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The effect of an initial envelope mismatch on the transport of bunched spherically symmetric

beams is investigated. A particle-core model is used to estimate the maximum radius that halo par-

ticles can reach. The theory is used to obtain an empirical formula that provides the halo size as a

function of system parameters. Taking into account, the incompressibility property of the Vlasov

dynamics and the resulting Landau damping, an explicit form for the final stationary distribution

attained by the beam is proposed. The distribution is fully self-consistent, presenting no free fitting

parameters. The theory is used to predict the relevant beam transport properties, such as the final

particle density distribution, the emittance growth, and the fraction of particles that will be expelled

to form halo. The theoretical results are compared to the explicit N-particle dynamics simulations,

showing a good agreement. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907198]

I. INTRODUCTION

Despite the existence of various known equilibrium sol-

utions for the transport of intense beams,1,2 in practice, it is

impossible to create and inject a beam that fully satisfies one

of such equilibria. As a consequence, the beam distribution

will start to change as it propagates, seeking a more stable

stationary state.3 Generally, this process is very detrimental

because it diminishes the beam quality by producing emit-

tance growth and halo formation. Since this, in general, can-

not be prevented, it is crucial to have a method to quantify

how much the beam will deteriorate, allowing to accommo-

date this information in the machine design. This, however,

requires a precise knowledge of the final stationary state that

will be achieved by the relaxed beam.

One might expect that the beam will relax to thermody-

namic equilibrium with a Boltzmann-Gibbs distribution.4,5

In general, however, this is not the case. The difficulty is that

unlike systems with short range forces, beam particles inter-

act through a long-range electromagnetic field. In the ther-

modynamic limit, where the number of particles in the beam

goes to infinity, N!1, while keeping the total charge con-

stant, the transport becomes collisionless and is exactly

described by the Vlasov equation, which has an infinite num-

ber of stationary solutions.1,2 In fact, any distribution func-

tion that depends only on the constants of motion of the

single particle dynamics is a stationary solution of the

Vlasov equation. The problem is then to choose the appropri-

ate stationary solution out of an infinite set, which is a very

difficult task. Unlike the thermodynamic equilibrium of short

range interacting systems, the stationary state of the beam

will depend explicitly on the initial particle distribution. In

this respect, different phenomena, such as, envelope mis-

match,6–17 off-axis motion,13,18–22 beam distribution nonuni-

formities,23–30 and forces due to the surrounding

conductors,31–33 have been investigated as the precursors of

the beam relaxation. Among these phenomena, the one that

has attracted most attention is the envelope mismatch, which

arises from the unbalance between the external focusing

force and the defocussing space-charge repulsion. The enve-

lope mismatch can lead to large amplitude oscillations.

When this happens, some of the beam particles can become

resonantly excited, gaining large amounts of energy from the

coherent density oscillations.6 The resulting particle evapo-

ration will lead to the formation of a halo that will surround

the central core. The evaporative cooling produced by the

halo formation dampens out the oscillation of the core lead-

ing to a stationary particle distribution. The resulting core-

halo distribution is composed of a dense core of low energy

particles and a low density halo of hot particles. Models

based on the core-halo distribution have been successfully

used to predict the final stationary state and the correspond-

ing emittance growth and halo formation.14,15,34–36 The anal-

ysis done so far, however, was performed only for infinitely

long, unbunched beams.

In this paper, we will investigate the effect of the enve-

lope mismatch on the transport of a bunched beam. In partic-

ular, we will concentrate on the case, where the external

focusing is isotropic and the beam has a spherical symmetry.

This assumption is used to simplify the calculations, but is

also relevant for systems of practical interest37 and is

expected to give a fair qualitative insight to the more general

anisotropic focusing problem. We will first use a reduced

particle-core model to determine the maximum radius

attained by the halo particles that are resonantly excited by

the bulk beam oscillations. An empirical law that relates the

halo size with the relevant parameters of the system will

then be obtained. Finally using the proposed core-halo distri-

bution, we will predict the stationary state to which a

bunched beam will evolve and calculate the corresponding

emittance growth. All the theoretical results will be tested

against the N-body dynamics simulations.a)thalestr@gmail.com
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The paper is organized as follows. In Sec. II, we intro-

duce the model for the spherically symmetric bunched beam

and the equations that describe its evolution. In Sec. III, we

derive the corresponding particle-core model and use it to

determine an empirical formula that provides the halo size as

a function of the relevant parameters of the system. Based on

the dynamical scenario that leads to the relaxation of an ini-

tially mismatched beam, in Sec. IV, we propose a theoretical

model for the final stationary state attained by the beam. In

Sec. V, we present the predictions of the model and compare

them to N-particle dynamics simulations. Finally, in Sec. VI,

we present the conclusions of the paper.

