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We discuss the numerical methods needed to study the dynamics of interacting planetary systems.

We argue that the most appropriate method for studying the many-body dynamics is Runge-Kutta

with an adaptive step size. We demonstrate that planetary systems are highly susceptible to

catastrophic events in which collisions between the planets are almost unavoidable. We then discuss

a recently proposed mechanism that explains how planetary systems may have spontaneously

evolved into a self-organized periodic state in which catastrophic events are avoided.
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I. INTRODUCTION

The stability of the solar system has been a topic of debate
since the birth of modern physics. After introducing his law of
Universal Gravitation, Newton realized that small gravita-
tional interactions between planets could result in the pertur-
bation of their orbits that over time might lead to catastrophic
events, such as collisions or expulsions of planets from the
solar system.1 To overcome this problem Newton appealed to
divine intervention in which God would periodically adjust
the orbits to prevent catastrophes. Leibnitz, Newton’s contem-
porary, opposed this theological solution,2 and argued that
Gods should be able to choose stable orbits a priori. The
debate about the stability of the solar system has provided
much impetus to the development of classical mechanics.3 In
spite of this effort over the centuries, the stability of planetary
systems can be proven rigorously only for unrealistically
small planetary masses of 10–320 of the solar mass.4

Therefore, we are forced to use numerical methods to consider
realistic planetary masses.

The use of numerical methods has become a fundamental
ingredient of the toolkit of contemporary physicists. The per-
centage of physical problems that can be solved analytically
is progressively decreasing with time, and numerical meth-
ods have become unavoidable. A common example is the
necessity to solve differential equations. In the present paper,
we will discuss numerical methods for studying initial value
problems appropriate to the exploration of planetary
dynamics.

II. NUMERICALLY SOLVING A GRAVITATIONAL

PROBLEM

We start by considering the gravitational interaction
between two point particles of mass m. Without loss of gen-
erality we assume that the particle motion is restricted to the

x-y plane. From Newton’s second law and law of gravitation,
we obtain that the trajectories of particles satisfy

m
d2~r1

dt
¼ ~F1 ~r1;~r2ð Þ ¼ �Gm2 ~r1 �~r2ð Þ

r3
12

; (1)

m
d2~r2

dt
¼ ~F2 ~r1;~r2ð Þ ¼ �Gm2 ~r2 �~r1ð Þ

r3
12

; (2)

where ~ri ¼ xiêx þ yiêy are the position vectors of each parti-

cle with i¼ 1, 2, r12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
is the dis-

tance between the particles, ~F1ð~r1;~r2Þ and ~F2ð~r1;~r2Þ, are the
forces acting on them, and G¼ 6.67� 10�11 m3/kg s2 is the
gravitational constant. Because the interaction is two-body,
we could, in principle, find an exact, analytical solution for
the particles’ evolution. However, such a solution is not the
aim here. Instead, we want to investigate the problem from a
numerical perspective to gain insights into the features of
numerical techniques.

Numerical methods for integrating ordinary differential
equations typically consider first-order equations. We can
straightforwardly express Eqs. (1) and (2) in terms of first-
order differential equations by defining the particle velocities
~vi ¼ vxiêx þ vyiêy, such that

d~ri

dt
¼~vi; (3)

d~vi

dt
¼
~Fi ~r1;~r2ð Þ

m
: (4)

Numerical methods to solve ordinary differential equa-
tions generally consist in approximating the continuous time
evolution by a conveniently constructed time discretized ver-
sion. The discretized version is usually called a map because
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it maps the values of the variables at time t onto their values
at time tþDt, where Dt is the time step. An intuitive method
to construct such map is to directly substitute the time deriv-
ative, dx=dt ¼ vxðtÞ by a finite difference Dx=Dt ¼ ½xðtþ DtÞ
� xðtÞ�=Dt ¼ vxðtÞ. By isolating xðtþ DtÞ, we readily obtain
the map xðtþ DtÞ ¼ xðtÞ þ vxðtÞDt. This approach leads to
the Euler method. We apply it to Eqs. (3) and (4) and obtain

~riðtþ DtÞ ¼~riðtÞ þ~viðtÞDt; (5)

~vi tþ Dtð Þ ¼~vi tð Þ þ
~Fi ~r1 tð Þ;~r2 tð Þð Þ

m
Dt: (6)

We expect that if Dt is sufficiently small, the trajectory
obtained from Eqs. (5) and (6) will accurately describe the
evolution given in Eqs. (1) and (2). However, if Dt is too
small, that number of calculations needed will increase mak-
ing the computation more demanding.

The Euler method is first order because its accuracy per
step scales linearly with Dt. Higher order methods whose
accuracy per step scale as (Dt)n, where n is the order of the
method, can also be constructed. A widely used example is
the Runge-Kutta method,5 which can be extended to any
order. In particular, the Euler method corresponds to first-
order Runge-Kutta.

