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The Boltzmann Equation

Distribution function

We have seen in Text 6 that the semiclassical approximation assigns a position r and a
wavevector k to each independent electron, and describes its dynamics in the presence
of external fields by means of equations of motion. The study of transport properties in
metallic solids involves the collective behavior of conduction electrons. We thus need to
know the distribution function of these electrons. It is denoted by f(r,k, t), and defined
so that the product

f(r,k, t) d3r
d3k

(2π)3 (1)

gives the average number of electrons (with a given spin orientation) within a volume
element d3r d3k around a generic point (r,k) of phase space at time t. Considering a
system with N electrons in a volume V , and taking into account the spin degeneracy, we
can write

2
∫
f(r,k, t) d3r d3k/(2π)3 = N . (2)

If the distribution is spatially uniform, with f(r,k, t) = f(k, t), we have

2
∫
f(k, t) d3k

(2π)3 = N
V
. (3)

This last equation allows to interpret f(k, t) as the probability of finding an electron in the
state of wavevector k at time t, since V d3k/(2π)3 gives the number of states in a volume
element d3k. In the absence of external fields and in thermodynamic equilibrium we must
recover quantum statistics, that is, the equilibrium distribution function is the Fermi-Dirac
distribution, which is independent of r and t (uniform and stationary system). Using a
superscript 0 (zero) to indicate equilibrium, we have

f 0(r,k, t) = 1
e(εk−µ)/kBT + 1 ≡ f 0(k) . (4)

Consistently with a semiclassical approach, this is a quantum distribution, involving the
energy spectrum of an electron subjected to the lattice potential.
Applied external fields take the system out of equilibrium, and f(r,k, t) must be recalcu-
lated. This is done, as we will see below, through a differential equation known as Boltz-
mann equation. Before introducing this equation, it is important to discuss a necessary
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extension of the model that we have been dealing with so far. In our quantum treatment
of Bloch electrons under a static electric field we saw that each individual electron would
visit all possible wavevector states in a band as time went on. This would include velocity
reversals and would give rise to an alternate electric current induced by a static field. The
experimental observation in metals is that a constant current results as a response to an
applied static potential difference. To obtain such a steady state in our model of a metal,
we must include some momentum-dissipation mechanism to oppose the field effect. This
can be called a scattering mechanism, whose microscopic origin will be discussed later.

Boltzmann equation

One of the fundamental theorems of Classical Statistical Mechanics, Liouville’s Theorem,
states that the causal evolution of a classical system occurs conserving the probability of
finding the system in a given volume element of phase space, which in our case implies
that

d
dtf(r,k, t) = 0 . (5)

However, if non-causal evolution processes are present, the net changes of f(r,k, t) are due
to them. Since the distribution function depends on time also through the time dependence
of r and k, we have

∂f

∂t
+ ∂f

∂r
· ṙ + ∂f

∂k
· k̇ =

(
∂f

∂t

)
col

, (6)

which is the usual form known as Boltzmann equation. The right-hand side is the scattering
term (also called collision term).

As we mentioned before, transport phenomena involve steady states, in which there is
no explicit variation of the distribution function with time. In this case, the Boltzmann
equation becomes

∂f

∂r
· ṙ + ∂f

∂k
· k̇ =

(
∂f

∂t

)
col

. (7)

In this last equation, ṙ and k̇ depend on the external fields as given by the semiclassical
equations of motion obtained earlier (Text 6). Therefore, to use Boltzmann’s equation for
practical calculations we need to specify the scattering term.

Collision term

Within the context of independent-electron and semiclassical approximations, we can sup-
pose that a scattering event involving an electron fullfills the following conditions: (1) it is
essentially local, (2) it is essentially instantaneous in comparison to the relevant time scale
of transport phenomena, and (3) it does not affect other electrons. Thus, only the electron
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wavevector is changed, and the scattering term may be written as(
∂f

∂t

)
col

=
∫ d3k′

(2π)3 [W (k′ → k)−W (k→ k′)] . (8)

W (k′ → k) represents the electron scattering rate from (the volume element around) point
k′ to point k. We are not considering the possibility of spin-dependent scattering.
Taking explicitly into account the availability of states for the scattering to occur (due to
the exclusion principle), we can write

W (k′ → k) = W (k′,k)f(k′)[1− f(k)] ,
W (k→ k′) = W (k,k′)f(k)[1− f(k′)] . (9)

Now, W (k′,k) and W (k,k′) are intrinsic scattering rates, that is, rates corresponding to
an occupied initial state and empty final one.
With the above notation, the collision term of Boltzmann’s equation is written as(

∂f

∂t

)
col

=
∫ d3k′

(2π)3 {W (k′,k)f(k′)[1− f(k)]−W (k,k′)f(k)[1− f(k′)]} . (10)

Taking this expression to equation Eq. (7), we conclude that Boltzmann’s equation is a
nonlinear integro-differential equation for f(r,k).
Nonlinear equations are difficult to deal with. There is an obvious condition for which
Boltzmann’s equation is linearized, which is equality between W (k′,k) and W (k,k′). As
these rates are intrinsic, we can check this possibility for the system in equilibrium, when
we have

W (k′,k)f 0(k′)[1− f 0(k)] = W (k,k′)f 0(k)[1− f 0(k′)] . (11)
Using the explicit form of f 0(k), that is, the Fermi-Dirac distribution, one easily obtains
that

