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Abstract 

The behavior of a neutral polyampholyte, PA, chain with N monomers is analyzed in the 
framework of Flory's affine network theory of rubber elasticity. The PA chain, in addition to the 
neutral monomers, also contains an equal number of positively and negatively charged monomers. 
In order to account for the electrostatic interaction, the Debye-H/ickel theory augmented by the 
Bjerrum's ideas of dipolar formation is used. We find that at high temperatures the chain exists 

1 (microelectrolyte). in a dilute collapsed state with a radius of gyration scaling as N ~ with v = 
For low temperatures the PA resembles an affine network (microgel) with v -- 2. In the 0 
solvent, v = 3. If the quality of the solvent is decreased, the microgel undergoes a collapse 
transition into a compact globular state. The high and low temperature regimes are separated by 
a first-order phase transition. The full phase-diagram of the PA is calculated as a function of 
temperature and quality of the solvent. 

I. Introduction 

The study o f  physical properties of  neutral polymers has received a lot o f  attention in 
the last two decades. In particular, it was found that these macromolecules can exhibit 

a transition from an extended coil to a compact globular state, and that this transition 

is related to the folding transition in proteins [1]. 

From a theoretical point o f  view, this transition is well understood in terms of  

scaling laws that associate the coil-globular transition with a tricritical behavior similar 

to the one present in magnetic systems. Within this approach, conformations o f  the 
homopolymers are characterized by a critical exponent v, which relates the root-mean- 

square size o f  the polymer with the number of  monomers, N ,  R e  ~ a N  v, where a is the 

average separation between the monomers. For good solvents, the repulsive excluded 

volume interaction between the monomers leads to v ~ 0.588, in three dimensions. In 
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a poor solvent, there is an effective attractive attraction between the monomers which 
leads to the collapse of the polymer and to v = 1. A change in temperature or the 
addition of a specific solvent can induce a transition between these two conformations. 
At the transition temperature, To, v = ½ [4, 5]. 

In many situations of chemical and biological importance some of the monomers of a 
polymer can become ionized. The resulting Coulombic interaction between the charged 

monomers strongly effects the conformational properties of a polymer. In this case, the 
standard methods developed for the study of homopolymers become inapplicable. 

There are two distinct classes of charged polymers: polyelectrolytes and polyam- 
pholytes. Polyelectrolytes are polymers made of charged monomers all of which carry 
a charge of the same sign. A common example of a polyelectrolyte is a DNA dissolved 
in water. In these molecules the strong Coulombic repulsion between the charges along 
the chain forces the polyion to assume an extended "rodlike" configuration [6-10] . 

Polyampholytes (PA) are polymers that, besides neutral monomers, also contain a 
sequence of positively and negatively charged groups. Since proteins are a special 
class of PA, it is important to obtain a deeper insight into the physics of these complex 
molecules. Due to the difficulties of taking a proper account of the Coulomb interactions 
present in the PA, our understanding of this class of polymers is rather poor. 

The first attempt at describing the coil-globule transition in a neutral PA (equal 
number of positive and negative monomers) was carried out by Edwards et al. [11]. 
They argued that the net electrostatic energy of a PA molecule is attractive and forces 
the molecule to be more compact. This, however, is counteracted by a reduction in 
entropy of the chain due to the confinement within a sphere smaller than its natural 
radius. This competition leads to a transition from an extended coil to a "dilute globular 
state". The dilute globular state, or a microelectrolyte, is characterized by a density 
smaller than that of the collapsed state of a chain made of monomers whose groups 
interact only through a short-range force. 

Higgs and Joanny [12] extended the Edwards et al. theory, including repulsive forces 
due to the excluded volume interactions. For dilute solvents, they found that small 
chains, with N < Nl exist in an extended, or a coil state depending on the quality 
of the solvent, while very long chains, with N > N1, are always collapsed. In this 
last case, small parts of the chain, the blobs, with the number of monomers less than 
N1, retains the coil configuration, while on larger scales the globule is composed of a 
closely packed array of blobs. 

