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FIP10604 – Text 12 — Magnetism in metals I:
Static susceptibility and magnetic order

So far, our study of magnetic properties of solids has been restricted to localized mag-
netic moments, associated to transition-metal or rare-earth ions with partially occupied
electronic shells. The discussion of exchange interactions assumed that these ions were in
insulating compounds. Here we will begin to study magnetic properties of metallic solids.

There are few monoatomic metallic solids that exhibit magnetic order. Basically, we can list
Cr, Mn, Fe, Co and Ni among transition metals. Within the rare-earth series there appear
Gd, Tb, Dy, Ho, Er and Tm. Although the second group present ordering temperatures
comparable to those observed in insulators, and magnetic moments per atom consistent
with the expected values for isolated atoms, the same is not true for the first one.

A noticeable characteristic of the three ferromagnetic transition metals (Fe, Co and Ni) is to
present high Curie temperatures (above 1000 K for Fe and Co; slightly above 600 K for Ni).
Another remarkable feature is that the magnetic moment per atom at low temperatures, as
determined from magnetization measurements, is significantly smaller than the expected
contribution from unpaired electron spins in the atom: 2.2µB, 1.7µB, and 0.6µB, instead
of 4µB, 3µB, and 2µB, respectively for Fe, Co and Ni. Moreover, nonmagnetic metals
(those without spontaneous magnetic order) have paramagnetic susceptibilities that do not
follow Curie’s law, but are essentially independent of temperature.

These observations indicate that it is not possible to describe the magnetism in metals from
spin Hamiltonians as we did for insulators. One must take into account that charge degrees
of freedom are not frozen in metals, which makes it necessary to address the problem with
focus on the existence of conduction electrons that carry itinerant magnetic moments.

As in the case of insulators, magnetic properties of metals also have their origin in the
Coulomb interaction associated with the effect of fermionic statistics. Here, however, we
cannot reformulate the problem in terms of an effective interaction between spins. We
must work with a system of electrons moving in the lattice potential and interacting with
each other. From this general picture we will try to select what is relevant to magnetic
properties. Initially, the problem will be addressed from the opposite limit with respect
to the insulating case, i.e., a conduction band. Later, we will analyze more complex
situations, including the coexistence of itinerant and localized moments, which is relevant,
for example, in the case of rare earth metals mentioned above.

We begin by reviewing the paramagnetism of conduction electrons, as a preliminary
step to introducing interactions between these electrons and investigating their effect on
magnetic behavior.
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Review: Pauli paramagnetism

Let us consider a single conduction band of non-interacting electrons, with individual
energies εk, to which we apply a magnetic field of magnitude H. We choose the field
direction as the z axis.

We know that the electron spin gives rise to an intrinsic magnetic moment

µ = 2S . (1)

Note that we continue to “define” the magnetic moment as parallel to the spin (no minus
sign) and to take µB = 1, but we explicitly include the spin g-factor (g = 2). Any
component of S has eigenvalues ±1/2 (~ = 1). Therefore, the electron energies with the
magnetic field turned on are

εk± = εk ∓H , (2)

where ± as a subscript refers to the spin eigenvalues ±1/2, for which we also use ↑ and ↓.
The zero-field density of states (DOS), D(ε), can still be used for εk, allowing to write the
magnetization as

M = n↑ − n↓ =

∫
dεD(ε) [f(ε−H)− f(ε+H)] , (3)

where f(ε) = {exp[(ε− µ)/T ] + 1}−1 is the Fermi function.

Up to first order in H, and for low temperatures (T � TF ), we have

M = 2H

∫
dεD(ε)

(
−∂f
∂ε

)
' 2D(εF )H , (4)

with the usual notation for Fermi energy and Fermi temperature. Therefore, the param-
agnetic susceptibility of an electron gas, also known as Pauli susceptibility, is

χP = 2D(εF ) . (5)

It is independent of temperature as long as the condition T � TF is fulfilled.

