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FIP10604 – Text 02 – Atomic magnetic moments

In Text 01 we presented the physical quantities that are relevant to describe magnetic prop-
erties of materials, including a brief comment about observed types of magnetic behavior.
Here we begin to analyze the microscopic origins of magnetic properties.

From a classical point of view, the effect of a magnetic field on a particle is associated to
the electric charge. We know that the equation ∇·B = 0 allows to define a vector potential
A, such that

B = ∇×A . (1)

The classical equations of motion for a particle with electric charge q in the presence of
a magnetic field are consistent with a Hamiltonian in which the kinetic-energy term (in
the SI) takes the form (p − qA)2/2m. In the case of microscopic models, effects of the
medium are explicitly taken into account through the interactions between particles, so
that the magnetization does not appear at this level. Then it is interesting to work with
the Gaussian system, replacing the magnetic induction B by the magnetic field H (which
is the external applied field), and writing directly H = ∇×A. In this unit system, the
particle’s kinetic energy is written as (p − qA/c)2/2m, where c is the speed of light in
vacuum. Unless otherwise stated, this formulation will be adopted throughout the course.

From a thermodynamic point of view, the magnetization induced by the presence of an
applied magnetic field is obtained by deriving the free energy with respect to the field. Clas-
sical statistics for a system in thermodynamic equilibrium involves the Maxwell-Boltzmann
distribution and integrals over the phase space. But a simple change of variables on the
momentum integration allows to totally eliminate the vector potential! Therefore, in a
classical treatment, the magnetization of a system of particles, at any finite
temperature and for any applied magnetic field, is null. This statement is known
as Bohr-van Leeuwen Theorem, because it initially appeared in Niels Bohr’s PhD thesis,
in 1911, and was rediscovered (!) eight years later in the thesis of Miss H. J. van Leeuwen.

It is, therefore, evident that magnetism can only be described by a quantum theory. It
should be noted that we are referring to a microscopic theory. It is possible to construct
phenomenological or effective classical models of magnetic systems, as we will see later.

Based on the above observations, we will first address a very simple problem, the occurrence
of magnetic moment in isolated atoms or ions, starting with a one-electron atom.

One-electron atom in the presence of magnetic field

For an electron, the presence of a magnetic field involves replacing p→ (p + eA/c), since
the charge is q = −e. Then, initially neglecting the electron spin, the Hamiltonian for a
single-electron atom in the presence of a magnetic field associated to a vector potential A
takes the form

H =
1

2me

(
p +

e

c
A
)2

+ V (r) , (2)
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where V (r) is the Coulomb potential due to the nucleus and me is the electron mass.
Developing the quadratic term, we have

H = H0 +
e

2mec
(p ·A + A · p) +

e2

2mec2
A2 (3)

where A is the magnitude of A, andH0 denotes the Hamiltonian of the atom in the absence
of applied field. Using p = −ih̄∇, choosing a gauge such that ∇ · A = 0 (which means
that p commutes with A), and in particular

A = −1

2
r×H , (4)

it follows that

H = H0 +
e

2mec
L ·H +

e2

8mec2
r2⊥H

2 . (5)

L = r×p is the orbital angular momentum, and r⊥ is the projection of the position vector
r on a plane perpendicular to H.

Orbital magnetic moment

Remembering that the potential energy of a classical (permanent) magnetic dipole µ sub-
jected to a magnetic induction B is E = −µ ·B, we have (replacing B by H)

E = −µ ·H . (6)

More generally, we can identify the magnetic dipole moment with minus the derivative
of the magnetic energy with respect to magnetic field. Thus, in a quantum formulation
we can identify the components of the magnetic-dipole-moment operator as minus the
derivative of the Hamiltonian with respect to the corresponding components of H.

Two contributions to the magnetic dipole moment appear in Eq. (5): an orbital magnetic
moment

µL = − e

2mec
L , (7)

which is independent of the field and hence paramagnetic, and an induced diamagnetic
moment (opposite to the applied field)

µd = − e2

4mec2
r2⊥H . (8)

In the ground state, we have l = 0, l being the quantum number associated with the
magnitude of the orbital angular momentum [the eigenvalues of L2 are l(l + 1)h̄2, with
l = 0, 1, 2, . . .]. Thus, the expected value of the orbital magnetic moment is 〈µL〉 = 0, and
there is no paramagnetic behavior. On the other hand, we can write

〈µd〉 = − e2

6mec2
〈r2〉H , (9)
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where we use 〈r2⊥〉 = 2
3
〈r2〉 due to rotation symmetry (the average is evaluated at zero

field, considering the linear-response limit for sufficiently weak fields). Notice that the
magnetic susceptibility of a system consisting of this kind of atoms, which is proportional
to ∂〈µd〉/∂H, is non-zero and negative.

As the eigenvalues of angular-momentum components are integer multiples of h̄, it is usual
to rewrite Eq. (7) as

µL = −µBL/h̄ , (10)

where

µB =
eh̄

2mec
= 9.27× 10−21 emu (11)

(equivalent to 9.27× 10−24 Am2 in the SI) is the Bohr magneton, which defines the order
of magnitude of microscopic magnetic moments.