On the basis of Monte Carlo simulations, Victor and Imbert [13] questioned the 
conclusions reached by Higgs and Joanny. They found that a PA carrying alternating 

positive and negative charges exhibits an usual coil-globule transition as the tempera- 
ture decreases. This transition has all the properties of a regular 0 point. 

Wittmer et al. [14] pointed that the Debye-Hfickel (DH) theory cannot be applied 
to an alternating PA, which they showed behaves as a "microdielectric" instead of 
microelectrolyte. As a result, they found that an alternating PA is similar to a neutral 
polymer, and the only role of electrostatic interactions is to renormalize the excluded 
volume contribution to the free energy. 
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There are two possible classes of a neutral PA's: statistically neutral [15-17] or 
physically neutral [12]. In the first case, where the neutrality is only obtained when the 
average is done over the charge distribution, upon increasing the temperature, a swelling 
of the chain is observed in Monte Carlo (MC) simulations. This can be explained by 
the presence of a net charge of O(qx/~), where q is the monomer charge and N is the 
number of monomers on the chain. This produces charge fluctuations in different parts 
of the chain. The equally charged domains repel each other, forcing the chain to swell. 
The PA is stretched by the non-extensive energy cost of typical charge fluctuations 

[161. 
In the case of physically neutral non-alternating PA, the situation remains unclear. In 

this paper, we shall analyze this case in the framework of the DH theory, combined with 
the Bjerrum's idea of ion association [18, 19], and with Flory's affine network theory 
[5]. We shall explore the question of existence and nature of possible conformational 
phase transitions in a neutral polyampholyte. 

In order to address this question we will show that strong electrostatic interaction 
between monomers leads to a formation of dipoles (or intermolecular bridges) [20]. 
This has two major effects: first, since the total number of monomers is fixed, each 
pair formation implies a decrease in the DH attractive energy; second, it transforms 
the linear chain into a network of functionality 4. We will show that this implies that 
in the low temperature region, where the dipoles are most favorable, PA resembles an 
affine network, or a microgel [20]. As the temperature is raised, there is a collapse 
transition from this state to a dilute globular state usually called microelectrolyte [20]. 
This behavior is very different from the one found for usual neutral polymers, where 
short-range interactions play the dominant role. The nature of the microgel state will 
be investigated. Different scaling regimes for the low temperature state are obtained as 
a function of the quality of solvent. 

The paper is organized in four sections. In Section 2 we first give a brief review 
of the Flory-Huggins model for an uncharged single chain. Then we summarize the 
DH theory augmented by the Bjerrum's idea of ion association for a simple electrolyte. 
Finally, in Section 3, we present our model that combines both ideas within the Flory's 
affine network theory. From this analysis, two conditions for the thermal equilibrium 
of the chain emerge. On the basis of these equations, we derive the full phase-diagram. 

Various scenarios for different values of parameters of the model are then discussed. 
Conclusions are presented in Section 4. 

2. Introductions to the model 

Our model for a polyampholyte combines the concept of an affine network of rubber 
elasticity with a theory of simple electrolyte. In order to give a clear presentation we 
first review the two theories: the Flory-Huggins-De Gennes [2-4] theory of coil-globule 
transition in a neutral polymer and the theory of three-dimensional (3d) Coulomb gas 
[18-21]. 
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2.1. An uncharged chain 

A simple model for a single polymer, introduced by Flory and Huggins and later 
modified by De Gennes [2-4, 22], assumes that a chain is made of N monomers of 
diameter a. If R measures the mean end-to-end distance occupied by the polymer, 
one can define the volume of a polymer as V = 4nR3/3, and the reduced density 
of monomers, p* = pa 3, where p - 3N/(4rcR3). Here, R is usually called radius o f  

gyration of the polymer. 
The free energy of this system would contain, in principle, two contributions: an 

attractive term due to the presence of the chain connecting the monomers and a re- 
pulsive term due to the excluded volume repulsion. The attractive force resembles the 
elastic interaction present in a strand of rubber and is, consequently, given by [2-5] 

R 2 
~Fcl ~ ~ - .  (1) 

For long chains, this radius is assumed to scale as 

R ~ aN  v . (2) 

If the chain is made of non-interacting particles, the elastic contribution to the free 

energy given by Eq. (1) has a nontrivial thermodynamic limit, (N ~ co) only if R 
scales with v = ½. The same behavior is also obtained for the end-to-end distance of 
a random walk [3, 4, 22]. 

