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ABSTRACT
We discuss the application of the Widom insertion method for calculation of the chemical potential of individual ions in computer simulations
with Ewald summation. Two approaches are considered. In the first approach, an individual ion is inserted into a periodically replicated overall
charge neutral system representing an electrolyte solution. In the second approach, an inserted ion is also periodically replicated, leading to
the violation of the overall charge neutrality. This requires the introduction of an additional neutralizing background. We find that the second
approach leads to a much better agreement with the results of grand canonical Monte Carlo simulation for the total chemical potential of a
neutral ionic cluster.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085527

I. INTRODUCTION

Ion chemical potential is an important thermodynamic quan-
tity that is relevant for phase equilibrium and reaction chemistry.
However, measuring the chemical potential, or equivalently, the
solvation free energy of individual ions, is very difficult experimen-
tally, requiring some specific assumptions.1 On the other hand, the
chemical potential of ions can be calculated approximately using
theoretical methods, such as Mean Spherical Approximation (MSA)
or Hypernetted Chain (HNC) equation.2–4 Such approaches, how-
ever, are not exact and rely on specific closure relations of the
Ornstein–Zernike equation. Therefore, it is desirable to have an
“exact” method to obtain chemical potential using Monte Carlo
(MC) simulations. For systems with short range interactions, there
are two usual approaches: (1) grand canonical MC simulation
(GCMC) and (2) the Widom insertion method.

The simulations of Coulomb systems are significantly more
complicated than those of systems with short range forces. The long-
range nature of the Coulomb potential precludes the use of simple
periodic boundary conditions, requiring a periodic replication of the
whole system. Each ion then interacts with all the other ions inside
the simulation cell and also with all the periodic replicas of all these
ions. To efficiently account for the periodicity of the replicated sys-
tems, the usual approach is to use Ewald summation methods.5–16 In
the thermodynamic limit, the system must be charge neutral, and the

GCMC must, therefore, be implemented in such a way as to respect
this requirement. The simple way to do this is to insert charge neu-
tral clusters into the simulation box. Such an approach, however,
precludes us from determining individual chemical potential of ions,
allowing only the calculation of the total chemical potential of a
neutral cluster. For example, in the case of α:1 electrolyte, where α
refers to the cation valence, we can only determine the combination
μt = μ+ + αμ−, where μ+ and μ− are the cation and anion chemical
potentials, respectively. Therefore, such implementation of GCMC
does not provide us with access to individual chemical potentials μ+
and μ−, but only to μt . We should note, however, that there is a dif-
ferent implementation of GCMC in which individual ions, together
with their respective neutralizing background, are inserted into the
simulation box.17 The difficulty in such an approach is that the
chemical potential of cations and anions must be carefully adjusted,
so that neutrality of the simulation box is only due to ions and not
because of an artificial background.

An alternative approach that allows us to obtain individ-
ual chemical potentials of ions is the Widom insertion method.18

Widom showed that the chemical potential of a particle is related to
the acceptance probability of inserting particle N + 1 into the system
that already contains N particles,18–27

μex = −kBT ln ⟨
1
V ∫

dsN+1 exp(−βΔU)⟩
N

, (1)
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where ΔU ≡ U(sN+1
) −U(sN

) is the energy difference for systems
with N and N + 1 particles. The integral is easily calculate inside
a canonical MC simulation by sampling the insertion probabil-
ity exp(−βΔU) after the simulation with N particles has fully
equilibrated.28–32

Widom’s method has been widely used for evaluating the
excess chemical potential for different systems, such as supercrit-
ical fluid-solid equilibria,33,34 mixture of Argon and 1-magne-4-
polybutadiene,35 and binary phases.36 The Widom insertion method
was also used to calculate ionic solvation free energy in atomistic
simulations.29,37–39