Actually, this is not the full story. We assumed that the magnetic field acts only on the
electron’s spin, but it also couples to the electron’s charge. This yields the Lorentz force in
the classical limit, and Landau levels in a quantum-mechanical solution. Quantization of
energy states in Landau levels changes the DOS, and introduces a diamagnetic contribution
called Landau susceptibility, χL. Without developing any details, we just quote the result
for free electrons, which is χL = −χP/3. Under appropriate conditions, the lattice effect
is absorbed into the electron’s effective mass m∗. In this case, χL has an extra factor
(me/m

∗)2. Except for semiconductors, which tend to have m∗ � me, the paramagnetic
part is dominant. Henceforth, when we refer to paramagnetic susceptibility it is implied
that the diamagnetic correction is already included.
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It is interesting to compare the orders of magnitude of paramagnetic susceptibilities in
metals and insulators. Still using the independent-electron approximation as a reference,
for a total electron density n in a single band we have D(εF ) ∼ n/εF , which means
that χP ∼ 1/TF . Note that χP corresponds to a Curie-law form with the temperature
“frozen” at TF . Therefore, χP is two or three orders of magnitude smaller than the
Curie susceptibility at room temperature. In other words, paramagnetism in metals is
much weaker than in insulators, and can even compete with the diamagnetic effect of
closed atomic shells. Indeed, the net susceptibility of some metals, such as copper, silver
and gold, is diamagnetic. This seems to contradict what was said at the end of the
previous paragraph, but it is not the case. There we where comparing paramagnetism an
diamagnetism of conduction electrons only, while here we are also taking into account the
diamagnetism of closed-shell electrons localized in the ions.

The fact that χP is independent of temperature reflects the correlation of spin orientations
among the conduction electrons caused by Pauli’s principle. It is easy to verify from
Eq. (4), but taking the opposite limit in temperature, that the paramagnetic susceptibility
of metals would satisfy Curie’s law if T � TF , since in this regime the electrons would not
be restricted to the lowest energy states, and the aforementioned spin correlations would
tend to disappear. Only in such a nonphysical limit would conduction electrons behave
like independent magnetic moments.

Interacting system

We know that effects of interaction between electrons are more important, and may lead
to instabilities of the Fermi-liquid state, when the conduction band is narrow. As already
mentioned, the only mono-atomic metallic solids that present magnetic order are some
transition metals (Cr, Mn, Fe, Co and Ni) and certain rare earths. In these metals, the
Fermi level lies in a region of high density of states, mainly of 3d or 4f character, despite
some hybridization with s states. The usual model to study interacting electrons in narrow
bands is the Hubbard model, which considers a tight-binding band with intra-site repulsive
interaction. It is described by the Hamiltonian

H = −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (6)

This same Hamiltonian was used in Text 05 to obtain exchange interactions in insulators,
in the limit U � tij. Here we assume that the interaction is not strong enough to suppress
the metallic state.

Using the relationship

c†iσ =
1√
N

∑
k

eik·Ric†kσ , (7)



M. A. Gusmão – IF-UFRGS 4

we can rewrite the Hubbard Hamiltonian in Bloch representation:

H =
∑
kσ

εkc
†
kσckσ +

U

N

∑
kk′q

c†k+q,↑c
†
k′−q,↓ck′↓ck↑ . (8)

Hartree-Fock approximation

It is well known that exact solutions for many-body problems like the one described by
Eq. (8) do not exist. The simplest approach is to use the Hartree-Fock (HF) approximation,
which assumes independent-electron states. The operator product in the interaction term
is then rewritten (like in a mean-field approximation) as

c†k+q,↑ck↑c
†
k′−q,↓ck′↓ ' 〈c†k+q,↑ck↑〉c†k′−q,↓ck′↓+ 〈c†k′−q,↓ck′↓〉c†k+q,↑ck↑−〈c†k+q,↑ck↑〉〈c†k′−q,↓ck′↓〉 .

(9)
Among the possible decoupling schemes, we have chosen averages that conserve particle
number and spin. Given the nature of HF states, the average values in Eq. (9) are nonzero
only for q = 0. Substituting into Eq. (8), and dropping an additive constant coming from
the last term of Eq. (9), we obtain the HF Hamiltonian

HHF =
∑
kσ

εHF
kσ nkσ , (10)

where

εHF
kσ = εk +

U

N

∑
k′

〈nk′σ̄〉 = εk + Unσ̄ . (11)

Our notation for the spin subscript is such that σ̄ =↓ when σ =↑ and vice versa. Note that
nσ̄ in the last term is a global average value (density). For simplicity, an n with a site or
wave-vector subscript is an operator, otherwise it is a density.