In a real chain, however, the monomers interact between each other, and with the 
solvent. The interaction between monomers is due to the fact that no two monomers 
can occupy the same position in space. This leads to a repulsive contribution to the 
free energy. The monomer-solvent interaction can either be attractive or repulsive 
depending on the quality of solvent. If the solvent is good, its particles are attracted 
by the monomers, which leads to an effective repulsion between two different parts 
of the chain. In this case, the free energy due to the monomer-monomer and the 
monomer-solvent interactions can be written as a virial expansion given by 

flFac ~ ½W1Np + ½W2Np 2 . (3) 

The first term in Eq. (3) accounts for the two-body repulsive (W1 > 0, in a 
good solvent) interaction, while the second one represents the three-body contribution 

(W2 > 0, always). 
Now, the free energy, obtained from adding the elastic and the hard core contribu- 

tions, has a well defined minimum if the radius of gyration scales like Eq. (2) with 
v = ~, indicating that the selfavoiding polymer is more stretched than a coil, i.e., is in 
an extended state [22-24]. 

If  the solvent is bad, its particles repel the monomers and thus forcing them closer 
together, leading to an effective attraction. This effect can in principle be represented 
by an attractive interaction, ~(T),  that renormalizes the coefficient of the two body 
term, 1~'1 = WI - -  S(T). 
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At high temperature, the polymer configurations are still dominated by the strong 

excluded volume interaction, W1 and, consequently, the second virial coefficient is 
positive. For long chains the elastic term is balanced by this repulsive interaction and 
the size of the polymer scales as in a good solvent 

R ,,~ a N  3/5 . (4) 

As the temperature is decreased, the value of ~ increases and, consequently, the 
second virial coefficient, WI, becomes zero or even negative. When W1 = 0, the third 
virial term has to be included. In this case, the three-body term balances the attractive 
elastic contribution and the polymer behaves like a coil with 

R ~ a N  1/2 . (5)  

At lower temperatures, the interactions between two monomers become attractive. 
Competition between the two-body and the three-body terms leads to a collapsed struc- 
ture with 

R ,~ a N  1/3 . (6) 

Of course, this picture is valid only if the interactions between the monomers are 
of elastic or short ranged nature. In the next section we will introduce another type of 
interaction that will modify significantly the behavior described above. 

2.2. A n  electrolyte  

Before proceeding any further with the polymer analysis, we shall review the results 
for the phase separation in a restrictive primitive model (RPM) of an electrolyte [21]. 
The model consists of N = p V hard spheres of diameter a, where half of  the particles 

carry positive charges +q and the other half carry negative charges -q .  The whole 
system is confined in a volume V. The solvent is treated as a uniform medium of a 
dielectric constant D. The interaction potential between two ions ( i , j )  is 

qiqj  rij >~a, 
(~ij -~- Dr i j  (7) 

(x), rij < a .  

The Helmoltz free energy of this system exhibits an attractive electrostatic contribu- 
tion due to the charge density fluctuations. For the RPM, this energy, in the leading 
order, can be approximated by the Debye-Hfickel limiting law given by 

t¢ 3 
flFLL = -- V 12----n ' (8) 

where fl _= 1/kBT, kB is the Boltzrnan constant and 

2 
r 2 = 4=Dq/~P T (9) 
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is the inverse of the screening length, ~D = 1/x. The expression, Eq. (8) is satisfactory 
only when x ~ 0, in other words, when the density is low and the temperature is high. 
For studying Coulombic phase separation which occurs at xa ~ 1, this expression is 
insufficient. It predicts a critical temperature that is higher than the MC results by a 
factor from 9 to 10 [25, 26]. In order to improve this result, one has to go back to the 
full DH form for the electrostatic free energy given by 

N [ ( x a ) 2 1 n ( x a + l ) ] .  (10) 
flFDH -- kBT,(xa)  2 xa 2 

In the above expression T* = kBTDa/q 2. This form, apparently, remains valid even 
when the limiting law brakes down. 

