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FIP10604 – Text 11 — One-dimensional Heisenberg model

We mentioned at the end of Text 10 that the one-dimensional Heisenberg model can be
exactly solved. We must add that this applies only to S = 1/2. One of the formulations
of the solution method will be briefly present here, together with some results for physical
quantities.

The system consists of spins localized at the sites of a linear chain with lattice parameter
a. As usual, we consider a finite lattice of N sites with periodic boundary conditions, so
that site N + 1 coincides with site 1. The exchange interaction is restricted to nearest
neighbors, which allows to write the Hamiltonian as

H = −J
N∑
n=1

Sn · Sn+1 = −J
N∑
n=1

[
SznS

z
n+1 +

1

2
(S+

n S
−
n+1 + S−n S

+
n+1)

]
. (1)

This Hamiltonian commutes with any component α of the total spin, SαT =
∑N
n=1 S

α
n , which

means that its eigenvectors may be selected as belonging to orthogonal subspaces where
SzT has a definite value. The maximum value of SzT is N/2, corresponding to the state |F 〉,
which is the ground state if J > 0 (FM case). In general, we will write SzT = N/2 − r,
where r is the number of spin deviations in relation to the reference state |F 〉.
The r = 0 subspace is one-dimensional, with the eigenvalue E0 = −NJS2 = −NJ/4.

The r = 1 subspace has dimension N since a local spin deviation can be at any one of the
N lattice sites. A possible basis for the N ×N block of the Hamiltonian in this subspace
can be the set of vectors

|n〉 = S−n |F 〉 , n = 1, . . . , N. (2)

The Hamiltonian is not diagonal in this basis, as we saw in Text 07, when we studied
magnons. Following the same procedure employed there, we take lattice-translation sym-
metry into account, defining vectors

|k〉 =
1√
N

N∑
n=1

eikn|n〉 , (3)

that are energy eigenvectors associated to the eigenvalues

Ek = E0 + J(1− cos k) . (4)

Here we have chosen a = 1, meaning that all distances are measured in units of the lattice
parameter. Periodic boundary conditions determine that k can assume N independent
values which we write as k = (2πλ)/N , with λ = 0, 1, . . . , N − 1. Note that the |k〉 states
are exactly the spin waves defined in Text 07, and the last term in Eq. (4) reproduces the
magnon dispersion relation for our present choice of parameters and spatial dimension.

For any subspace with r > 1 we depart from the independent-magnon approach, since
(S−n )2 = 0 for S = 1/2.
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Bethe ansatz 1

In search of an exact solution, we will look for a systematization of the method allowing
to obtain energy eigenvalues without violating any restrictions implied by spin-deviation
operators. As a preliminary step, we will revisit the case r = 1 with a different approach.

We want to solve the eigenvalue equation

H|ψ〉 = E|ψ〉 (5)

using the {|n〉} basis, i.e.,

|ψ〉 =
N∑
n=1

an|n〉 , (6)

with |n〉 given by Eq. (2). Explicitly applying the Hamiltonian (1), we obtain the recursion
relations

2[E − E0]an = J [2an − an−1 − an+1] , an+N = an . (7)

It is easy to verify that a solution to these equations is

an = eikn , k = (2πλ)/N , λ = 0, 1, . . . , N − 1 , (8)

as obtained before.

Going to r = 2, we write
|ψ〉 =

∑
n1,n2

(1≤n1<n2≤N)

an1n2 |n1n2〉 , (9)

where
|n1n2〉 = S−n1

S−n2
|F 〉 . (10)

The vectors |n1n2〉 define a subspace of dimension N(N − 1). Now, the recursion relations
become

2[E − E0]an1n2 = J [4an1n2 − an1−1,n2 − an1+1,n2 − an1,n2−1 − an1,n2+1] , (11)

for n2 > n1 + 1, and

2[E − E0]an1n2 = J [2an1n2 − an1−1,n2 − an1,n2+1] , (12)

for n2 = n1 + 1.