To use Eq. (1) requires calculation of ΔU, which is the change
in energy of the system due to addition of a test ion. Within the
Ewald summation formalism, there is, however, an ambiguity in the
definition of ΔU. One way is to interpret ΔU as the energy due to
the interaction of an extra ion with all the other ions inside the
simulation cell, as well as with all the replicas of these ions. There
is no problem with violation of charge neutrality in this case since
only one extra ion is added to a charge neutral system, and this
ion is not replicated. An alternative is to treat the added ion on the
same footing as the other ions inside the system. In this case, both
the new ion and its periodic replicas must be used to calculate ΔU.
This will lead to the interaction of ion with its own replicas, result-
ing in a non-neutral macroscopic system with diverging electrostatic
energy. To overcome this difficulty, we can add a uniform neutraliz-
ing background that is introduced simultaneously with the inserted
ion. The background charge will be replicated together with the ion,
preserving the overall charge neutrality. This will result in an over-
all charge neutral system with extensive energy. A priori it is not
clear which one of this procedures will lead to a better approxima-
tion to the exact value of the ionic chemical potential. We should
note, however, that within minimum image approximation inclu-
sion of neutralizing background has been found to lead to much
faster convergence to the thermodynamic limit.30 In this paper, we
will test both Ewald summation approaches by calculating the chem-
ical potential of cations and anions separately and then compare the
resulting value of μt obtained using each approach with the value of
μt calculated using GCMC. The GCMC will provide us with a bench-
mark to measure the accuracy of the two Widom insertion methods
for periodically replicated systems.

The rest of this paper is organized as follows: In Sec. II, we
briefly review the grand canonical simulation method for α:1 elec-
trolyte. In Sec. III, we will derive the expressions for ΔU used in the
two Widom insertion methods. In Sec. IV, we will present the results
of the simulations obtained using the two ΔU and compare the
results with the μt calculated using the GCMC simulations. Finally,
in Sec. V, we will discuss the conclusions of this work.

II. GRAND CANONICAL MONTE CARLO SIMULATION
To calculate μt , we can perform GCMC simulations for α:1 elec-

trolyte. To this end, we use a cubic simulation cell with side length
L = 100 Å. To account for the long range Coulomb interaction, we
use the Ewald summation method for neutral systems40,41 with the
number of k-vectors around 600. The system is found to reach equi-
librium after 2 × 106 MC steps. 20 000 samples are then used for
the statistical analysis. In each MC move, there are three possibili-
ties: Simple movement of ions or addition or removal of one cation

and α anions, so as to preserve the overall charge neutrality of the
system. The transition probability for addition of ions (from state
i to j),32,42–44

ρj

ρi
=

Vα+1e−βUj+βUi+βμt

(N+ + 1)(N− + α)(N− + α − 1) ⋅ ⋅ ⋅ (N− + 1)Λ3+Λ3α−
, (2)

where V is the volume of the simulation cell, N± is the number
of cations and anions, U i is the electrostatic energy of the state i,
μt = μ+ + αμ− is the total chemical potential of a minimum neutral
cluster, and Λ± are the thermal de Broglie wavelengths of cations
and anions. The removal probability is

ρj

ρi
=

e−βUj+βUi−βμt N+N−(N− − 1) ⋅ ⋅ ⋅ (N− − α + 1)Λ3
+Λ3α
−

Vα+1 . (3)

We start with an empty simulation cell and specify μt of the reser-
voir. The simulation is then run until the equilibrium is established
and the average number of cations, ⟨N+⟩, inside the simulation
cell is calculated. From this, we calculate the average concentra-
tion of electrolyte ⟨c⟩ corresponding to a fixed value of fugacity
exp(βμt)/Λ3

+Λ3α
− . The excess part of the total chemical potential can

then be calculated as μex
t = μt − ln[⟨c⟩α+1Λ3

+Λ3α
− ] − α ln α.

III. WIDOM INSERTION METHOD
The difficulty with applying the Widom insertion method to

systems with Coulomb interactions is due to the necessity of periodic
replication of the simulation box. The electrostatic potential inside
the simulation cell satisfies the Poisson equation

∇
2ϕ(r) = −

4πqi

εw

N

∑
j=1

∞
∑

nx ,ny ,nz=−∞
δ(r − rj

+ nxLx̂ + nyLŷ + nzLẑ), (4)

where εw is the dielectric constant of water and n’s are integers
corresponding to periodic replicas. Using the usual procedure, the
equation can be integrated by separating the Coulomb potential into
long and short range contributions. The long range contribution can
be efficiently summed in the Fourier space, while the short range in
the real space. The electrostatic potential can then be written as

ϕ(r) =
∞
∑
k=0

N

∑
j=1

4πqj

εwV ∣k∣2
exp[−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj

)]

