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FIP10604 – Text 09 — Mean-field approximation - II

Heisenberg Hamiltonian in wavevector space

As we saw in Text 08, the uniform susceptibility does not diverge in the case of an AF
system. However, if we could apply a magnetic field that changed sign between neigh-
boring lattice sites, we should expect the corresponding susceptibility to diverge at TN .
This situation is best described in terms of Fourier components of the relevant physical
quantities.

For a lattice of N sites with periodic boundary conditions, we have a discrete Fourier
transform. For the magnetization, it is defined by the relations

Mi =
1√
N

∑
q

M(q)eiq·Ri ,

M(q) =
1√
N

∑
i

Mie
−iq·Ri , (1)

where the wavevector sum spans the N vectors belonging to the 1st BZ (Brillouin zone).
Similar equations can be written for the magnetic field, the spin operators, etc.

The Heisenberg Hamiltonian on a lattice,

H = −
∑
ij

JijSi · Sj −
∑
i

Hi · Si , (2)

can be rewritten in wavevector space as

H = −
∑
q

J(q) S(q) · S(−q)−
∑
q

H(q) · S(−q) , (3)

where we used the previous definition (Text 07),

J(q) =
∑
j

Jije
−iq·(Ri−Rj) = J

∑
δ

eiq·δ . (4)

The last equality implies restriction to nearest-neighbor interactions.

Mean-field Hamiltonian

Using the same procedure employed in Text 08 for site-dependent quantities, we obtain
the mean-field Hamiltonian as

HMF = −
∑
q

Heff(q) · S(−q) , (5)

with
Heff(q) = H(q) + 2J(q)M(q) . (6)
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Staggered magnetization

The Néel-type AF order is characterized by a magnetization that alternates between neigh-
boring sites of a bipartite lattice, so that Mi+δ = −Mi. This is usually called staggered
magnetization. Fourier transforming, this leads to∑

q

eiq·RiM(q)
[
eiq·δ + 1

]
= 0 . (7)

The condition M(q) 6= 0 can only be satisfied for a wavevector q = Q chosen so that

Q · δ = π (8)

for any δ that connects neighboring sites. Therefore, the only nonzero Fourier component
of the magnetization is M(Q). In a simple-cubic lattice, Q = (π

a
, π
a
, π
a
).

Generalized susceptibility

Considering a static but position dependent magnetic field, we have

δMi =
∑
j

χijHj ⇒ δM(q) = χ(q)H(q) , (9)

where δMi is the part of the magnetization induced by the applied field (which is not the
whole magnetization if there is magnetic order), and

χ(q) =
∑
i

χije
−iq·(Ri−Rj) . (10)

As used for J(q), the right-hand side of the above equation is independent of j due to
invariance under lattice translations (with periodic boundary conditions).

The tensor χ(q) has components

χαβ(q) =
∂Mα(q)

∂Hβ(q)

∣∣∣∣∣
0

, (11)

where the index 0 indicates zero external field, and Greek indices refer to the usual orthog-
onal components of a vector.

Besides these general relations, in the context of Mean Field Theory we expect the magne-
tization of an intrinsically isotropic system to point in the direction of the effective field.
We can then define a scalar quantity

χL(Heff) ≡ M(q)

Heff(q)
, (12)
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known as Langevin susceptibility, so that

M(q) = χL(Heff)Heff(q) . (13)

Note that the Langevin susceptibility is not a linear-response coefficient.