II. MODEL

We consider a nonrelativistic spherically symmetric

bunched charged particle beam, whose center is propagating

with a constant axial velocity Vb along the z-axis of a labora-

tory frame. The beam particles are subject to an external iso-

tropic focusing force that points towards the center of the

beam and that tends to balance the repulsive Coulomb self-

repulsion. The dynamics of each particle is governed by2

d2r

ds2
¼ �j r�rw; (1)

where s¼Vbt is the beam center axial position that plays the

role of a scaled time variable, r ¼ ðx; y; ~zÞ is the displace-

ment vector from the beam center, ~z ¼ z� s is the axial dis-

placement, and the parameter j measures the strength of

focusing force in the smooth-focusing approximation.2 In

Eq. (1), w is the normalized self-field potential that satisfies

the Poisson Equation

r2w ¼ � 4pK

N
n r; sð Þ; (2)

where nðr; sÞ is the beam density, K ¼ q2N=mV2
b is a param-

eter that measures the beam intensity, and N ¼
Ð

ndr is the

constant number of particles in the bunch.

For the sake of simplicity, let us assume that the beam is

injected at z¼ 0 with an uncorrelated uniform distribution in

both position and velocity. This distribution corresponds to a

spherically symmetric waterbag in phase space given by

f0ðr; vÞ ¼ g0 Hðrm � rÞHðvm � vÞ; (3)

where g0 ¼ 9N=16p2r3
mv3

m is the normalization constant that

measures the density of the initial distribution in the phase

space, HðxÞ is the Heaviside step function, v ¼ jdr=dsj is the

magnitude of the velocity, and rm and vm are the maximum

values of r and v for the initial beam distribution. It is worth

mentioning that the theory that will be presented here to

determine the final stationary state can be generalized to

more complex initial distributions by approximating them by

a number of waterbag distributions.34 Moreover, studies per-

formed for unbunched beams have shown that even a single

waterbag distribution can already provide a very good esti-

mate of the stationary distribution and of emittance growth

for more complex initial conditions.15,35 Taking into

account, the dynamical equation for each particle, Eq. (1),

and the fact that the beam transport is essentially collision-

less, the beam distribution function will evolve from f0
according to the Vlasov equation

@f

@s
þ v � rf þ �j r�rwð Þ � rvf ¼ 0: (4)

By integrating the distribution function over the velocity

space, one obtains the beam density nðr; sÞ ¼
Ð

fdv, which is

then substituted in Eq. (2) to obtain a closed set of equations

for the beam evolution. The Vlasov equation (4) states that

the total derivative of f ðr; v; sÞ with respect to the time vari-

able s vanishes. This means that the particle distribution

evolves in the phase space as an incompressible fluid.

Therefore, the maximum phase space density throughout the

evolution cannot exceed g0, which is the value of the initial

distribution in Eq. (3). This is the fundamental feature of the

beam dynamics that will be used to construct the distribution

function for the final stationary state.

Besides the number of particles in the bunch N, another

quantity that is conserved along the transport is the average

energy per particle. It is given by2

E ¼ hv
2i

2
þ jhr2i

2
þ 1

2K

ð1
0

@w
@r

� �2

r2dr; (5)

where h� � �i ¼
Ð
� � � fdvdr represents the average over the dis-

tribution, and one readily recognizes the contributions from

the kinetic, focusing force, and self-field energies, respec-

tively. For the injected beam of Eq. (3), the average energy

per particle is readily calculated to be

E0 ¼
3v2

m

10
þ 3jr2

m

10
þ 3K

5rm
; (6)

so that E¼E0 throughout the transport.