+
N

∑
j=1
∑

n
qj erfc(κe∣r − rj

− Ln∣)
εw∣r − rj∣

, (5)

where n = (n1, n2, n3) are the integer lattice vectors and
k = ( 2π

L n1, 2π
L n2, 2π

L n3) are the reciprocal lattice vectors. The
damping parameter κe is chosen so that we can replace the sum
over n by a simple periodic boundary condition for the short range
part of the electrostatic potential in the real space. This is possible
as long as κe > 5/L. A special care must be taken in evaluating the
k = 0 term.45 Expanding around ∣k∣ = 0 this term can be written as
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lim
k→0

N

∑
j=1

qj 1
∣k∣2
−

N

∑
j=1

qj 1
4κ2

e
+ lim

k→0

N

∑
j=1

qj ik ⋅ (r − rj
)

∣k∣2

− lim
k→0

N

∑
j=1

qj [k ⋅ (r − rj
)]

2

2∣k∣2
. (6)

The first term is divergent; however, it is multiplied by∑i qi, which,
for a charge neutral system, is zero. Similarly, it is possible to show
that the third term is also zero by symmetry.45 The only non-
trivial term is the last one that evaluates to a finite value, resulting
in electrostatic potential at position r inside the simulation cell
given by

ϕ(r) =
∞
∑
k≠0

N

∑
j=1

4πqj

εwV ∣k∣2
exp[−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj

)]

+
N

∑
j=1

qj
∑

n

erfc(κe∣r − rj
− Ln∣)

εw∣r − rj∣
−

N

∑
j=1

2πqj

3εwV
(r − rj

)
2. (7)

We can recognize the last term of this expression as the sum
over electrostatic potentials produced by infinite uniformly charged
spheres—each with charge density qi/V—centered on positions of
ions. This provides us with an interesting interpretation of Ewald
summation. Effectively it replaces each ion, and its respective repli-
cas, by infinite uniformly charged spheres centered on positions of
physical ions. The discreteness effects are then encoded in the first
two terms of Eq. (7), which correspond to ions inside a neutraliz-
ing background. Note that this interpretation applies also to charge
non-neutral systems.45

For the charge neutral system, we can rewrite expression (7) as

ϕ(r) =
∞
∑
k≠0

N

∑
j=1

4πqj

εwV ∣k∣2
exp[−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj

)] +
4π

3εwV
r ⋅M

−
N

∑
j=1

2πqjrj
⋅ rj

3εwV
+

N

∑
j=1

qj
∑

n

erfc(κe∣r − rj
− Ln∣)

εw∣r − rj∣
, (8)

where M = ∑N
j=1qjrj is the electric moment of the simulation cell

with N ions and the sum over the short range interaction is per-
formed using the simple periodic boundary condition. We recognize
the r ⋅ M term as the shape dependent surface potential produced
by a macroscopic ferroelectric.46,47 The surface term is particularly
important for systems with broken symmetry, such as slab geome-
try and ion channels.45,48–51 For spherically symmetric bulk systems,
this term, however, leads to an unrealistic net dipole moment of a
macroscopic system, which is clearly absent in the disordered state of
an electrolyte solution. We can remove this term by using the tin-foil
boundary condition in which our macroscopic system is enclosed by
a perfect conductor.47,52 Indeed, as we will show below (see Fig. 1),
the expression without the surface term results in a better agreement
with the mean spherical approximation, which is exact at infinite
dilution. The electrostatic energy of a charge neutral system with N
ions is then

UN =
1
2

N

∑
j=1

qj
[ϕ(rj

) − lim
r→rj

qj

∣r − rj∣
]. (9)

Using Eq. (8), this can be written as

UN =
∞
∑
k≠0

2π
εwV ∣k∣2

exp[−
∣k∣2

4κ2
e
][A(k)2

+ B(k)2
]

+
1
2

N

∑
i≠j

qiqj erfc(κe∣ri
− rj
∣)

εw∣ri − rj∣
+

2π
3εwV

∣M∣2 −
κe
√

π

N

∑
i=1
(qi
)

2, (10)

where

A(k) =
N

∑
i=1

qi cos(k ⋅ ri
),

B(k) = −
N

∑
i=1

qi sin(k ⋅ ri
).

