn) = − T
N

∑
k,ωl

1

(iωl − εk↑ + µ) (iωl + iνn − εk+q ↓ + µ)

= − T
N

∑
k

1

iνn + εk↑ − εk+q ↓

∑
ωl

[
G̃0

k↑(ωl)− G̃0
k+q ↓(ωl + νn)

]
=

1

N

∑
k

n̄k+q ↓ − n̄k↑

iνn − (εk+q ↓ − εk↑)
, (14)

where n̄kσ is the average number of electrons in the state k with spin σ, here given by the
Fermi function of the corresponding energy, and we have used the identity1

1

β

∑
n

eiωn0+

iωn − ε
= −

∮
C

dz

2πi

ez 0+ f(z)

z − ε = f(ε) . (15)

Performing the analytic continuation to real frequencies, we obtain

G0(q, ω) =
1

N

∑
k

n̄k+q ↓ − n̄k↑

ω − (εk+q ↓ − εk↑) + iη
, η → 0+ . (16)

This GF has poles for ω = εk+q ↓ − εk↑, which allows us to interpret the elementary
excitations (at T = 0) as the creation of electron-hole pairs with spin flipping, known
as Stoner excitations. This is the only possible type of spin excitation in a non-interacting
system.

Including the interaction between electrons

The interaction Hamiltonian (see Text 12) is

HI =
U

N

∑
kk′q

c†k+q ↑c
†
k′−q ↓ck′↓ck↑ . (17)

This can be diagrammatically represented as

U

k ↑

k+ q ↑

k′ ↓

k′ − q ↓

· (18)

1For more details see lecture notes of FIP10601: Text 15, Eq. (13) and related comments.



M. A. Gusmão – IF-UFRGS 4

It may be viewed as a “scattering” process between two electrons of opposite spins.

The only way to insert these internal vertices in the diagrams of G̃ is either attached to one
of the lines and having an internal G0-line closed upon itself, or with each vertex on one of
the G0 lines. The first order diagrams for these two cases (with the notation σ̄ ≡ −σ) are

σ

σ̄

σ

σ̄

+

σ

σ̄

σ

σ̄

· (19)

The first diagram, when summed to all numbers of tadpoles, renormalizes the non-interacting
GF to the HF one. It is actually the Hartree approximation, since there is no exchange
term for an interaction between two electrons with opposite spins. From here on, we omit
all tadpole insertions, implicitly assuming that G̃0 lines are HF GF’s.

The simplest series that begins with the second diagram in Eq. (19) contain all the ladder
contributions, i.e., all loop diagrams having multiple parallel (non-crossing) U -lines. To
sum such a series, we should notice that a U -line may be collapsed to a point, since U is
local (independent of wave vector) and “instantaneous” (independent of frequency). Thus,
the two sectors separated by the U -line (or point) in the first-order diagram are equal,
and equivalent to the single loop. This will also happen to sectors between two U -lines at
higher orders. Therefore we have a geometric series

G̃ = G̃0 + G̃0U G̃0 + G̃0U G̃0U G̃0 + · · · (20)

If we restrict ourselves to this series we have the so-called Random-Phase Approximation
(RPA). It is the same denomination encountered when studying the density-density GF,
which describes particle-hole and plasmon excitations in the non-magnetic state. In that
case the U -lines connect (horizontally) two loops. But the same series is reproduced when
the U -lines are collapsed, except that each simple loop has the same spin all around, and
terms of odd order in U have negative signs.2 In our present case the RPA should rather
be called HF-RPA, since we have included the Hartree-Fock corrections.

Formal summation of the HF-RPA series results in the expression

G̃(q, νn) =
G̃0(q, νn)

1− U G̃0(q, νn)
, (21)

whose real-frequency version is

G(q, ω) =
G0(q, ω)

1− UG0(q, ω)
· (22)

2See the section “Collective excitations” in the same text referred to in footnote 1.
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The spectrum of magnetic excitations is given by the poles of G(q, ω), that is, zeros of the
denominator in the right-hand side of last equation. Using the explicit form of G0(q, ω),
Eq. (16), the frequencies ω(q) of elementary excitations can be obtained from the equality

U

N

∑
k

n̄k+q ↓ − n̄k↑

ω(q)− (εk+q ↓ − εk↑)
= 1 , (23)

Remembering that the energies have the HF form,

εk↑ = εk +
1

2
nU − 1

2
UM ,

εk↓ = εk +
1

2
nU +

1

2
UM , (24)

with M = n↑ − n↓, the difference of energies appearing in the denominator of Eq. (23) is

εk+q ↓ − εk↑ = UM + εk+q − εk . (25)

This shows that there is a gap ∆ = UM for Stoner excitations in the limit q → 0. On the
other hand, we can see that ω(q) = 0 at q = 0 is a solution, since Eq. (23) becomes

U

N

∑
k

n̄k↑ − n̄k↓

UM
= 1 . (26)

Assuming a parabolic band (with effective mass m∗) and the limit T → 0, we have |k| = kF↑
(note that the Fermi surfaces for spin up and down have different radii due the energy shifts
∓UM). So, the Stoner excitations are distributed between the energies

Emin = UM +
q2

2m∗
− kF↑q

m∗
,

Emax = UM +
q2

2m∗
+
kF↑q

m∗
. (27)

In the thermodynamic limit, these solutions are continuous. This implies that they also
exist in the interacting system, even though they are poles of G0, because between every
two “successive” poles the function G0(q, ω) varies from −∞ to∞, thus crossing the point
that satisfies the condition UG0(q, ω) = 1.