III. PARTICLE-CORE MODEL AND HALO SIZE

The main mechanism for the halo formation in mis-

matched beams is a resonant coupling between the single

particle orbits and the bulk oscillations of the beam.6 A

widely used tool to estimate the size (maximum radius) of

the halo is the, so-called, particle-core model, in which a test

particle trajectory is driven by the bulk (core) oscillations

described by the envelope equation. For the spherically sym-

metric beam considered here, the envelope of the beam is

related to its RMS size by rb ¼ ½5hr2i=3�1=2
, where the “5/3”

factor is introduced so that rb¼ rm at s¼ 0 for the initial dis-

tribution of Eq. (3). Taking two derivatives of rb with respect

to s, using Eq. (1), and conveniently rearranging the terms,

we can write

d2rb

ds2
¼ �j rb �

5

3

hr � rwi
rb

þ �
2

r3
b

; (7)

where

� ¼ 5

3
hr2ihv2i � hr � vi2
� �1=2

; (8)
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is the emittance of the beam. Substituting the initial distribu-

tion of Eq. (3) in (8), we readily find that the emittance of

the injected beam is �0 ¼ rmvm. In general, the emittance is a

function of s and, therefore, changes as the beam propagates.

However, in order to obtain a closed equation for the enve-

lope evolution, in the particle-core model it is assumed that

the emittance is a conserved quantity.

In the case of axisymmetric unbunched beams, the self-

field contribution to the envelope equation [second term on

the rhs of Eq. (7)], can be computed exactly because it is in-

dependent of the specific form of the beam density.2 This,

however, is not the case for the bunched beams and a specific

density has to be assumed in order to evaluate this term. To

be consistent with the initial distribution, we will assume for

the purpose of deriving the envelope equation that the beam

core density remains uniform with particles distributed up to

r¼ rb, along the transport. Using such density profile in the

Poisson equation (2), the self-field potential due to the core,

wcore, can be readily computed. Its gradient reads

rwcore ¼
�Kr=r3

bðsÞ if r � rbðsÞ;
�Kr=r3 if r > rbðsÞ:

(
(9)

Substituting rw ¼ rwcore in (7), we obtain the desired

closed equation for the envelope

d2rb

ds2
¼ �j rb þ

K

r2
b

þ �
2
0

r3
b

: (10)

It is worth noting that two main assumptions have been used

to derive Eq. (10): the conservation of emittance and of the

beam core uniformity. Although these may seem as very re-

strictive approximations, they are well justified if one only

wants to describe the trajectory of the particles that will

reach the outermost portion of the halo, which is exactly the

aim of the particle-core model. As a matter of fact, such par-

ticles are expected to be resonantly driven in the very begin-

ning of the beam evolution, when the envelope oscillations

are at their maximum amplitude and have not yet been

severely damped by the emittance growth. Moreover,

because these particles reach very large radii, they spend

most of their time away from the beam core and are very lit-

tle affected by its evolution.

It is clear from Eq. (10) that there is a competition

between the external focusing force and the defocusing

forces due to space charge and emittance. Matched beams

are those for which these forces cancel each other and the en-

velope remains constant along the transport. Equating

d2rb/ds2¼ 0 in Eq. (10), we obtain an algebraic equation that

defines the matched beam envelope rbm

jr4
bm � Krbm � �2

0 ¼ 0: (11)

Despite being a fourth-order polynomial equation, for any

given set of parameters j, K, and �0, Eq. (11) presents only

one physical solution corresponding to a real positive rbm. In

general, however, the initial envelope rb(0)¼ rm will differ

from rbm. In such cases, the envelope will start to oscillate

according to Eq. (10) and may resonantly couple to single

particle trajectories. To investigate this, in the particle-core

model, we numerically integrate the trajectories of test par-

ticles that evolve according to Eq. (1), but where the self-

field gradient rw is substituted by the modeled core field

rwcore of Eq. (9). This leads to a low-dimensional dynamical

system that can be analyzed with the aid of stroboscopic

plots,8,38 where the test particle phase space positions are

plotted at the periodicity of the mismatched envelope oscilla-

tion. Note that by conveniently scaling rb and s to ð�2
0=jÞ

1=4

and j�1=2, respectively, the system is completely determined

by two dimensionless parameters: a mismatch parameter

l�rbð0Þ=rbm and a beam intensity parameter f�K= ðj�6
0Þ

1=4
.

