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FIP10604 — Text 03
PARAMAGNETISM OF INDEPENDENT MOMENTS

Let us consider the atoms of a physical system (solid or not) as independent, i.e., not
interacting with each other (an assumption to be checked a posteriori). If all the atoms are
equal, the magnetization is simply the average magnetic moment of an atom multiplied by
the number of atoms per unit volume. Then it suffices to study the problem of a single
atom in the presence of an external magnetic field.

As we saw in Text 02, single atoms have a permanent magnetic moment given by

p=—gugd/h, (1)
that is obviously not null when J # 0. To simplify notation, we will not use the index J
in the g factor (its notation in Text 02 was g;).

The relevant energy range of magnetic-field effects is much smaller than energy differences
between atomic states (ugH =~ 5.8 x 107° eV for pugH = 1 T). Therefore, each atom is in
its ground state, and all degrees of freedom are “frozen” except those related to rotation
of the magnetic moment to orient itself with a magnetic field. The diamagnetic effect is
much weaker, as we have seen, and will not be taken into account here.

Assuming (without loss of generality) that the external magnetic field is parallel to the z
axis, and choosing as zero the additive constant from the frozen degrees of freedom, the
Hamiltonian is simply

H=—p H=gugHJ./h, (2)
and the energy eigenvalues are
Ey, = gugHMj ; My=—J—-J+1,...,0-1,J. (3)
Let us consider the time evolution of any J component in Heisenberg’s representation,
Jo(t) = U (0)e MY o=y, 2. (4)

Using Eq. (2), it is easy to show (EXERCISE) that
Jo(t) = Ju(0)cos(wyt) — Jy(0) sin(wyt) ,
Jy(t) = J,(0)cos(wyt) + J.(0) sin(wyt) ,
Jo(t) = J.(0), (5)

where
eH

2mec’

coinciding with the classical Larmor frequency when g = 1 (orbital contribution).

wy = gupH/h =g (6)

Therefore, if the atom is truly isolated, that is, unable to exchange energy with its sur-
roundings, the magnetic moment precesses around the applied field with frequency wy,.
This does not establish a magnetization in response to the applied field, and therefore does
not allow to evaluate a susceptibility.
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Thermal equilibrium

The magnetization is a thermodynamic variable. It appears when we study a system
that is not isolated but is in thermal equilibrium. The underlying assumption is that, in
addition to the explicit interaction with the magnetic field, given by Eq. (2), each atom
can exchange energy with some other subsystem, which plays the role of heat reservoir to
keep the temperature constant. This process can involve atomic collisions in the case of a
gas, or interaction with phonons for atoms of a solid, for example. Such interactions need
not be taken into account explicitly, but we know from equilibrium Statistical Mechanics
that we must evaluate an ensemble average of the magnetic-moment operator.

Note that the previously mentioned freezing of degrees of freedom implies that the diamag-
netic response (which is only relevant for J = 0) is essentially independent of temperature.

Going back to Eq. (2), only the z component of the magnetic moment has nonzero average
value, which is given by

J
(o) =Trpp, = —gupZ~" 37 Mye ", (7)
My=—J
where p = Z 71 exp(—SH) is the density matrix in the canonical ensemble, Z = Tr exp(—[H)
is the partition function, 8 = 1/(kgT), T is the (absolute) temperature, and kg (=
1.38 x 10723 J/K) is Boltzmann’s constant.

Taking into account that for N atoms in a volume V' the magnetization is M = N{u,)/V,
and using the energy eigenvalues (3), it is easy to show (EXERCISE) that

M = MyB,(BgugJH) . (8)
where N
My = VQMBJ %)
and we introduce the Brillouin function
By(z) = 2(]2; ! coth (2{]2}_195) - 21(] coth (21J$) : (10)
Note that B;(x) varies between 0 and 1 as x goes from 0 to co. So, M is the saturation
magnetization, which corresponds to all atoms in the state with M; = —J. It is achieved

either when H is very large at finite temperature or when 7" — 0 for a nonzero H. On the
other hand, a null value of M is obtained either for H = 0 with 7" # 0 or for T — oo with
a finite H.