The use of the full DH free energy produces a critical temperature in close agreement 
with MC, but the critical density is too small by a factor of 6. To understand this, we 
have to go back and reexamine the original DH derivation. 

Debye and Hfickel focused their attention on one ion. The electrostatic potential in 
the region of this ion satisfies a Poisson-Boltzman equation (PB) [18,27] given by 

4n V2~-~- ----~pq. (11) 

Debye and H/ickel assumed that other ions will distribute themselves around the central 
ion according to the Boltzman distribution pq = qp+ exp(-flq~) - qp_ exp(flqO), 

1 where p+ = p_ = ~p. In order to solve this equation, Debye and Hfickel proceed 
to linearize the exponential. This approximation, besides simplifying the calculations, 
restores the electrostatic self consistency which the full non-linear PB equation lacks 
[27]. The process of linearization, however, lowers the effective weight of configurations 
in which oppositely charged ions come into a close proximity of each other. Bjerrum 
[19] suggested that these dipolar pair configurations can be reintroduced into the theory 
by allowing a chemical equilibrium to exist between the free charges and the dipoles. 

This is established by requiring that 

# + + # - = p 2 ,  (12) 

where 

OF aF (13) 
#+ - ON+' 1~2 - ~N2 

are the chemical potentials of the negative, positive charges, and of the dipolar pairs. 
The combination of the DH theory and the Bjerrum association does not change the 
critical temperature, but gives a critical density that is only 1.5 times larger than MC. 

The introduction of dipole-ion interaction brings the coexistence curve in an excellent 
agreement with MC [28, 29]. Furthermore, the theory can be easily extended to general 
dimensions and in particular [29, 30], reproduces the Kosterlitz-Thouless [31] result of 
an infinite order line of metal-insulator transitions in two dimensions, with an additional 
prediction that this line terminates in a tricritical point. 
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Given that the above theory was quite successful to explain the behavior of a gas 

of charged particles, it is then natural to ask if the mechanism of dipolar formation is 
also relevant for the polyampholytes. The preliminary reports of our findings has been 
given in Ref. [20]. Below we shall present the details of our calculations. 

3. The polyampholyte 

3.1. The model 

We consider a neutral polyampholyte chain of N spherical monomers, each of dia- 
meter a. The monomers are of three types, No neutral monomers, I (N - N o )  positive 
monomers, and I ( N -  No) negative monomers. The charged monomers can associate 
forming intermolecular bridges (dipoles). After thermal equilibrium is established, the 
chain resembles an affine network with the crosslinks of functionality four. Three dis- 

tinct structures are found along the chain: neutral monomers, charged monomers and 
dipoles. Now, defining f as the number fraction of non-neutral monomers and assuming 
that a fraction x of  such charges form dipoles, we find 

No - ( 1 - f ) N ,  neutral, 

N1 =-- f N ( 1  - 2x) ,  monopoles, 

N2 -- f N x  , dipoles. (14) 

Within our model, the whole chain can be viewed as a network, made of segments 

connected at the dipolar pairs by the crosslinks of functionality 4 (see Fig. 1). Note 
that, even if the individual segments of the chain might exhibit a nonzero charge, the 
whole network is neutral. 

Following the same procedure introduced in Section 2.1, we consider the polymer 
confined inside a sphere of volume, V = 4 3 ~nR.  The density of monomers is then 
given by p = p*a 3 where p* = 3~-3/(4~v'N). a -- R/Ro measures the relative exten- 
sion of the chain with respect to an ideal chain with radius of gyration R0 ~ ax/~.  
The densities of neutral monomers, the monopoles and the dipoles are respectively 

P 0 - ( 1 - f ) P ,  pl - f ( 1 - 2 x ) p ,  p 2 -  f x p .  (15) 

The total free energy of the chain is constructed as a sum of the most relevant 
contributions: 