An example of a stroboscopic plot is presented in Fig. 1 for

f¼1 and l¼1.6. In the figure, we see the formation of a

large resonant island with a stable fixed point located at

r/rbm�2.0 and dr/ds¼0. The separatrix of this island (thicker

blue dots) is responsible for the resonant excitation of par-

ticles just outside the beam core to the halo.6 Once these par-

ticles have been excited, their trajectories become nearly

stationary because they are very insensitive to the evolution

of the core that occurs as the beam propagates. Therefore, we

can estimate the halo size rh in the full N-particle system by

computing the maximum radius of the separatrix. In the case

of Fig. 1, we find r/rbm�3.7.

Although the particle-core model allows for the estimate

of the halo size without the need to solve the full N-particle

dynamics, it still requires a numerical integration of coupled

nonlinear differential equations. Given the relevance of the

halo size for practical purposes, it is desirable to have an

explicit expression for rh as a function of the parameters of

the system. An empirical method to accomplish this was pro-

posed in Ref. 8 for the case of axisymmetric unbunched

beams. Based on a dimensional analysis, it was observed

that the dependence of the halo size on the system parame-

ters is of the form rh=rbm ¼ f ðlÞ, where the function f(l)

is determined empirically. Adopting the same strategy for

the case of spherically symmetric bunched beams, we use

the particle-core model to calculate rh for different values of

FIG. 1. A stroboscopic plot of test-particle trajectories obtained using the

particle-core model for the choice of parameters f¼ 1 and l ¼ 1:6. The tra-

jectories are plotted each time the envelope reaches a minimum. The thick

blue dots correspond to the separatrix that is responsible for the evaporation

of particles that form halo. The maximum radius achieved by the most ener-

getic test particle is r � 3:7rbm, and serves as an estimate for the halo size rh.
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the dimensionless parameters f and l, and plot the ratio

rh/rbm vs. l. The results are presented in Fig. 2. We see that

all the data for various values of f collapse onto the same

curve that is well described by a straight line

rh

rbm
¼ Alþ B; (12)

where the coefficients are A¼ 1.784 and B¼ 0.7931. This

simple equation provides us with a very accurate estimate of

the extent of the halo for bunched beams. Note that although

f does not explicitly appear in Eq. (12), the halo radius rh

does depend on the beam intensity, initial emittance, and fo-

cusing strength through the matched beam envelope rbm

given by Eq. (11).

IV. FINAL STATIONARY STATE

As discussed in the previous sections, the main mecha-

nism for the relaxation of the initially mismatched beams is

the resonant coupling between the envelope oscillations and

the single particle trajectories. Using the particle-core model

of Sec. III, we saw that the beam particles can gain signifi-

cant energy from the envelope oscillations, leading to the

formation of halo. However, this simple model neglected the

fact that evaporation of particles must also affect the dynam-

ics of the core. From energy conservation, one can envision

that as some of the particles gain energy, the core oscillation

have to dampen out. In fact, as the halo is being formed, the

particles that remain in the core have to lose energy and

should condense to the lowest energy states. In principle,

one might expect that, in this process, the core will eventu-

ally collapse to form a dense condensate at the lowest energy

point of the phase space. The incompressibility requirement

imposed by the Vlasov dynamics, however, prevents this

from taking place—the density in the phase space cannot

exceed that of the initial distribution. Hence, the lowest

energy core consistent with the initial condition, Eq. (3),

must be a waterbag distribution in energy with the phase

space density g0, which extends from the minimum energy

up to the Fermi energy eF that is yet unknown. We refer to

the Fermi energy because the core distribution resembles

that of a fully degenerate Fermi gas. The incompressibility

of the phase space imposed by the Vlasov dynamics plays

the role of the exclusion principle. Taking all these into

account, we propose that the final stationary state of a

bunched beam has a distribution function of the form

fs ¼ g0½HðeF � eÞ þ vHðeh � eÞHðe� eFÞ�; (13)

where

e r; vð Þ ¼
v2

2
þ jr2

2
þ ws rð Þ; (14)

is the single particle energy and ws is the corresponding self-

field potential. In Fig. 3, we illustrate the phase space distri-

bution described by fs. The first term inside the square

bracket of Eq. (13) represents the core distribution of low

energy particles with the phase space density g0. The second

is the halo contribution, which extends from eF to the halo

energy eh, which corresponds to the maximum energy that a

particle can gain through the resonant coupling with the mis-

matched envelope oscillations. From the knowledge of the

halo size rh given by Eq. (12), this energy can be readily

computed as eh ¼ eðrh; 0Þ ¼ jr2
h=2þ wsðrhÞ. Based on the

previous results obtained for various long range interacting

systems,36 we assume that the halo distribution is also uni-

form, but with a much lower phase space density g0v, with

v� 1. Hence, the stationary distribution of Eq. (13) has

only two yet undetermined parameters, namely, eF and v.