Still considering an intrinsically isotropic system, the breakdown of isotropy introduced by
magnetic order should keep the tensor χ(q) in diagonal form, with distinct parallel and
perpendicular components relative to the ordering direction. We simplify the notation of
these components to χα(q), α =‖,⊥. Using Eqs. (11) and (13), we have

χα(q) =
∂Mα(q)

∂Heff
α (q)

∂Heff
α (q)

∂Hα(q)
≡ χeff

α

∂Heff
α (q)

∂Hα(q)
, (14)

where the limit H → 0 is implied. With Heff given by Eq. (6), we obtain

∂Heff
α (q)

∂Hα(q)
= 1 + 2J(q)

∂Mα(q)

∂Hα(q)
= 1 + 2J(q)χα(q) . (15)

Therefore,

χα(q) =
1

(χeff
α )−1 − 2J(q)

, (16)

with

χeff
α =

[
χL(Heff) +

∂χL(Heff)

∂Heff
α

Heff
α

]
0

. (17)

Note that χeff
α does not depend on q. Being related to the response of a single magnetic

moment, it is a local quantity.

PM phase

If there is no spontaneous magnetization, the second term on the right-hand side of Eq. (17)
is null, and χeff

α = χ0 = C/T , independent of direction, which results in the scalar suscep-
tibility

χ(q) =
C

T − 2J(q)C
. (18)

Choosing Q such that

J(Q) = max[J(q)] , (19)

χ(Q) diverges at the temperature TMF
Q = 2J(Q)C. For a FM system, Q = 0, while the

AF case corresponds to Q given by Eq. (8). In both cases, J(Q) = z|J | in the nearest-
neighbor approximation, and TMF

Q reproduces TMF
C or TMF

N .
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Ordered phase

In the presence of magnetic order, the effective field is not null at zero external field. Its
components are

Heff
0‖ = Heff

0 = 2J(Q)M0 , Heff
0⊥ = 0 , (20)

where M0 is the magnitude of the spontaneous (FM) or sublattice (AF) magnetization.

The perpendicular susceptibility is easily determined, since

χeff
⊥ = χL(Heff

0 ) =
M0

Heff
0

=
1

2J(Q)
, (21)

so that Eq. (16) results in

χ⊥(q) =
1

2[J(Q)− J(q)]
. (22)

This equation indicates that

� with FM order, the perpendicular uniform susceptibility diverges throughout the
ordered phase (which reflects the possibility of rotating the magnetization direction
without energy cost, due to the system’s isotropy);

� in the AF case, χ⊥(Q) diverges throughout the ordered phase (Q being the wavevec-
tor that defines the AF order), while the perpendicular uniform susceptibility is
constant:

χ⊥ =
1

2[J(Q)− J(0)]
.

Note that this coincides with the uniform PM susceptibility [see Eq. (18)] at the
transition temperature TMF

N .

It is somewhat more complicated to evaluate the parallel susceptibility in the ordered phase
because the last term in Eq. (17) does not vanish. We must differentiate χL(Heff) with
respect to the effective field before setting the external field to zero. It is simpler to use

χeff
‖ =

∂M0

∂Heff
0

= βS2B ′S(βSHeff
0 ) , (23)

where the prime means derivative with respect to the function’s argument, and BS(x) is
the Brillouin function, introduced as BJ(x) in Text 3, for magnetic moments associated to
the total angular momentum. From what we have seen there about this function, we can
write

B ′S(0) =
S + 1

3S
=

C

S2
, (24)

C being the Curie constant. Then, defining

bS ≡
B′S(βSHeff

0 )

B′S(0)
, (25)
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and using Eq. (16), we can write

χ‖(q) =
C bS

T − 2J(q)C bS
. (26)

Note that bS → 1 when T → TMF
C (or TMF

N ), indicating the same divergence as in the PM
phase (or continuity of the uniform susceptibility at TMF

N in the AF case). On the other
hand, bS tends exponentially to zero for T → 0, indicating that the parallel component
of the susceptibility goes to zero in this limit, since the spins are close to their maximum
average value.

FM system with finite applied field

With a finite applied field, the relation M = SBS(βSHeff) shows that M only vanishes for
β → 0, i.e., T →∞, because the external field is a lower limit for Heff . Therefore, there is
no phase transition, i.e., there is no critical temperature separating regions with M = 0
and M 6= 0. It should be noted that, as a consequence of this, the experimental curves
of magnetization versus temperature are always “rounded”, not giving a very accurate
indication of the critical temperature, since measurements are made with a finite (although
weak) applied field.