(a) an elastic energy due to the elongation and contraction of the active strands, 
(b) an entropic energy that is due to the mixing of  different types of particles, 
(c) a repulsive energy due to the excluded volume effects, 
(d) and the attractive energy due to the net electrostatic interactions. 
According to the attine network theory of rubber elasticity [2, 5, 32, 33], the elastic 

free energy is 

v 2 2+2z2 3 ) _ # j i n x ,  (16) flFel ~ ~(,2, x -[- ,~y 
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Fig. 1. Globular state of a polymer in a solvent is regarded as a network of functionality 4. The chain, 
made of positive (+), negative ( - )  and neutral (black) monomers of diameter a, is confined to a region of 
volume V = 3/(4xR 3 ) where the radius of gyration is given by R o~ aNL 

where v is the number o f  elasticly active strands in the network, /~j is the number 

o f  junctions, and ~,x, ~,y and 2z are the principal extension ratios measured relative to 

the dimensions o f  the chain in an unstrained state. In the present case, we assume a 

uniform expansion ~,x = 2y = 2z --- ct. From geometrical considerations we find that 

the number o f  junctions is /~j = N2 + 1, where the extra one comes from fixing one 

monomer at the origin. Similarly, the number o f  elasticly active strands is v = 2N2 + 1. 

The elastic free energy is then [33] 

fiFe1 = 3 ( ~ 2  _ 1 - 2 In 0t) + 3N2(at 2 - 1 - In ~).  (17) 

One might note that, in the absence o f  dipoles, this is equivalent to the elastic energy 

in an uncharged polymer, when the full theory o f  elasticity is taken into account [7]. 

When 0t is large, it can be approximated by Eq. (1). 

The polymer resembles a mixture o f  an electrolyte and a neutral gas occupying 

a volume V. However, there is an important difference. While in the RPM ions are 
free to move independently, the monomers o f  a PA are constrained by the bonds that 

maintain an overall integrity o f  the chain. Nevertheless, we must still account for the 
increase in the free energy due to the mixing of  particles of  different types [33, 34]. 

I f  the bonds were cut, the ideal free energy of  the resulting "gas" of  positive, 

negative, neutral monomers, and dipolar pairs would be given by 

f lFideal=~[NJ lnpyA3kj ] • ( j  Nj  , ( 1 8 )  

J 
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where ~i is the molecular partition function of the species i, while Ai = h / ~ T  
is the mean thermal wavelength, ~i is the geometric mean mass and the parameter 
ki is the number of "atoms" in each "molecule" of the resulting gas. In our case, 
k0 = k+ = 1, k2 = 2 and the geometric masses are rh0 = rh+ = rh2 = m. However, 
since all of  the monomers are connected by bonds and, therefore, are not free to move 
independently, in order to obtain the correct increase in the free energy, it is necessary 
to subtract from this expression the free energy of an ideal gas made of just one type 
of particles. This leads to an energy of the mixture [33, 34] 

pjA3kJ pA 3 
- N 1 (19) 

J 

that can be expressed as 

P0 Pl P2 P 
flFmix = No In ~0 + Nl In ~ 1  + N2 In ~-2 - U In ~ + N2. (20) 

Since all the monomers are hard spheres with no internal structure the molecular par- 
tition functions for the monopoles and neutral particles are given by ( = (+ = (o = 1. 
For the dipoles the molecular partition function is 

c 

(z = / e a/r'rr2 dr = K(T) .  (21) 

a 

For the upper cutoff c, we use the Bjerrum's choice, c = a/2T*, which corresponds to 
the inflection point of the integral as a function of c [18, 19,21,28]. Then, the value 
of the association constant is found to be [35] 

K(T*) - -2~a3  [Ei(Tl--¥)-Ei(2)+e2]  -2~a3 1/T*[2+ 1 
--~--e ~--2 + ( ~ ) 2 1  (22) 3(T* )3 

This expression is in close agreement with the one obtained by Ebeling on the basis 
of a cluster expansion [36]. 

The electrostatic contribution to the free energy is given by Eq. (10) with N and 
p replaced by N1 and Pl, the total number and density of free charoes. While the 
excluded volume and the polymer-solvent interaction are given by Eq. (3). 