(11)

This is the electrostatic energy for the vacuum boundary condition,
in which the surface M appears explicitly. On the other hand, the
tin-foil boundary condition entails removal of the ∣M∣2 term from
Eq. (10).47,52 We now compare μex

t calculated using the GCMC with
vacuum and the tin-foil boundary conditions for symmetric 1:1 elec-
trolyte, with the theoretical result obtained using the Mean Spherical
Approximation (MSA) with the Carnahan–Starling (CS) expression
for the excluded volume interaction. The MSA + CS expression,
μex

t = μMSA + μCS, is exact for dilute electrolyte2,19,29,53–59 with

μMSA =
λB(
√

1 + 2κd − κd − 1)

d2κ
, (12)

μCS =
8η − 9η2

+ 3η3

(1 − η)3 , (13)

where η = πd3

3 ct , d is the ionic diameter, ct = c+ + c− is the total con-
centration of ions, and κ =

√
8πλBct is the inverse Debye length. In

simulations, we use a cubic cell of length 100 Å.
As expected, Fig. 1 shows that Eq. (10) with tin-foil boundary

condition results in a better agreement with the theoretical curve at
low concentrations of electrolyte. For larger simulation cells, the dif-
ference between vacuum and tin-foil boundary condition becomes
less important.

FIG. 1. Total excess chemical potential of symmetric 1:1 electrolyte calculated
using GCMC simulations with electrostatic energy given by Eq. (10) with M term
(vacuum boundary condition) and without M term (tin-foil boundary condition),
compared with the theoretical MSA + CS result.
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A. Method I
As discussed previously, we have two options for implementing

the Widom insertion in a system with Ewald summation. In the first
approach, we simply insert a new ion of charge Q at position ri. The
change in the electrostatic energy due to the interaction of this ion
with all the other ions inside the system and with their replicas is
then

ΔU = Qϕ(ri
), (14)

where ϕ(ri
) is the electrostatic potential at position of insertion

given by Eq. (8) without the M term for tin-foil boundary condition.

B. Method II
An alternative approach is to treat the inserted ion on the same

footing as all the other ions inside the simulation cell—replicating
it, along with all the other ions. In this case, the inserted ion will
also interact with its own replicas, leading to a diverging electrostatic
energy. The divergence appears in the first term of the expression
(6), which is no longer zero, since there is a net charge inside the
simulation cell. To overcome this difficulty, we introduce, together
with the test ion of charge Q, a uniform neutralizing background of
opposite charge density ρb(r) = −Q/V , which will also be replicated
together with the ions. Any periodic density function over a cubic
lattice can be written as

ρ(r) =
1
V∑k

ρ̃(k)eik⋅r , (15)

with a similar expression for the electrostatic potential. The Fourier
transforms of the electrostatic potential and of the charge density are

ϕ̃(k) = ∫
V

ϕ(r)e−ik.rd3r,

ρ̃(k) = ∫
V

ρ(r)e−ik.rd3r,
(16)

where V is the volume of the simulation cell. In particular, for a uni-
form background charge density, we obtain ρ̃b(k) = −Qδk,0, where
δ is the Kronecker delta. The electrostatic potential produced by the
background satisfies the Poisson equation

∇
2ϕ(r) = −

4πρ(r)
εw

. (17)

Substituting the Fourier representation of electrostatic potential and
of charge density into Eq. (17), we obtain

ϕ̃(k) =
4π
εw

ρ̃(k)
k2 . (18)

Finally, using the expression for the Fourier transform of the uni-
form background charge, we obtain the contribution that it produces
to the total electrostatic potential,

ϕb(r) = −
4πQ
Vεw
∑

k
eik.(r−ri) δk,0

k2 , (19)

where we have centered the background on the position of the
inserted ion. Adding this background potential to the potential pro-
duced by all N + 1 replicated ions, we see that the divergence in

the k = 0 term in expression (6) cancels exactly. There is, however,
now an additional term coming from the k → 0 limit of Eq. (19).
This term is proportional to (r − ri

)
2 and will cancel the same

term in Eq. (7) for the N + 1 particle system, resulting in the total
electrostatic potential of a system with a neutralizing background,

φ(r) =
∞
∑
k≠0

N+1

∑
j=1

4πqj

εwV ∣k∣2
exp[−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj

)]

−
N

∑
j=1

2πqj

3εwV
(r − rj

)
2
−

Q
εwVκ2

e

+
N+1

∑
j=1
∑

n
qj erfc(κe∣r − rj

− Ln∣)
εw∣r − rj∣

, (20)

where we have defined the j = N + 1 as our test ion with the charge
qN+1 = Q. Note that the second sum in Eq. (20) runs only over the
original ions present in the system.