Anisotropic AF system with finite applied field

Unlike the FM case, a finite magnetic field yields a highly nontrivial situation at low
temperatures with AF interactions. We will generalize the discussion by including an
easy-axis anisotropy of type D(Szi )2.

The most noticeable characteristic is that the uniform magnetization as a function of
applied field shows a metamagnetic behavior at low temperatures. This means that there
is a critical value of the applied magnetic field for which the magnetization jumps from a
very low value to a sizable one.

There are different scenarios, depending on the relative importance of anisotropy and
exchange interaction, as detailed below.

Weak anisotropy

� Field parallel to the easy axis – For low fields, the magnetization rises slowly
with the field intensity, as the alignment of magnetic moments parallel to the field
is strengthened, but the opposite orientation of the other sublattice does not allow
much gain in Zeeman energy. At a critical field, the system undergoes a spin-
flop transition: the AF order becomes perpendicular to the applied field (and
hence, to the easy axis). This preserves the exchange energy, but the magnetic
moments are tilted, developing a non-zero component parallel to the field. This
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tilting increases until saturation, when the Zeeman energy is dominant even over the
exchange interaction, and the spins are fully aligned with the magnetic field. It is
interesting to notice that the AF phase for zero anisotropy is of spin-flop type for
any non-zero applied field.

� Field perpendicular to the easy axis – Here the situation is essentially equiva-
lent to the spin-flop phase, but without transition. The magnetization grows (almost
linearly) with field until saturation.

Strong anisotropy

� Field parallel to the easy axis – In this case, the spin-flop transition does not
occur because the orientation of moments parallel to the anisotropy axis is favored.
However, when the field is sufficiently strong so that the Zeeman energy exceeds the
exchange interaction, a spin-flip transition occurs: the magnetic moments of the
down sublattice are reversed to parallel orientation with the field. Therefore, the
magnetization jumps to near saturation.

� Field perpendicular to the easy axis – The behavior is the same as for weak
anisotropy, but with a smaller slope.

Taking into account the effect of temperature, phase diagrams can be constructed as shown
in Figs. 1 and 2. In these figures, solid lines are used for second-order transitions, and
dashed lines for first-order ones. Note that the spin-flip and spin-flop transitions are first
order since there is a discontinuity of the magnetization in both cases.

T

H

0

AF

SF

PM

Figure 1: Schematic phase diagram for weak anisotropy. SF indicates the spin-flop phase.
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0
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Figure 2: Schematic phase diagram for strong anisotropy (spin-flip case).

In Fig. 1, the two second-order lines (PM-AF, PM-SF) end at the same point at which
a first-order line (AF-SF) also ends, characterizing a bicritical point. On the other hand,
Fig. 2 shows the second-order line (PM-AF) ending at a tricritical point. It is called so
because if we assumed the presence of a staggered field, with intensity and sign displayed
on a third axis of the phase diagram, there would exist two additional second-order lines
ending at this tricritical point.

Susceptibility and correlation functions

All points on second-order lines of type PM-AF (Figs. 1 and 2) are points where χ‖(Q)
diverges, while χ⊥(Q) diverges at all points of a PM-SF line (Fig. 1). Although these
susceptibility components refer to the PM phase, their evaluation is not trivial. The
presence of anisotropy and of a finite applied field explicitly break rotational symmetry,
preventing the use of Langevin’s susceptibility.

In general, susceptibility components are related to spin correlation functions, as briefly
commented at the end of Text 03. Here we must go back to it more carefully, because
different spin components do not commute.

In the presence of a perturbative applied field, the Hamiltonian of a generic magnetic
system can be written as

H = H0 +H1 , H1 = −
∑
iα

Hα
i S

α
i , (27)
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where H0 contains all terms that do not vanish when the perturbative field goes to zero.
These non-vanishing terms might even include a fixed finite field.