These are computed by imposing the conservation of the

number of particles in the bunch
Ð

fsdrdv ¼ N and of the av-

erage energy per particle obtained by calculating E in Eq. (5)

for the distribution fs(r,v) and requiring it to be equal to the

initial energy E0 of Eq. (6). We now have a self-consistent

theory that predicts the stationary state to which a bunched

beam will relax. Note that fs(r,v) only depends on the phase

space coordinates through the single particle constant of

FIG. 2. Ratio between the halo size and the matched radius vs. the mismatch

parameter as obtained from the particle-core model for different values of f
(symbols). We see that the dependence is well approximated by the linear

function of Eq. (12), shown by the solid line, irrespective of the value of f.

FIG. 3. Schematic of the phase space corresponding to the stationary distri-

bution of Eq. (13). The core particles are distributed up to the Fermi energy

eF with phase space density g0 of the initial distribution, Eq. (3). The halo is

also uniformly distributed in the phase space, but with a much lower density

g0v with v� 1. It extends from eF to the halo energy eh. The maximum ra-

dius attained by the core particles, rc, and the halo particles, rh, are directly

related to eF and eh, respectively.
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motion eðr; vÞ and is, therefore, a stationary solution of the

Vlasov equation.

To explicitly calculate the particle distribution of a fully

relaxed beam, we need to obtain the stationary self-field

potential. To this end, we integrate fsðr; vÞ with respect to ve-

locity to obtain an expression for the stationary beam density

as function of ws. It reads

ns rð Þ ¼ 2
7
2pg0

3

"
vH rh � rð Þ eh �

jr2

2
� ws rð Þ

� �3=2

þ 1� vð ÞH rc � rð Þ eF �
jr2

2
�ws rð Þ

� �3=2
#
; (15)

where rc is the maximum radius attained by the core particles

(see Fig. 3), which is related to the Fermi energy by eF

¼ eðrc; 0Þ ¼ jr2
c=2þ wsðrcÞ. Substituting this into Poisson

Equation (2), we obtain a closed ordinary nonlinear differen-

tial equation for the stationary self-field potential

d2ws

dr2
þ 2

r

dws

dr
¼ � 4pK

N
ns rð Þ; (16)

which has to be solved numerically subject to the boundary

conditions dws=drðr ¼ 0Þ ¼ 0 and wsðr !1Þ ¼ 0. Once

the solution to Eq. (16) is known, we can substitute it back

in Eq. (13) and compute the corresponding number of

particles and the average energy per particle. The problem

then reduces to finding the correct values of eF and v
that satisfy the conservation of these quantities. To solve

this problem, we used an iterative Newton-Raphson

method.

V. NUMERICAL RESULTS

In order to test the theory, we performed N-particle

dynamics simulations of the beam transport. A spherical

symmetry of the charge distribution allows us to use the

Gauss law, so that the field at a certain point of radius r is

determined only by the number of particles within this ra-

dius.7 This method not only leads to a significant speed up

of the simulations, but also avoids the effects of collisions

between the individual particles, in a closer agreement

with the Vlasov dynamics. In the simulations, N¼ 5000

particles are launched according to the initial distribution

of Eq. (3). As the simulation evolves, we continuously

monitor the emittance of the beam. When its growth satu-

rates, we consider that the beam has reached a stationary

state.

In Fig. 4, we compare the stationary density distribu-

tion obtained using N-particle dynamics simulations (dots)

with the density distribution predicted by the theory (solid

curve), for l¼ 1.6 and two different values of f. In panel

(a), we consider a case of small space charge, with f ¼ 0:1.