W (k′,k) eεk/kBT = W (k,k′) eεk′/kBT . (12)
Therefore, the two rates are equal for elastic collisions. When this happens, Boltzmann’s
equation is linearized, and the collision term becomes(

∂f

∂t

)
col

=
∫ d3k′

(2π)3 {f(k′)[1− f(k)]− f(k)[1− f(k′)]}W (k,k′)

=
∫ d3k′

(2π)3 [f(k′)− f(k)]W (k,k′) . (13)

The elastic-scattering condition is (at least approximately) satisfied for the two dominant
mechanisms in metals: scattering by impurities and by lattice vibrations (phonons). In
the first case, there is generally no low-energy internal degrees of freedom to be excited
during a collision. Scattering by phonons is not rigorously elastic, but the energy transfer
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is much smaller than εF , and the Fermi factors restrict collision processes to electrons near
the Fermi level.
Introducing the notation

δf(k) ≡ f(k)− f 0(k) , (14)

and taking into account that restriction to equal energies implies that f 0(k′) = f 0(k), we
have

f(k′)− f(k) = δf(k′)− δf(k) . (15)

On the other hand, this same restriction, written in the form

W (k,k′) ≡ W(k,k′) δ(εk′ − εk) , (16)

transforms the volume integral in Eq. (13) into a surface integral (over the surface Sk
defined by the equality εk′ = εk), so that(

∂f

∂t

)
col

= 1
(2π)3

∫
Sk

dSk′

|∇k′ε(k′)|W(k,k′)[δf(k′)− δf(k)] . (17)

We can formally rewrite this equation as(
∂f

∂t

)
col

= − 1
τk
δf(k) , (18)

where
1
τk
≡ 1

(2π)3

∫
Sk

dSk′

|∇k′ε(k′)|W(k,k′)
[
1− δf(k′)

δf(k)

]
. (19)

The quantity τk, as defined above, can be seen as a wavevector-dependent relaxation time.
It should be noticed that this definition is entirely formal, because τk depends on the
values of δf(k) for all k, that is, the very solution of Boltzmann’s equation. But it is
convenient to express the collision term as in Eq. (18) for the purpose of an approximate
solution to be discussed next.

Relaxation-time approximation

The relaxation time approximation consists in assuming a constant relaxation time (τ),
independent of k, which allows to write the collision term as(

∂f

∂t

)
col

= −δf(k)
τ

. (20)

Solving Boltzmann’s equation in this approximation for a non-stationary case in which
the external fields are turned off at t = 0 yields δf(t) = δf(0) exp(−t/τ). Therefore, the
electronic distribution relaxes exponentially to equilibrium with a characteristic time τ .
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Validity of the relaxation-time approximation

It is reasonable to assume that in a steady state the constant-energy surfaces are rigidly
displaced by a vector δk0 from the origin of k-space, with this vector depending on the
external applied fields. Then, in the (most often applicable) linear-response limit, since
δk0 itself is already linear in the applied fields, we can write

δf(k) ' ∂f 0

∂εk
∇kε(k) · δk0 . (21)

Note that the factor ∂f 0/∂εk restricts us to the vicinity of the Fermi surface if the temper-
ature is T � TF . Therefore, the relaxation time depends essentially on the Fermi energy.
If the Fermi surface is roughly spherical, we can consider that ∇kε(k) ‖ k, and therefore
δf(k′) and δf(k) differ only by the orientations of k′ and k with respect to δk0. So, repre-
senting by Θ and Θ′ respectively the angles that k and k′ make with ∆k0, we have, within
the integral appearing in the definition of τk,

δf(k′)
δf(k) = cos Θ′

cos Θ . (22)

It is also reasonable to assume that W(k,k′) = W(εF , θ), where θ is the relative angle
between k′ and k. Choosing the k′z-axis to be parallel to k when integrating over k′,
and using spherical coordinates (k′, θ, φ), only the k′ projection onto k will survive, the
transverse part averaging to zero upon integration over φ. Thus, the expression for the
relaxation time is reduced to the form

1
τ

= 1
(2π)3

∫
SF

dSk′

|∇k′ε(k′)|W(εF , θ)(1− cos θ) , (23)

where SF is the Fermi surface.
This last equation shows that we do obtain a constant (k-independent) relaxation time
within the adopted restrictions. We then conclude that the relaxation-time approximation
is justified if:

• the scattering mechanisms justify the hypothesis of nearly elastic collisions (lineariza-
tion of Boltzmann’s equation);

• the relevant temperatures are low compared to TF (restriction to the Fermi surface);
• the Fermi surface is approximately spherical.

The relaxation time is often viewed as a phenomenological parameter. However, once the
validity conditions of the relaxation-time approximation are verified, this parameter can
be actually evaluated. It suffices to know W(εF , θ), which is basically the scattering cross
section at the Fermi energy for the specific collision mechanism that is being considered.
In most cases, it is reasonable to assume that different scattering mechanisms (e.g., impu-
rities and phonons) do not interfere with each other, so that the collision term is a sum of
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terms, one for each mechanism. Therefore, we can define an effective relaxation time τ by
the relation

1
τ

= 1
τ1

+ 1
τ2

+ · · · , (24)

which is known as Mattiessen’s rule.
In summary, under appropriate conditions, the steady-state Boltzmann’s equation can be
written in the relaxation-time approximation as

∂f

∂r
· ṙ + ∂f

∂k
· k̇ = −δf

τ
. (25)

Our next Text will make use of this result to study the evaluation of transport coefficients
in metals.