The magnetization components are given by

Mα
i = 〈Sαi 〉 =

Tre−βHSαi
Tre−βH

. (28)

We need to make an expansion in powers of H1 in order to extract a linear term in the
perturbative field. To do this we follow the usual procedure (interaction representation in
Quantum Mechanics):

e−βH ≡ e−βH0U(β) , (29)

U(τ) = eH0τe−Hτ , (30)

∂U
∂τ

= −H1(τ)U , H1(τ) = eH0τH1e−H0τ , U(0) = 1 . (31)

The solution is an ordered exponential,

U(τ) = T̂τ e−
∫ τ
0
dτ ′H1(τ ′) . (32)

Explicitly writing U(β) as a perturbation series, and keeping only up to linear terms in
H1, we have

U(β) = 1−
∫ β

0
dτH1(τ) + . . . (33)

We are interested in the initial susceptibility, whose components are

χαα
′

ij =
∂Mα

i

∂Hα′
j

∣∣∣∣∣
0

. (34)

The development (28 - 33), with H1 as given in Eq. (27), yields

χαα
′

ij =
∫ β

0
dτ
[
〈Sαi (β)Sα

′

j (τ)〉0 − 〈Sαi (β)〉0〈Sα
′

j (τ)〉0
]
, (35)

where the subscript zero indicates unperturbed average. The right-hand side of this last
equation was rearranged to reflect the order of subscripts on the left-hand side, which took
one of the spins to the largest possible time β.

When applying this formalism to mean-field theory, one must note that the interaction
part is turned into a magnetization-dependent term. This causes H1 to assume a more
complex form than in Eq. (27),

H1 = −
∑
iα

[
Hα
i + 2

∑
l

Jil δM
α
l

]
Sαi = −

∑
ij

∑
αα′

(
δijδαα′ + 2

∑
l

Jilχ
αα′

lj

)
Hα′

j S
α
i , (36)
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where we used the first equality of Eq. (9). Rewriting in terms of wavevectors, and assuming
axial symmetry, we have

H1 = −
∑
qα

[1 + 2J(q)χα(q)]Hα(q)Sα(−q) . (37)

Skipping some calculation details, we remark that the additional term in H1 yields the
susceptibility as in Eq. (16), with χeff

α being determined by Eq. (35) for the single-site
effective problem. Since we are interested in the PM-AF and PM-SF transitions, with
an applied field H parallel to the easy axis (notice that it is not the perturbative field,
which has already been set to zero), the unperturbed Hamiltonian takes the form

H0 = −Heff
0 Sz −DS2

z , D > 0 , (38)

with Heff
0 = H− 2z|J |M0 (in the nearest-neighbor approximation), and M0 = 〈Sz〉0, which

is nonzero even in the PM phase due to the presence of the applied field. Since Sz commutes
with H0, evaluation of the z component is trivial, resulting in

χeff
z = β[〈S2

z 〉0 −M2
0 ] . (39)

Here, in contrast to the isotropic case, 〈S2
z 〉0 does not have the constant value S(S + 1)/3.

The transverse component can be obtained from

χeff
x =

∫ β

0
dτ〈eH0τSxe

−H0τSx〉0 . (40)

Using a basis of Sz eigenvectors, and the relation Sx = (S+ +S−), the functions χeff
z (T,H)

and χeff
x (T,H) can be evaluated (obviously also depending on the value of D). The result,

inserted into Eq. (16), allows to obtain the transition temperatures and fields along second-
order lines by solving the equation

2J(Q)χeff
α (TN , H) = 1 . (41)

The highest TN for a given H determines the actual transition temperature, while the
susceptibility component and Q value indicate the type of order, remembering that Q is
the value of q for which J(q) is maximum. For the case illustrated in Fig. 1, χeff

z gives
larger values of TN in the low-field region, while χeff

x leads to the largest TN at high fields.