Suppose we insert a test ions at position ri, together with the
associated neutralizing background, into an initially empty sim-
ulation cell, N = 0. The electrostatic energy of this system will
be

U0 =
Q
2

lim
r→ri
(φ(r) −

Q
∣r − ri∣

). (21)

Performing the limit, we obtain

βU0 = −1.418 648 739
α2λB

L
, (22)

where α is the valence of ion of charge Q = αq, where q is the pro-
ton charge, and λB = q2

/εwkBT is the Bjerrum length. Note that U0
does not depend on the damping parameter κe. Equation (22) is
the Madelung energy of a simple cubic lattice of ions of charge Q
in a neutralizing background. It is important to keep in mind that
Ewald sums are conditionally convergent and that the background
is assumed to be spherically symmetric with respect to the position
of the inserted ion. The energy U0 contains the electrostatic self-
energy of the background, the interaction energy of ion with the
background, and the interaction energy of ion with all of its images.

The change in the electrostatic energy of a charge neutral sys-
tem with N ions due to the introduction of a replicated test ion at
position ri and a spherical neutralizing background centered on this
ion is

ΔU = Qϕ(ri
) +

2πQ
3εwV

N

∑
j=1

qj
(ri
− rj
)

2
+U0. (23)

The first term in this expression is due to the interaction of ion Q,
inserted at positions ri, with the N ions of the original charge neu-
tral system and with their replicas. The electrostatic potential ϕ(ri

)

is given by Eq. (7). The second term is the interaction energy of the
original N ions with the spherical neutralizing background centered
on the inserted ion. The resulting quadratic potential results in a lin-
ear force produced by the background on each ion. The last term is
the interaction energy of the ion Q with its neutralizing background,
with its own replicas, as well as the self-energy of the neutralizing
background.
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The expression can be simplified yielding

ΔU = Q
∞
∑
k≠0

N

∑
j=1

4πqj

εwV ∣k∣2
exp[−

∣k∣2

4κ2
e
+ ik ⋅ (ri

− rj
)]

+Q
N

∑
j=1

qj erfc(κe∣ri
− rj
∣)

εw∣ri − rj∣
+U0. (24)

It is interesting to note that this expression does not depend on
M for either vacuum or tin-foil boundary condition. This is the case
only if the neutralizing background is centered on the inserted ion.

IV. RESULT
We now compare the predictions of the two Widom insertion

methods with the μt obtained using GCMC simulations. As was
discussed in the Sec. I, GCMC does not give us individual chem-
ical potentials of ions, but only the value of μt , which we will use
as a benchmark to judge the accuracy of the two Widom insertion
methods.

We start with symmetric 1:1 electrolyte. In Fig. 2, we present
the μex

t = μex
+ + μex

− = 2μex
+ = 2μex

− , obtained using the two Widom
insertion methods, compared with the results obtained using the
GCMC.

We see that method I results in a very significant deviation from
the benchmark GCMC simulation results, while method II is in good
agreement. Nevertheless, we see that, even for a fairly large simula-
tion cell of L = 200 Å, we have a significant scatter in the data points
even after using 50 000 samples to perform averages. On the other
hand, we obtain a smooth curve using GCMC already with L = 200 Å
and only 10 000 samples. In fact, with GCMC, we obtain the same
results even with a much smaller simulation cell of L = 100 Å. We
next repeat the calculations for asymmetric 1:1 electrolyte, with
cations of radius 2 Å and anions of radius 3 Å. In Fig. 3(a), we com-
pare the values of μex

t obtained using the two Widom methods with
the ones obtained using the GCMC. Once again we see that method
II is in much better agreement with the GCMC result. Fig. 4(a) shows

FIG. 2. Comparison of the total excess chemical potential μex
t obtained using the

two Widom insertion methods and the GCMC simulations. The results of method
I are shown with squares and method II with circles. The radii of positive and
negative ions are 2 Å.