3.2. Thermodynamics of  the system 

Using this model, we can now ask what are the equilibrium configurations of a 
polyampholyte. In order to answer this question we have to examine the Gibbs free 
energy of a PA in a solvent [37]. The Gibbs free energy is given by 

= F p  + F s -~- Pout V - ,Uoutms , (23) 

where Fp -- Fel + Fhc + Fmix + FDH is the Helmoltz free energy of the chain, Fs 
is the Helmoltz free energy of  the solvent particles inside V and Pout and /Zout are, 
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respectively, the pressure and the chemical potential of the solvent outside the volume 
V. In the simple case that we are studying, the polymer-solvent interaction is already 
taken into account in the second and the third virial coefficients of the excluded volume 
contribution of Eq. (3), therefore, in the above expression we treat the solvent as an 
ideal gas. 

For a fixed number of charged monomers ( f  fixed), the Gibbs free energy is a 
function of three independent variables: the number of solvent particles inside the 
volume V, Ns, the volume V itself, and the fraction of free charges along the chain, 
x. The equilibrium configuration is, then, obtained by a minimization of Eq. (23) 
with respect to these parameters. The minimization with respect to the volume leads 

to 

0#F. 
OV Ps q- Pout ---- 0 ,  (24) 

where 

- - P s ,  (25) 
0V 

has been used. Since we are assuming no interaction between solvent and polymer, 

Ps = Pout and, consequently, OflFp/OV = 0. Equivalently, 

OflF - 3(~ - 1 + 2Nxf~) - 3No~-I Wlp - 3N~ -1W2p 2 
z 

3 N f ( 1 -  2x)~ -1 [21n(~ca + 1) ~ca+2] 
2TW~a / ~a  xa + 1J = 0. (26) 

Minimization with respect to the solvent particles leads to the condition Ps = Pout, 

where 

O[3Fs (27) 
P s -  0Ns 

Since the number of monopoles and dipoles are functions of x, minimization of the 
free energy with respect to this fraction can be written as 

0flFp _ 0___ff_F 0N+ + 0___FF 0N__ + 0F 0Nz _ 0. (28) 
Ox ON+ Ox ON_ Ox 0N20x 

Using now the definitions Eq. (13) and Eq. (14), we find 

0 Vp 
Ox =_Nf(p_ + p +  - P2) = 0. (29) 

This is the chemical equilibrium equation, Eq. (12). Using the explicit form for the 
free energy, the chemical potentials are, 

OflF 3 2 xa Pi P (30) 
l q = p +  =- gN ± - Wlp+-~W2p 2 T , ( x a +  l)  + l n ~ l  - l n -  ~, 
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Fig. 2. Behavior of  x and ~ as a function of temperature, T for N = 100, f = 1 and Wl = 4na3/3 cor- 
responding to the second virial coefficient for the gas of  hard spheres. The non-single-valued dependence 
of  ct on the temperature indicates the presence of first order phase transition. The transition, indicated by a 
vertical line, occurs at the temperature T* for which the two branches of free energy have the same value. 

_ P2 63flF - - 3 ( 5  2 1-1ns )+2Wlp+3Wzp2+ln~-z -21n  ~ . (31) 
122 ~ ON2 

The law of mass action, 12_ + 12+ = #2, can now be written as 

x 3fK(T) [ xa ] 
(1 - 2 x )  2 -- 16na3x/N exp T*(xa+ 1) + 3  - 3 5 2  . (32) 

The equilibrium configuration of the polyampholyte is given by the solutions of  
Eqs. (26) and (32). For N = 100, f = 1 and W1 4 3 - - : h a  the values o f x  and 5, as a 
function of temperature, are shown in Fig. 2. 

At high temperatures, the relative size of  the chain, 5, is small and decreases with 

the temperature. The value of 5 decreases as N is increased. The fraction x, in this 

state, is quite small, indicating that few dipolar pairs have formed. 

In order to find what is the state of the chain at high temperature, we have to explore 
how the radius of  gyration scales with N as N ~ co. At high temperatures (small xa), 
Eq. (26) can be approximated by 

- 3W1p + f x a  = 0,  (33) 

which leads to a radius of  gyration that scales as 

R ~ aoN 1/3 , (34) 
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where a0 = 3aT*(W{)2/3/( (4n)2/3f)  and W{ =- Wla -3. This collapsed state is 
less dense than the collapsed state of an usual neutral polymer for which a0 = (3 W2/ 
(2nW1)) 1/3 [3, 12]. 