Inclusion of spin

We know that the most important correction to the one-electron-atom Hamiltonian consists
in taking into account the electron spin (operator S, with quantum numbers s and ms),
adding two terms to Eq. (5), which now reads

H = H0 +
e

2mec
(L + 2S) ·H + ξL · S +

e2

8mec2
r2⊥H

2 . (12)

We see the presence of a spin magnetic moment

µS = −2µBS/h̄ , (13)

and a spin-orbit interaction term involving the scalar product of L and S. If the spin-orbit
interaction is weak in comparison to the magnetic-field effect, it can be neglected, and
we have two independent contributions (orbital and spin) to the total magnetic moment,
which may be written as

µ = −µB(L + 2S)/h̄ . (14)

However, if the spin-orbit interaction is important, the total angular momentum J (= L+S)
must be taken into account, with quantum numbers j and mj. Now, ml and ms are no
longer good quantum numbers, and the states are specified by the set {n lj mj}. In this
case, by projecting µ into a subspace of fixed j, one can show (a demonstration is found
in most textbooks on Quantum Mechanics) that the atomic magnetic moment is parallel
to J and can be written as

µ = −gJµBJ/h̄ , (15)

where

gJ = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(16)

is the Landé g-factor. Note that gJ = 1 if s = 0 and gJ = 2 if l = 0.
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This is not very relevant for a one-electron atom because the ground state has l = 0. But
the single-atom response is no longer diamagnetic because there is a nonzero 〈µs〉 aligned
with an applied magnetic field. In practice, the only electrically neutral one-electron atom
is the hydrogen atom (and its isotopes), but hydrogen naturally appears in the molecular
form H2, with a zero-spin ground state. The above discussion becomes more relevant when
generalized to many-electron atoms.

Many-electron atoms

The Hamiltonian of an atom with two or more electrons contains the interaction between
electrons, which makes the problem much harder. Actually, there is no exact solution. The
simplest treatment is the Hartree approximation. It considers the electrons as independent
(not explicitly interacting), so that one still has a single-particle problem, but the potential
V (r) in Eq. (2) is replaced by an effective potential that takes (partly) into account the
effect of the other electrons. It is basically the sum of two Coulomb potentials, one due to
the nucleus and one due to a static and spherically symmetric charge distribution obtained
from the radial probability distribution of the other electrons. This implies a self-consistent
solution, since this probability distribution is obtained from the wavefunctions. At this
level, the spin-orbit interaction is neglected.

We will not develop here a detailed study of the Hartree approximation for many-electron
atoms. We will just highlight some relevant aspects for determining atomic magnetic
moments, which is our immediate goal.

The energy eigenfunctions of the system involve products of single-electron wavefunctions.
The latter are similar in form to those of one-electron atoms, i.e.,

ψnlmlms(r, θ, φ) = Rnl(r)Ylml
(θ, φ)χms , (17)

differing only by the radial function Rnl(r), which depends on details of the effective po-
tential. The quantum number ms specifies the spin state.

Energy eingenvalues of the atom are obtained by filling up the available one-electron states
obeying Pauli’s Exclusion Principle, but the eigenfunctions are simple products, not enforc-
ing antisymmetry under particle exchange. It should be noted that, unlike the hydrogen
atom, individual energies depend on the quantum number l in addition to the principal
quantum number n. The origin of this effect is that electrons in states with higher l are,
on average, farther away from the nucleus, thus feeling its attraction weakened due to
screening by the “inner” electrons. Individual states continue to be degenerate in ml and
ms.

We thus have one-electron energies arranged in shells which are basically defined by the
quantum number n, with subshells essentially differing by the value of l. However, the
above-mentioned dependence of one-electron energies on l may take states from one shell
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to another. With some exceptions, the sequence of subshell occupation for atomic ground
states is

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 . . . , (18)

where the subscripts denote the maximum number of electrons in the subshell, and we
employ the usual notation of letters s, p, d, f, . . . respectively associated to l = 0, 1, 2, 3, . . ..

For the one-electron atom, we saw that the atomic magnetic moment is directly related to
the total angular momentum J of the electron. We can infer that the magnetic moment of
a many-electron atom involves a total angular momentum resulting from the coupling of all
the individual ones. So, in principle, we have to take into account the spin-orbit interaction.
But there is another correction to the Hartree Hamiltonian that plays a role here. It is
called residual Coulomb interaction, which is just the difference between the actual sum of
interactions between electrons and its approximate description via an effective potential.
The relative importance of these two corrections determines two different scenarios for
many electron atoms:

J-J coupling: If the spin-orbit correction dominates, each individual electron develops
its total angular momentum Ji = Li + Si. Then the Ji’s of all the electrons combine
to form the total angular momentum of the atom, J =

∑
i Ji.