FIG. 3. Comparison of μex
t obtained using method II with the GCMC for 1:1

electrolyte with cations of radius 2 Å and anions of 3 Å.

the slow convergence of the Widom insertion method as a function
of the number of samples, and Fig. 4(b) shows the convergence of
GCMC. In the case of GCMC, we have fixed the fugacity and cal-
culated the average number of particles inside the simulation cell
from which we obtain the average concentration. The convergence is
much faster for GCMC than for Widom insertion. As we increase the
size asymmetry between cations and anion even further, the excess
chemical potentials become non-monotonic functions of concentra-
tion (see Fig. 5). The reasonably good agreement between method II
and GCMC still persists, but the Widom data become noisier for the

FIG. 4. (a) Convergence of the chemical potential obtained using method II, for 1:1
electrolyte with cations of radius 2 Å and anions of 3 Å at concentration of 48 mM,
as a function of the number of samples used. The βμex

t converges to −0.32. (b)
Convergence of electrolyte concentration in mM, as a function of samples using
GCMC simulation with fugacity fixed at 5.9820 × 10−10 Å−9. With this value, we
obtain βμex

t = −0.32 and the concentration 47.4 mM. We see that convergence is
much faster for GCMC than for Widom insertion, both in terms of the CPU time,
since one can use a smaller simulation cell, and also in terms of the number of
samples needed to calculate the averages.
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FIG. 5. Comparison of μex
t obtained using method II with the GCMC simulation

results for 1:1 electrolyte with cation of radius 2 Å and anions of 4 Å. For large
size asymmetry between cations and anions, the chemical potential is no longer a
monotonic function of electrolyte concentration.

FIG. 6. Comparison of the excess chemical potential μex
t obtained using GCMC

simulations with Widom method II for size symmetric 2:1 electrolyte with ions of
radius 2 Å.

same number of samples. Finally, in Fig. 6, we compare method II
with GCMC for size symmetric 2:1 electrolyte, with ions of radius
2 Å. In this case, μex

t = μex
+ + 2μex

− . Again, we see a good agreement
between GCMC and method II.

TABLE I. Individual and total chemical potentials obtained using method II compared
with GCMCs results for 2:1 electrolyte.

c (mM) βμ++ βμ− βμ++ + 2βμ− βμt

10 −0.700 −0.189 −1.080 −1.030
60 −1.220 −0.342 −1.905 −1.945
100 −1.439 −0.386 −2.211 −2.222
145 −1.567 −0.407 −2.381 −2.437
172 −1.651 −0.421 −2.495 −2.526
202 −1.739 −0.430 −2.600 −2.615
252 −1.834 −0.433 −2.701 −2.722

To more clearly see the degree of agreement between the
Widom insertion method and GCMC, in Table I, we present the
individual chemical potentials of cations and anions of 2:1 elec-
trolyte calculated using method II. We also compare the resulting
values of μt with the ones obtained using GCMC. We see that
even with 50 000 samples, the agreement is only to two significant
figures.

V. CONCLUSION
We have explored the use of the Widom insertion method

for calculating the chemical potential of individual ions in com-
puter simulations with Ewald summation. Two approaches were
considered. In the first approach, an individual ion is inserted into
a periodically replicated overall charge neutral system represent-
ing an electrolyte solution. In the second approach, an inserted ion
is also periodically replicated, resulting in a macroscopic violation
of the overall charge neutrality. To overcome this problem, a neu-
tralizing background must be introduced simultaneously with the
ion. This results in a linear force that the background exerts on all
the ions. Comparing the results of the two methods, we find that
the second approach is in much better agreement with the bench-
mark GCMC simulations for the total chemical potential of the ions
μt . This is consistent with the results obtained using the minimum
image simulations, which were also found to require a neutralizing
background to improve convergence30,60 as well as with the simula-
tions of ionic solvation.61 We find that to be accurate: the Widom
insertion method requires very large simulation cells. Apparently,
for only very large cells, the contribution of the background to
the chemical potential becomes negligible. To produce reasonably
accurate values of the chemical potential of individual ions, a very
large number of samples must also be used. Therefore, in applica-
tions that do not require knowledge of the individual ionic chemical
potentials, but only of μt , the GCMC approach is by far more
practical.

The significant difference between Widom’s methods I and II
is quite surprising. Its origin can be traced back to the careful limit
of the k = 0 term of Ewald potential [see Eqs. (7) and (8)]. The limit
results in a term quadratic in ion positions as well as M dependent
contribution, Eq. (8). These terms are usually neglected appealing to
tin-foil boundary condition. However, tin-foil will only remove the
M dependent term, while the quadratic term still remains. Indeed,
the quadratic term is of fundamental importance when studying
non-neutral systems, such as ions confined between like charged
plates (see, for example, Ref. 45). It is precisely the quadratic term
that leads to the deviation between Widom’s methods I and II. When
using Widom method II, the quadratic term cancels precisely by
the interaction with a neutralizing background that is introduced
together with the inserted ion [see Eq. (23)].
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