These equations can be solved through the Bethe ansatz. Our discussion will be restricted
to the form originally proposed by Bethe,2 often called coordinate Bethe ansatz, in contrast

1M. Karbach and G. Müller, “Introduction to Bethe Ansatz I”, Computers in Physics 11, 36 (1997)
[cond-mat/9809162].

2H. Bethe, Z. Phys. 71, 205 (1931).
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to the algebraic Bethe ansatz, which became more popular. The latter makes use of a
methodology employed in inverse-scattering problems, falling into the more general context
of integrable systems. In its coordinate version, the ansatz consists in assuming that

an1n2 = A ei(k1n1+k2n2) + A′ ei(k1n2+k2n1) . (13)

This form satisfies Eq. (11) if we choose

Ek1,k2 = E0 + J
2∑
j=1

(1− cos kj) . (14)

On the other hand, noticing that Eq. (11) is also satisfied if n2 = n1 + 1, Eq. (12) implies
the condition

2an1,n1+1 = an1n1 + an1+1,n1+1 . (15)

This leads to a relation between the coefficients A and A′ which can be written as

A

A′
≡ eiθ = −ei(k1+k2) + 1− 2 eik1

ei(k1+k2) + 1− 2 eik2
. (16)

We can then rewrite Eq. (13) as

an1n2 = ei(k1n1+k2n2+θ12) + ei(k1n2+k2n1+θ21) , (17)

with θ12 = −θ21 = θ. After some algebra, Eq. (16) results in

2 cot
θ

2
= cot

k1
2
− cot

k2
2
. (18)

Periodic boundary conditions imply that

eik1N = eiθ , eik2N = e−iθ , (19)

leading to

k1 =
2πλ1 + θ

N
, k2 =

2πλ2 − θ
N

, λi ∈ {0, 1, . . . , N − 1} . (20)

It is important to remark that, among all possible ki of the sets defined in Eq. (20), only
pairs k1, k2 that satisfy Eq. (18) are solutions.

In the absence of the phase shift θ, Eq. (17) corresponds to an independent-magnon
solution. Therefore, a non-zero θ appears as an effect of magnon interaction. In the case
of spin 1/2, this interaction is of hard-core type, i.e., we cannot have two magnons (spin
deviations) at the same site.
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The solutions of Eqs. (18) and (20) fall into three categories:

1) a branch identical to the single-magnon spectrum for either k1 or k2, the other being
null;

2) a branch of two-magnon bound states, when the equations present complex solu-
tions for k1 and k2 (complex conjugate pairs);

3) a continuum of two-magnon scattering states, with real k1 and k2.

Generalization for any r

In the general case, an energy eigenvector is written as

|ψ〉 =
∑

n1...nr
1≤n1<...<nr≤N

an1...nr |n1 . . . nr〉 . (21)

The Bethe ansatz (BA) becomes

an1...nr =
∑
P

exp

i
r∑
j=1

kPj
nj +

i

2

∑
i<j

θPiPj

 , (22)

where each P is one of the possible permutations of {1, 2, . . . , r}.
The energy eigenvalue corresponding to |ψ〉 is

E{ki} = E0 + J
r∑
j=1

(1− cos kj), (23)

the ki’s and θij’s being determined by the equations

Nki = 2πλi +
∑
j 6=i

θij , λi ∈ {0, 1, . . . , N − 1} ,

2 cot
θij
2

= cot
ki
2
− cot

kj
2
, i, j = 1, . . . , r . (24)

We will not discuss the solutions in detail. We will just comment on some of their charac-
teristics.

� Since the Heisenberg Hamiltonian also preserves the total spin, each subspace with
a given r (i.e., given SzT ) may be further divided into subspaces corresponding to
possible values of ST .

� There is always a state with all ki’s null and energy equal to E0, corresponding to
the maximum value of ST (i.e., N/2). This state has r spin deviations uniformly
distributed on the lattice, which is nothing but a rotation of the state |F 〉.