As the temperature is lowered the scenario changes drastically. Since the ion associa- 
tion is energetically favorable, positive and negative charges come close together, form- 
ing intermolecular bridges. Thus, for low temperatures, almost all charged monomers 
are paired up and x ~ ½. Consequently, since the number of free (unpaired) monopoles 
is small, the electrostatic energy given by Eq. (10) becomes negligible. The attractive 
elastic energy, given by Eq. (17), balances the hardcore repulsion. The chain, how- 
ever, unlike a neutral homopolymer, is made of strands connected by crosslinks of 
functionality four (see Fig. 1). 

The equilibrium configuration of this network is given by the minimization equation 
I Eq. (26) then simplifies to in the absence of monopoles, x ~ i .  

3(~ 2 - 1 + Nf~x 2) - 3NWlp  - 3NW2p 2 -- O. (35) 

If the solvent is good (W1 > 0), the dominant contributions (for large N) in Eq. (35) 
a r e  

3 
3Nfo~ 2 - ~ N W I p  = O, 

this leads to a radius of gyration given by 

(36) 

R ~ a lN  2/5 , (37) 

with al ~ (3W~/(8rcf))l /Sa.  Consequently, the microgel is an extended state. Com- 
paring the exponent v = 2 with the usual Flory exponent v = 3, given by Eq. (4), 
we note that, due to the presence of crosslinks, the network is smaller than the usual 
neutral polymer. 

If the quality of the solvent is decreased, the second virial coefficient W~ becomes 
zero, and the leading order terms in Eq. (35) are 

N f o~ 2 - NW2p 2 = 0. (38) 

The radius of gyration is then, 

R ~ a2N 3/s , (39) 

where a2 ~ (9W~/(16n2f) ) l /Sa ,  where W~ = W2 a-6.  The microgel assumes a confor- 
__ 1 marion that resembles a coil, smaller than the usual Flory coil for which v - ~. 

If the quality of solvent is decreased further, the second virial coefficient W1 becomes 
negative. In the limit of very long chains, the main contributions in Eq. (35) are the 
second and the third virial coefficients, namely 

- 3NWlp  - 3NW2p 2 = 0. (40) 
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Fig. 3. z as a function of ct for: (a) W2 > W2, (b) W2 = if'2 and (c) W2 < 1~2. 

The network is, therefore, in a dense globular state for which 

R ,~ a3 N1/3 , (41) 

where a3 = {3Wz/(2~[ W~ I)} 1/3. 
The "crossover" between these scaling regimes can be obtained from Eq. (35), 

namely 

~5 _ ct3 + N f ct5 9W~ (4~)2 ~ = z ,  (42) 

where z - 3x/~Wl*/(8r 0 (see Fig. 3). For a fixed value of WE and positive values of 
the second virial coefficient, this equation has one possible value of ~ for each value 
of z. The radius of gyration of this solution scales as Eq. (37), indicating that the 
polymer is extended. 

For W2 < 81rfl/(2OOO(Nf+ 1)3)a 6 and z < 0, Eq. (42) has three possible solutions 
for ~. One corresponds to extended states and the other corresponds to a dense glob- 
ular state that scales as Eq. (41). Connecting these two scaling regimes, there is an 
intermediate state. In order to define which solution leads to the minimum free energy 
configuration, the free energies of these three states must be calculated and compared. 
For x = ½, the free energy associated with an isolated chain is given by 

f l ~  = 3 ( ~ t 2 -  1 - 21n ct) + 3N2(~2 - 1 - In ~) + ~--f-f In 2~(fT) 

~ _  NWlp NWzp 2 (43) + N ( l - f ) l n p ( 1 - f ) - N l n p +  + ~ + - - - - - - - - ~ -  

This corresponds to the first term Fp in Eq. (23) since the other contributions just add 
to zero. 
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For W1 > -~ ' r l ,  the extended state (microgel) has the lowest free energy, while the 

dense globular state has the lowest energy for W1 < - f f ' l .  At W1 = - i f ' l ,  there is a 
first-order phase transition between them (see Fig. 3). This transition, present only at 
low temperatures, does not explicitly depend on the value of T* but is only a function 
of the quality of solvent. The intermediate state is always metastable. In the limit of 
N ~ co the phase transition between the microgel and the dense globular state occurs 
at W1 --- t~1 = 0 and the radius of gyration of the polymer scales as Eq. (37). This 
behavior resembles a tricritical point [3]. 