Equation (11) shows that the interaction in HF approximation is equivalent to an applied
magnetic field, since it produces an energy shift that depends on the spin orientation. This
can be better seen if we use the relations

n = n↑ + n↓ , M = n↑ − n↓ , (12)

where n is the electron density and M is the magnetization. We can then write

n↑ =
1

2
(n+M) , n↓ =

1

2
(n−M) , (13)

and the electron energies take the form

εHF
k± = εk +

1

2
nU ∓ 1

2
UM , (14)
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with the already mentioned correspondence (+,−) → (↑, ↓). Equation (14) puts into
evidence the effect of interaction as an overall energy shift (nU/2) plus an effective magnetic
field UM/2 [see Eq. (2) for comparison].

Generalizing what we did for the paramagnetic case with applied field, Eqs. (12) become

n =

∫
dεD(ε) [f(ε+ nU/2− UM/2) + f(ε+ nU/2 + UM/2)] ,

M =

∫
dεD(ε) [f(ε+ nU/2− UM/2)− f(ε+ nU/2 + UM/2)] . (15)

Considering that n is fixed and that this set of equations must be solved for a given
temperature, these equations determine the chemical potential µ (which appears in the
Fermi functions) and the magnetization M as functions of temperature.

PM susceptibility

We begin by investigating the possibility of still having a paramagnetic system at all
temperatures, despite the presence of interactions. In the absence of spontaneous magneti-
zation, the susceptibility must be obtained applying a weak external field (linear response).
The resulting effective field is

Heff =
1

2
UM +H . (16)

Following the standard procedure for an effective field, i.e.,

M = χH = χPH
eff , (17)

the last two equations allow to isolate the susceptibility,

χ =
χP

1− 1
2
UχP

=
χP

1−D(εF )U
, (18)

where the second equality involves using Eq. (5). For D(εF )U < 1, we see an enhanced
paramagnetic response as the effect of electron-electron interactions.

Instability of the PM state

For D(εF )U > 1, Eq. (18) shows an instability of the PM state, since the susceptibility
becomes negative. The assumed magnetization is uniform, which means that the stable
state should be FM order.

Another way to visualize this is through the introduction of a small spin polarization of
the electron system (uniform magnetization), evaluating the energy change with respect
to the PM state. Starting with the PM condition n↑ = n↓ = n, we switch a fraction δn
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of spin-down electrons to spin up. This fraction of electrons occupies an energy range of
width δε around the Fermi level, so that we end up with

n↑ =
n

2
+ δn , n↓ =

n

2
− δn , δn = D(εF )δε , (19)

The change in kinetic energy (at T = 0) is

∆K

N
=

∫ εF +δε

εF

εD(ε)dε−
∫ εF

εF−δε
εD(ε)dε = D(εF )(δε)2 , (20)

while the interaction energy changes by

∆Eint

N
= U

(n
2

+ δn
)(n

2
− δn

)
− U

(n
2

)2

= −U(δn)2 . (21)

Therefore, the total energy change can be written as

∆E

N
= D(εF )(δε)2[1−D(εF )U ] . (22)

One can see that this energy difference is positive (the PM state is stable) for D(εF )U < 1,
and is negative (the PM state is unstable against FM order) for D(εF )U > 1. This latter
condition is known as the Stoner criterion for ferromagnetism.

Metals of the iron group are characterized by the presence of a hybrid 4s-3d band. The
presence of atomic d states, which are quite localized, leads to the formation of a narrow
band, consequently with a high DOS. The atomic 3d levels being partially filled in Fe, Co
and Ni (configurations [Ar]3dnd4s2, with nd = 6, 7 and 8, respectively) implies that the
Fermi level falls in this high-DOS region. This is consistent with the observation that these
metals are ferromagnetic at room temperature.

Ordered FM phase

As we discussed above, if the Stoner criterion is satisfied the system displays FM order in the
ground state. A critical temperature TC > 0 is then expected to exist at which a transition
to the PM phase takes place. This means that a reduction of the magnetization with
increasing temperature should be observed, similarly to what we have seen for insulators.

M(T ) is evaluated by solving Eqs. (15) for each T value. The second of those equations can
be represented graphically, as we did in the case of localized spins (but now the function at
the right-hand side is not a Brillouin function). Once more, the left-hand side is represented
by a straight line of unit slope (M = M), while the right-hand side is a nontrivial function
of M , which vanishes at M = 0, and is limited by the maximum values M = ±n. If the
first derivative of this function is smaller than 1, the only point of contact with the straight
line is at M = 0; if it is larger than 1, there is an intersection for M > 0. Therefore, the
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critical temperature corresponds to the first derivative exactly equal to 1. Expanding the
right hand side in powers of M , we obtain

M = MU

∫
dεD(ε)

[
−∂f
∂ε

]
Tc

+O(M3) . (23)

Thus, the equation that determines TC is

U

∫
dεD(ε)

[
−∂f
∂ε

]
Tc

= 1 . (24)

The Fermi function is evaluated with the Hartree-Fock energies for M = 0, i.e., ε+ 1
2
nU−µ.