The smallest nonzero J, i.e., J = 1/2 corresponds to the simple form Bj/y(x) = tanh(x).
In the opposite limit, J — oo, we have

Boo(x) = coth(z) — 1/z = L(x) (11)
which is known as Langevin function. The result M = My L(x) was obtained by Langevin

treating the atomic magnetic moments as classical variables. Equation (11) thus shows a
manifestation of the Correspondence Principle.
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Paramagnetic susceptibility

For a fixed temperature, the Brillouin function approaches zero as the magnetic field in-
tensity is reduced. In this regime, we have a linear relation between magnetization and
field, the linear coefficient being the magnetic susceptibility. Using the expansion

1
coth(z) = — + 4 O(z?) , (12)
r 3
we obtain Tl
By(z) = =2+ 0(). (13)
3J
and therefore
J+1 3
M = M, 37 BopugJH + O(H”) . (14)

This yields the form M = yH in the limit H — 0, with the susceptibility y satisfying the
so-called Curie’s law o

X = T (15)

(originally obtained empirically), where the Curie constant C'is given by

_ NguEJ(J+1)

¢ V 3kp

(16)
Equation (15) shows that

e the paramagnetic susceptibility diverges when 7" — 0, indicating that in the absence
of thermal motion each atom tends to acquire a nonzero average magnetic moment
for an arbitrarily small applied field;

e the paramagnetic susceptibility vanishes for 7' — oo, reflecting the fact that in
extreme thermally induced disorder a finite magnetic field is not effective to align the
magnetic moments.

Plots of y and xy~! as functions of temperature for an ideal paramagnetic substance are

shown in Figure 1. Note that the inverse susceptibility gives a straight line passing through

origin, whose slope is the reciprocal of the Curie constant. Measured values of this con-
stant give information about the total angular momentum of the atoms, since it depends

explicitly on the eigenvalue of J2. It is usual to define the effective magnetic moment of a

single atom as
He = g\ J(J +1), (17)

so that the Curie constant can be written in the form

C:ﬂﬂgﬁf

. 1
V 3kp (18)
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Figure 1: Schematic plots of the susceptibility (left) and inverse susceptibility (right) as
functions of temperature for a paramagnetic system that obeys Curie’s law.

The Curie law is a theoretical prediction for an idealized system, comprising independent
magnetic moments. Pure paramagnetic behavior in real solids is observed only in alloys
containing magnetic ions diluted in a nonmagnetic matrix, or in a few transition-metal
or rare-earth salts. Examples of the latter are CrK(SOy)2.12H20, Fe(NH4)(SO4)2.12H50,
and Gdy(SO4)3.8H,0, whose magnetic moments are due to ions Cr®t, Fe?™ and Gd3*,
respectively. These compounds are electric insulators, with a large number of atoms per
unit cell, so that their magnetic ions are quite distant, essentially not interacting with each
other.

Relation to Linear Response Theory

The susceptibility as described by Egs. (15) and (16) can be obtained from the definition

of initial susceptibility (see Text 01) applied to an isotropic system in the presence of static

and uniform field,

oM
oH |,_,

The first equality of Eq. (7) is generic, and can be used for a general Hamiltonian of the
form H = Hy — p.H, where H, is independent of H. A similar equation can be written
for the square of the magnetic moment. Then it is easy to show that

8 (20 — a3 (20)

where (...)o indicates the average at zero field. Note that the Eq. (20) reproduces the
susceptibility (15)-(16) when we take into account that for independent magnetic moments

we have p, = —gugJ./h, (J.)g = 0 and (J2), = (J?),/3 = J(J + 1)h?/3.

Equation (20) is a special case of a more general relationship from Linear Response Theory,
in which the generalized-susceptibility components are determined by correlation functions
of components of the magnetic-moment operator evaluated in the absence of applied ex-
ternal field. We will have opportunity to use this more general relation later on.

X (19)
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