The figure shows a good agreement between the simulation

and theory. Overall, both the core and the halo are well

described by the theory. This is particularly the case for

larger r, which correspond to the more energetic halo par-

ticles that are the most responsible for the emittance growth

and for possible particle losses during the transport. The

only significant discrepancy is at the border of the core

(r/rc¼ 1.0), which is not as sharp as predicted by the theory.

This suggests that the core particles do not completely

freeze into the lowest energy states, but can be excited

somewhat above the Fermi energy.15 In panel (b), we con-

sider a more space-charge dominated beam, with f ¼ 1:0.

Again the agreement is quite good; however, there is an

increased discrepancy near the core border, as compared to

the lower space charge case of panel (a). Nevertheless, the

particle distributions both in the core and the halo are still

quite well described by the theory.

Generally, the degradation of a mismatched beam is

measured by the emittance growth, which occurs as the

beam relaxes. Since the core-halo stationary distribution

fsðr; vÞ carries all the information about the final stationary

state, we can readily compute its associated emittance by

using Eq. (13) to calculate the averages in Eq. (8). Taking

the ratio of the final and initial emittance, we can theoreti-

cally predict the emittance growth during the relaxation pro-

cess. In Fig. 5, we present the theoretical prediction of the

emittance growth (solid curve) as a function of the mismatch

parameter l for f ¼ 0:1 [panel (a)] and f ¼ 1:0 [panel (b)].

In order to test the theory, we have run several N-particle

simulations for different parameter values and have com-

puted the final emittance growth. The results are shown by

the symbols in Fig. 5. A strikingly good agreement is found

between the theory and the simulations. The good agreement

FIG. 4. Stationary state beam density distribution obtained using the theory

(solid curve) and the N-particle dynamics simulations (symbols). The pa-

rameters are g ¼ 1:6; f ¼ 0:1 in (a) and g ¼ 1:6; f ¼ 1:0 in (b).

023102-5 Corrêa da Silva et al. Phys. Plasmas 22, 023102 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.54.45.221 On: Tue, 03 Feb 2015 20:05:10



between the theory and the simulations is a consequence of

the fact that the emittance growth depends mostly on the

halo particles, which are very well described by the present

theory, as shown in Fig. 4.

Even though the halo particles play such a crucial role

for the beam transport; in practice, it is not easy to explic-

itly define the “halo.”17 In this regard, the proposed station-

ary distribution, Eq. (13), presents an interesting feature

that the core and the halo contributions are clearly distin-

guishable. In particular, the halo particles are those whose

single particle energies lie in the range between eF and eh.

Therefore, we can have a simple access to the full charac-

terization of halo properties. For instance, we can estimate

the fraction of particles that evaporate to the halo during the

relaxation process. In our model, this can be determined by

computing

Nh

N
¼ g0v

ð
H eh � eð ÞH e� eFð Þd3rd3v: (17)

In Fig. 6, we show the results obtained as a function of

the mismatch parameter l for both f ¼ 0:1 (solid line) and

for f ¼ 1:0 (dashed line). As expected, the halo fraction

increases with the mismatch l. However, something less in-

tuitive is the fact that Nh/N decreases with the increase of

space charge. This trend has already been observed in the

case of unbunched beams.35 Due to the difficulties men-

tioned above, we restrict our analysis of the halo fraction to

the model, which has been proven very accurate against

numerical results for beam density and emittance growth

(see Figs. 4 and 5).

VI. CONCLUSIONS

We have investigated the effect of an initial envelope

mismatch on the transport of bunched beams. For now, we

have concentrated on the case of spherically symmetric

beams. Using the particle-core model, we first studied the

resonant coupling between the beam particle trajectories and

the envelope oscillations. This low dimensional model

allowed us to estimate the maximum distance from the cen-

ter of the core that a resonant particle can reach. This then

defined the halo radius rh, for which an empirical formula

was derived. Taking into account, the constraints imposed on

the beam evolution by the Vlasov dynamics, we then pro-

posed a form for the final stationary distribution to which a

bunched beam will relax. This core-halo distribution is fully

self-consistent, presenting no free fitting parameters. It also

contains all the information about the final stationary state,

and can be used to predict relevant properties of the beam

transport such as the final density profile, the emittance

growth, and the fraction of particles that will be ejected from

the core to form halo. The theory was tested against

N-particle dynamics simulations, showing a good agreement.
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