But µ(T = 0) = εF = ε0
F +nU , where ε0

F is the Fermi energy of the non-interacting system.
We have D(εF ) = D(ε0

F ) since the HF energies are rigidly displaced. Unlike an insulating
system, the magnetization at T = 0 is not saturated (i.e., independent of the applied field),
unless the relative displacement of the spin-up and down bands is very large, caused by a
very intense Coulomb interaction. We have two qualitatively different situations:

1. U is very large, so that the top of the spin-up band is below the Fermi
level: In this case, M(0) is saturated. Furthermore, there is a gap ∆ = UM for
spin-flip excitations, leading to deviations ∆M(T ) = M(0) −M(T ) that follow an
exponential law, ∆M(T ) ∼ exp(−∆/T ). Among the 3d (pure) metals, this is the
case of Ni (Fig. 1) and Co.

DOS

ε

s↓

s↑

d↓

d↑

Figure 1: Schematic representation of the density of states for the spin-polarized bands in
Ni. The Fermi level is at the origin of the energy axis. The band occupations correspond
to nd↑ = 5 (the d↑ band is placed completely below the Fermi level), nd↓ ' 4.4, ns ' 0.6
(without polarization), implying that M ' 0.6µB/at, as mentioned before.



M. A. Gusmão – IF-UFRGS 8

2. U is not strong enough to cause a gap: There are states with both spin orien-
tations in the vicinity of the Fermi level, implying that M(0) is not saturated (spins
can be flipped by an applied field). Furthermore, the variation ∆M(T ) is no longer
exponential, but follows a power law, which in HF is ∆M(T ) ∼ T 2. Iron (Fe) falls
into this category, but the experimentally observed behavior is ∆M(T ) ∼ T 3/2 (spin
waves?!).

Nonuniform magnetic order

To verify the existence of other types of magnetic ordering we follow the same procedure
as for localized spins, looking for divergences in the static wave-vector-dependent suscep-
tibility χ(q).

With a position-dependent external field, the HF solution leads to the effective field

Heff(q) = H(q) +
1

2
UM(q) , (25)

which reproduces Eq. (16) in the uniform case. By the usual procedure, we obtain the PM
susceptibility

χ(q) =
χ0(q)

1− 1
2
Uχ0(q)

. (26)

According to our previous discussion of susceptibility an correlation functions for a generic
magnetic system (Text 09), the static susceptibility in the non-interacting limit can be
obtained through the relation

χ0
ij = 4

∫ β

0

dτ〈Szi (β)Szj (τ)〉 , (27)

where β = 1/T , the average is at zero applied field, and the factor 4 appears because we
included g = 2. Our choice of the z component does not imply any loss of generality for
an isotropic system in the PM phase.

In wave-vector space, Eq. (28) becomes

χ0(q) = 4

∫ β

0

dτ〈Szq(β)Sz−q(τ)〉 . (28)

Using the relationships

Szi =
1

2
(ni↑ − ni↓) , niσ = c†iσciσ , c†iσ =

1√
N

∑
k

eik·Ric†kσ , (29)

we have

Szq =
1√
N

∑
k

(c†k+q ↑ck↑ − c†k+q ↓ck↓) . (30)
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From the single-particle form of the unperturbed HF Hamiltonian, time-dependent creation
and annihilation operators are simply written as

c†kσ(τ) = eεkτc†kσ ,

ckσ(τ) = e−εkτckσ . (31)

Therefore,

χ0(q) =
1

N

∑
kk′

〈(c†k+q ↑ck↑ − c†k+q ↓ck↓)(c
†
k′−q ↑ck′↑ − c†k′−q ↓ck′↓)〉 I(β) , (32)

where

I(β) ≡ eβ(εk+q−εk)

∫ β

0

dτ e(εk′−q−εk′ )τ =
eβ(εk+q−εk)

[
eβ(εk′−q−εk′ ) − 1

]
εk′−q − εk′

. (33)