L-S coupling: If the residual Coulomb interaction is the most important correction, elec-
trons cannot independently occupy individual (Hartree) states, as will be discussed
below. In this case, the individual spins couple to make an atomic spin S =

∑
i Si,

individual orbital angular momenta couple to form an atomic orbital angular momen-
tum L =

∑
i Li, and coupling of these give the total angular momentum J = L + S

of the atom. The last step involves a spin-orbit interaction for the atomic quantities
that derives from the individual ones.

We will only consider L-S coupling, which applies in the majority of cases. It is important
to note that completely filled subshells do not contribute to the atomic L and S, implying
that in the ground state these vectors are determined only by the highest subshell.

For a single electron, we used lower-case letters l, s, and j to represent quantum numbers
determining the eigenvalues of L2, S2, and J2, respectively, while ml, ms, and mj were
associated to the corresponding z components. For the sake of clarity, we will use upper-
case letters (L,ML, S,Ms, J,MJ) in connection to quantum numbers of atomic angular
momenta. Consequently, the sequence s,p,d,f. . . becomes S,P,D,F. . .

At the Hartree level of approximation, atomic ground-states are specified by configurations
written as in Eq. (18). For example, the ground-state configuration of an atom with 8
electrons (oxygen) is 1s2 2s2 2p4. But the values of S and L are not uniquely defined. Its
easy to check that we can distribute 4 electrons in the three p-orbitals with S = 1 or 0,
and L = 2, 1 or 0. In principle, this could yield J = 3, 2, 1, or 0. However, constraints
due to the exclusion principle forbid J = 3.
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Possible combinations of L, S and J are specified as a term in the form (2S+1)[L]J , where
the brackets indicate that one uses S,P,D,F,. . . to represent the L values. For example,
the term corresponding to L = 1, S = 1, and J = 3 is written as 2P3. Sometimes a term
is written omitting the J subscript. In this case it represents a multiplet. The number
of terms of a multiplet, i.e., the number of possible values of J , is equal to 2S + 1 when
S ≤ L. For this reason the left superscript is usually referred to as the term’s multiplicity.

In the Hartree approximation, all terms corresponding to the same configuration are de-
generate in energy. This degeneracy is lifted by the residual Coulomb interaction and the
spin-orbit interaction. With these corrections, the ground-state term can be determined
from a given configuration by the so-called Hund’s rules:

1. The lowest energy corresponds to the largest possible S, and to the largest possible
L for a given S.

2. In each multiplet, the lowest energy corresponds to the smallest possible J if the
subshell is less than half-filled, and to the largest possible J if it is more than half-
filled.

The first rule reflects an effect of the residual Coulomb interaction associated with the
exchange symmetry of the total wavefunction (absent in the Hartree approximation). Elec-
trons, being spin-1/2 particles, are fermions, which means that the system wavefunction must
be antisymmetric with respect to the exchange of any two electrons. This wavefunction can be
written as a product of orbital (position-dependent) and spin functions, neglecting spin-orbit
coupling at this stage. A large total spin implies that the spin wavefunction is symmetric against
exchange. This yields an antisymmetric orbital wavefunction, implying that it is less likely to
find two electrons in the same region of space, thus minimizing the Coulomb repulsion between
them. For the same total spin, a large L provides a large number of orbitals (with distinct ml’s)
to distribute the electrons, which also reduces their repulsion energy by increasing the average
distance between them.

The second rule reflects the effect of spin-orbit interaction, and the fact that there is a change
of sign of the coefficient of L · S as a function of subshell filling, favoring antiparallel alignment
between S and L (smallest J) in one case and parallel (largest J) in the other.

Atomic magnetic moments

Since we now know how to determine the ground-state quantum numbers S, L, and J for a many
electron atom, we are finally able to determine the atomic magnetic moment. Equations (14) and
(15) still hold, provided that we use the atomic Landé g-factor

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (19)

This applies to isolated atoms. It may change for atoms in a crystalline solid due to the effect
of neighboring atoms, as we will see later.
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From the above results, we conclude that isolated atoms tend to have permanent magnetic mo-
ments. Therefore, we should expect a system of non-interacting atoms to be in general paramag-
netic. The exceptions are a ground-state configuration with all subshells completely filled, or in
cases where the ground state corresponds to J = 0 even though the relevant subshell is not filled
(carbon is an example: 6 electrons in the configuration 1s22s22p2 imply that the ground-state
term is 3P0).

In fact, to confirm that a system of non-interacting atoms with J 6= 0 should be paramagnetic we
must compare the relative intensities of the paramagnetic and diamagnetic effects. The magnetic
energy contributed by the Zeeman term is of the order of µBH. On the other hand, consid-
ering that 〈r2⊥〉 ∼ a20 (a0 is the Bohr radius), one can estimate the relative contribution of the
(diamagnetic) last term of Eq. (5), multiplied by the number of electrons, as

〈Hd〉
µBH

∼ 10−9Z H/Oe . (20)

Even for B ∼ 1 T (H ∼ 10 kOe) this ratio is typically of order 10−4. This confirms that
paramagnetic behavior is dominant in systems of independent atoms that have non-zero total
angular momentum. Magnetic order, as we discussed in Text 01, can only occur if there are
interactions between atoms. These possibilities will be explored in the following texts.