The branch of solutions that starts at ω = 0 has ω ∼ εk+q − εk, and it can be shown that
for small q one has a dispersion relation of the type ω = Dq2. This branch of solutions is
identified with magnons for a metallic system.

Fig. 1 shows schematically the spectrum of elementary magnetic excitation (one spin de-
viation). We see the continuum of Stoner excitations and the magnon branch. The former
can be interpreted as scattering states of an electron and a hole with opposite spins, while
the latter correspond to bound states of these pairs. In the region where the two types of
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Figure 1: Magnetic excitation spectrum of a metal, showing the continuum of Stoner
excitations (for q < kF↑ − kF↓) and the magnon branch.

excitations coincide in energy, the poles of G(q, ω) develop a nonzero imaginary part, in-
dicating the instability (finite lifetime) of magnon excitations, which decay into scattering
states.

When the product UM is large (compared to T ), the low-temperature behavior is domi-
nated by magnons. The magnon dispersion relation with the same form as for insulating
systems implies that we have the same behavior of magnetization and specific heat at low
temperatures (cm or ∆M ∼ T 3/2).

Dynamic susceptibility

Linear Response Theory tells us that if a physical system is subjected to a perturbation of
the type H1 = B f(t), where B is an observable of the system and f(t) is a time-dependent
external “force”, and if the response is measured by the average value of an observable A,
then the response function (or generalized susceptibility) is given by a Green’s function of
the operators A and B.3 Applying this general theory to our case, we assume an applied
field perpendicular to the z axis, representing it as a combination of H+ and H− in the
same way as x and y spin components are written in terms of S+ and S−. Then, the
Zeeman part of the Hamiltonian can be written as

H1 = −2
∑
q

S−qH
+(−q, t) . (28)

Measuring the response by the average value 〈S+
−q(t)〉 (and taking into account the g-factor

2 between magnetic moment and spin), we have

2〈S+
−q(ω)〉 = χ+−(q, ω)H+(−q, ω) (29)

3For more details see lecture notes of FIP10601: Text 16.
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with
χ+−(q, ω) = 2G(q, ω). (30)

Thus, magnetic-excitation energies correspond to poles of the dynamic susceptibility. Gen-
eralizing to any components, one has a tensor that is a complex function, usually separated
in real and imaginary parts as χ(q, ω) = χ ′(q, ω) + iχ ′′(q, ω). Experimentally, the imag-
inary part is associated with the absorption spectrum, since energy is absorbed from the
electromagnetic field to create excitations. In particular, χ ′′(q, ω) has sharp peaks at
frequencies ω = ω(q) corresponding to magnon excitations. In the static limit (which
is, in practice, also the uniform limit in space) there is no energy absorption, and the
susceptibility is real.

We must mention that it is also possible to evaluate the longitudinal susceptibility χzz.
The Green’s function involves two Sz operators, being related to the density-density GF
(mentioned above), but the RPA series has loops with well-defined (alternating) spin states.

AF (or SDW) phase

So far we focused on elementary excitations from the FM ground state. Let us briefly
comment on the case of non-uniform magnetic order, which, as we saw earlier, is associated
to a spin-density wave. At the end of Text 12 we analyzed the nature of the SDW state,
identifying two situations. When the SDW opens a gap on the whole Fermi surface, the
ordered state is insulating, and we have magnon behavior as previously studied for such
systems. However, if a reconstructed Fermi surface remains, the situation is quite complex.
The absence of long-range spin polarization does not clearly separate the regions of Stoner
excitations and magnons (there is no Stoner gap). Hence, magnons are always damped.

Shortcomings of Hartree-Fock approximation

We finish this analysis of band magnetism with some critical comments about the approx-
imations described here.

The HF approximation presents typical shortcomings of mean-field approaches. These
weaknesses are partially corrected by inclusion of RPA (correct behavior of cm and ∆M
for T → 0), mainly for the FM case. By treating the electrons as independent, with
interactions partially accounted for through an effective field, the HF approach fails to
take into account an important effect of strong Coulomb interaction which is correlated
behavior among the electrons. When correlations are very important, as happens with
systems approaching conditions for a metal-insulator transition (Mott transition), we enter
the domain of the so-called strongly correlated electronic systems. For such systems the
HF approach fails even in qualitative aspects, and cannot be improved by perturbative
corrections as RPA. More sophisticated theoretical methods have been developed to deal
with these systems, but their study is beyond the scope of this course. A brief introduction
to some of the relevant problems and models in this context will be given in Text 14.