Now, connecting the high and low temperature behaviors (see Fig. 2), there is a 
range of temperatures for which both x and ~ are not single valued functions and three 
possible solutions can be found. 

Comparing the free energies of the three solutions, we find that the solution with 
lower value of x is the minimum for temperatures T > 7 ~, while the solution with 

1 x ~ i is the minimum for T < 7 ~ (see Fig. 2). At a temperature T = 7 ~, there 
is a first-order phase transition from the high temperature dilute globular state, the 
microelectrolyte, to one of the possible states present at low temperatures. For a fi- 
nite chain, the network assumes one of the following conformations: an extended 
state (microgel), a dilute globular state (microelectrolyte) or a fully collapsed state 
(see Fig. 4). 

This result was checked for different values of the total number of monomers, N, 
and for different values of the fraction of charged monomers, f .  

No qualitative change is observed when these two parameters are varied. The in- 
crease in N leads to a decrease in the transition temperature, since, in that case, the 
resulting increase in entropy favors the distraction of the ordered microgel phase. Fig. 
5 plots the transition temperature, /~* versus the total number of monomers, N [20]. 

(a) -Wl 

Fig. 4. Schematic phase-diagram indicating the behavior of ct as a function of  temperature and of the second 
virial coefficient, VII, as it varies from positive to negative values for: (a) /412 < if'2 and (b) W2 >~ t~2. 
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(b) 

Fig. 4. Continued. 
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Fig. 5. Dependence of the transition temperature on the length of the polyampholyte for f = 1 and 
W1 = Ina3. For large N, the system is close to algebraic decaying. 

As the fraction o f  charged monomers, f ,  is decreased, the transition temperature in- 

creases. 
The first-order transition is also not drastically affected by the quality o f  solvent. 

We found that the transition temperature IF* varies continuously as Wl changes from 
positive to negative values as is shown in Fig. 4. 
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4. Conclusions 

In this paper we have analyzed the behavior of a PA in the framework of the Debye- 
Hfickel Bjerrum-Flory (DHBjF) theory. We find that at reduced temperature T* =/~*, 
there is a first-order phase transition from a high temperature dilute globular state to a 
low temperature microgel state. 

The microgel, present at low temperatures, can be either extended or fully collapsed 
depending on the quality of the solvent. The transition between the extended and 
collapsed state as N ~ c~ resembles a tricritical point. 

In order to verify that the first-order transition between the microgel and the 
microelectrolyte is actually present in real systems, we have to check if the transi- 

tion temperature is consistent with the properties of real solvents. The temperature, /~, 
is strongly dependent on the value of the dielectric constant of the solvent, D. 

The aqueous solution at a room temperature has a dielectric constant D = 80e0 
(e0 is the permittivity of the vacuum). The transition temperature for a polymer with 
N --- 100, comes out to be /~ ~ 100K, if a ~ 1A. Obviously, this transition cannot 
occur under normal laboratory conditions since the water is going to freeze before 
the transition happens! However, there are many organic solvents that have dielectric 
constants close to 20Co at /~ ~ 300 K. For these solvents, the transition from the high 
temperature microelectrolyte state to the low temperature microgel should occur at 
around the room temperature. 

Although we have demonstrated that the absolute minimum of the free energy at 
low temperatures corresponds to a microgel, the real PA molecule is a complex system 
with possibly very many metastable states separated by energy barriers. Depending on 
the heights of these barriers, as the temperature is lowered, PA can get stuck in one 
of the metastable minima. The possibility of a glass transition must then be kept in 
mind. 

In the future work we shall explore the effects of the presence of 1 : 1 salt on the 
conformational properties of a PA [40] . 
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