What remains to evaluate are the average values appearing in Eq. (32), whose Hartree-Fock
decoupling has the generic form

〈c†k+qσckσc
†
k′−qσ′ck′σ′〉 = 〈nkσ〉〈nk′σ′〉 δq,0 + 〈nk′σ〉(1− 〈nkσ〉) (1− δq,0)δk′,k+qδσσ′ . (34)

Given that 〈nkσ〉 = f(εk) (independent of σ), and using Eqs. (33) and (34) in Eq. (32), we

obtain

χ0(q) =
2

N

∑
k

f(εk)− f(εk+q)

εk+q − εk
. (35)

Again, εk can be taken as the bare band energies, since the uniform HF displacement
cancels out in the denominator, and is absorbed by the chemical potential in the Fermi
functions. For T � TF , the numerator on the right-hand side is nonzero only when the
energies εk and εk+q are near the Fermi level, one of them above and the other below εF .

Magnetic order means periodicity of the magnetization in space, so that a single non-
zero Fourier component M(Q) exists, corresponding to a wave vector Q such that the
denominator of Eq. (26) vanishes, i.e.,

1

2
Uχ0(Q) = 1 . (36)

The ordering occurs for the wave vector that satisfies this condition at the highest tem-
perature. When Q = 0, we have FM order. For instance, it is easy to verify that Eq. (35)
gives χ0(0) = χP = 2D(εF ) when T → 0, and Eq. (36) reproduces the Stoner criterion.

When Q 6= 0, the nonuniform ordering can be seen as a spatial modulation of the distri-
bution of electron spins, which is called a spin-density wave (SDW). It may correspond to
a simple AF (Néel) order if the lattice is sc and Q = (π/a, π/a, π/a). Experimental results
for Cr yield Q ' 0.96 (2π/a, 0, 0), which seems to indicate a SDW that is incommensurate
with the lattice [more details in: Eric Fawcett, Rev. Mod. Phys. 60, 209 (1988)]. The
other transition metal classified as antiferromagnetic is Mn (α phase), with TN . 100 K,
but it appears to present a complex, non-collinear order, probably also incommensurate.
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Nesting

From the form of Eq. (35) we can see that a maximum (or possibly a divergence) of χ0(Q)
must appear when fairly large parallel regions of the Fermi surface (FS) are relatively
displaced by Q, since all the corresponding states have the same energy. The complete
coincidence of electron and hole Fermi surfaces under a displacement Q is called nesting.

A trivial nesting example is a one-dimensional electron gas. In this case, the Fermi “sur-
face” consists of two points, that can be brought together by a wave-vector of magnitude
Q = 2kF . The susceptibility χ0(2kF ) presents a logarithmic divergence, also known as
Kohn anomaly.

A less trivial example is the tight-binding model on a square lattice (d = 2). For an
electron density n = 1, i.e., half-filled band, the Fermi “surface” is a square with half the
Brillouin-zone area. The vector Q = (π/a, π/a) causes perfect nesting (Fig. 2), leading
to a divergence of χ0(Q). This indicates an instability of the PM state against the
establishment of an AF-type (Néel) SDW for any value of U 6= 0.

When the nesting is not perfect (which is the more realistic case), χ0(q) is always finite,
but can present sharp maxima. Then, the instability of the PM phase occurs for U above
a finite critical value. It is also possible to have a nesting vector incommensurate with the
lattice, as in the case of chromium that we mentioned before. A planar cut of chromium’s
FS (bcc lattice) is shown in Fig. 3, where q is the wave-vector that we denoted as Q, for
which we can see that there is nesting of more or less extensive regions of the FS.
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Figure 2: Nesting of the FS on a tight-binding square lattice for n = 1.
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Figure 3: Fermi-surface nesting in Cr (http://www.answers.com/topic/spin-density-wave).

Nature of the SDW state

In the low-temperature region, once a SDW is established, we have essentially two scenarios:

1. The SDW opens a gap throughout the FS: Then the ordered system is no
longer metallic, and the magnetic transition is also a metal-insulator transition. This
is what happens in the square-lattice model.

2. The SDW does not open a gap on the entire FS: It occurs if there is partial
nesting (as for Cr). The system preserves a metallic character, but gaps open up
on parts of the FS, leaving (possibly several) branches of a reconstructed FS. This
reflects the change of periodicity that occurs between the PM and ordered phases. A
detailed description of such a situation tends to be quite complex, particularly when
the SDW is incommensurate.