� Subspaces with intermediate values of ST , i.e., N/2 − r < ST < N/2, have at least
one ki null (but not all).

� The subspace corresponding to the smallest possible value of ST , that is, N/2 − r,
has all ki’s non-zero, both real values and complex-conjugate pairs.
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AF Heisenberg chain

All the BA equations obtained for the one-dimensional Heisenberg model are independent
of the sign of J . Therefore, in contrast to what was done for magnons in the AF system
in three dimensions, we do not use the Néel state as a reference, but describe the states
in terms of spin deviations (independent or not) relative to the completely aligned (FM)
state.

From now on we focus on the AF case, changing J → −J everywhere (including the
Hamiltonian), and treating J as a positive quantity.

The AF ground state (for N even) certainly has SzT null, corresponding to r = N/2.
Numerical studies on finite lattices indicate that the N/2 quantum numbers λi associated
to this state are the odd numbers 1, 3, . . . , N − 1.

It is possible to analytically determine the asymptotic value of the ground-state energy in
the thermodynamic limit, which can be expressed by the relation

EAF − EF

N
= −J ln 2 , (25)

Where EF is the energy of the FM state, previously denoted by E0.

Unfortunately, it is not possible to build a simple image describing the nature of the ground
state. We know that it has zero total spin and no magnetic long-range order. It is
possible (although the complexity exceeds the level of our discussion) to evaluate spin
correlation functions, which show a power-law decay with the inter-site distance. It should
be noted that in a “normal” system, without magnetic order (e.g., the PM phase of a
3D ferromagnet), this decay is exponential. In theories of phase transitions, correlation
functions with power-law decay are associated to critical phenomena. One can then say
that the ground state of the AF Heisenberg chain is a “critical state”.

Effect of a uniform magnetic field

Applying a uniform field H to the AF chain, the Hamiltonian becomes

H = HAF −HSzT . (26)

Since SzT commutes withHAF, the eigenvectors remain the same, but the energy eigenvalues
vary linearly with H with a slope given by the corresponding eigenvalue of SzT . The AF
ground state, for which SzT = 0, remains unchanged in the presence of field. However, all the
other states, which have higher energies when H = 0, will have these energies reduced as H
increases, crossing the original ground state and one another. Eventually, the uppermost
one at zero field, state |F 〉, will become the ground state. The last interchange will be with
the state having a single spin deviation. The energy difference between final two lowest
states is 2J , which means that the saturation field, above which all spins are aligned, is
Hs = 2J .
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Figure 1: Specific heat (left) and uniform magnetic susceptibility (right) of the AF Heisenberg
chain. [Extracted from: A. Klümper and D. C. Johnson, Phys. Rev. Lett. 84, 4701 (2000).]

Thermodynamic properties

The BA equations allow, in principle, to obtain the entire energy spectrum. We can
thus build up the partition function (even in the presence of applied field) and evaluate
thermodynamic properties. As we have already hinted, even though the equations are
exact, their solution and the evaluation of other quantities must be done numerically.
Without going into practical details, and in order to illustrate what can be obtained with
the method, we present plots of the specific heat and uniform magnetic susceptibility as
functions of temperature in Fig. 1 (where the constants N, g, µB and kB appear explicitly).

Some interesting observations can be made about these results:

� Both specific heat and susceptibility present broad maxima in the same region of
temperatures (see the figure insets).

� The specific heat is linear in T for T → 0 (the c/T vs. T plot has a finite limit at
T = 0).

� The susceptibility shows singular behavior for T → 0, although with a finite limit.
This limit is Jχ(0) = 0.101321 . . . = 1/π2. Field-theory methods4 yield an analytic
relation in this region,

Jπ2χ ' 1 +
1

2 ln(T0/T )
. (27)

It is possible to fit the BA results with this equation for T0 ' 7.7J .

4S. Eggert, I. Affleck, and Takahashi M., Phys. Rev. Lett. 73, 332 (1994).