To test the results obtained from the application of Eqs.
(5) and (6) to describe the system evolution, let us consider
an example. For simplicity, we assume that the masses are
m¼ 1.5� 1010 kg, so that Gm¼ 1.0 m3 s2. The particles are
initially located at x1¼�10 m, y1¼�0.5 m, x2¼ 10 m,
y1¼ 0.5 m and move toward one another with initial veloci-
ties vx1¼ 1.0 m/s, vx2¼�1.0 m/s, and vy1¼ vy2¼ 0. The tra-
jectories obtained using Eqs. (5) and (6) with Dt¼ 0.1 s
(thick curves) and Dt¼ 0.5 s (thin curves) are shown in Fig.
1. We see that for both values of Dt the particles initially
interact very weakly, moving in nearly straight lines toward
one another. As they become closer, they are scattered,
quickly changing their propagation direction. However, the
scattered angles are different for Dt¼ 0.1 s and Dt¼ 0.5 s.

We expect that the Dt¼ 0.1 s case is more likely to be cor-
rect. To test this assumption, we recall that the total energy
of the system

E ¼ mv2
1

2
þ mv2

2

2
� Gm2

r12

(7)

is a conserved quantity of the motion. The energies as a func-
tion of time for Dt¼ 0.1 s and Dt¼ 0.5 s are shown in Fig. 2.
We see that in both cases the energy changes near the scat-
tering point (around t¼ 10 s). Clearly, the energy variations
and numerical errors are much more pronounced for the
larger Dt case, where the final energy is 70% higher than the
initial energy.

We further explore conservation of energy to investigate
other values of Dt in Fig. 3, where we plot the relative error
jEfinal � Einitialj=Einitial as a function of Dt. Note that for
Dt> 0.2 s the error starts not only to increase, but also has
large oscillations with the variation of the time step. This
oscillation indicates that the map obtained from Eqs. (5) and
(6) for such high values of Dt is chaotic,6 and therefore does
not properly describe the evolution. In contrast, for small

Fig. 1. Trajectories obtained numerically using Eqs. (5) and (6) for the scat-

tering of two particle masses. The thick curve corresponds to the time step

Dt¼ 0.1 s, and the thin curve corresponds to Dt¼ 0.5 s.

Fig. 2. The total energy as a function of time for the scattering of two point

masses. The thick black curve corresponds to Dt¼ 0.1 s, and the thin (red)

curve to Dt¼ 0.5 s.

Fig. 3. The relative error of the energy, jEfinal � Einitialj=Einitial, as a function

of the time step Dt.
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time steps (Dt< 0.2 s) the error decreases and a better system
description is achieved with the Euler method.

From the construction of the Euler method, Eqs. (5) and
(6), it appears that the smaller the time step, the more accu-
rate the calculated trajectory. In particular, in the limit Dt
! 0 we expect the method to become exact. Indeed, this
expectation would be the case if the numerical calculations
were performed with numbers of infinite precision.
However, the computer stores numbers using a finite number
of digits and truncates (or rounds off) numbers after each
mathematical operation. This truncation also generates
numerical errors. This type of error increases with the num-
ber of truncations/operations performed. The truncation error
is larger when the time step is smaller, which requires a large
number of calculations.

We compute the relative error of the energy for a wide
range of values of Dt and plot the results on a log-log scale
in Fig. 4. We see that the relative error is a non-monotonic
function of Dt and increases if the time step becomes too
small. In particular, Fig. 4 shows an optimal time step that
leads to a very small energy variation, Dt¼ 10�3 s. The opti-
mum value is expected to change if we modify the initial
conditions, the values of the masses, the number of particles
in the system, and the force. Moreover, in many systems
there are no conserved quantities that could be used to deter-
mine the optimal time step.

How can we generally find the optimal time step to guar-
antee the accuracy of our numerical results? One idea is to
use two integration methods of different accuracies, for
example, of different orders. We then consider the result
obtained with the higher accuracy method as the gold stan-
dard. When the lower accuracy result matches the gold stan-
dard to the desired tolerance as the time step is varied, the
given time step is taken. Usually, the comparison between
the two methods is done directly at the variables level by
computing, for instance, the Euclidean distance in phase
space between the two numerical solutions. In this way there
is no need for a known conserved quantity. In practice, this
procedure can be continuously used along the integration to
determine an optimal Dt for each part of the evolution, thus,
adapting the time step to satisfy the tolerance requirements
and to speed up the simulation.5 A numerical subroutine

called dverk which implements the Runge-Kutta algorithm
with an adaptive step size is available from the public reposi-
tory Netlib.7

III. STABILITY OF PLANETARY SYSTEMS

We employ an adaptive time step algorithm that uses
embedded fifth order and sixth order Runge-Kutta estimates
to compute the solution with a tolerance of 10�10 to investi-
gate the planetary dynamics. The system consists of N plan-
ets interacting gravitationally with each other and with a
star. The dynamics of the ith body in the planetary system is
given by

mi
d2~ri

dt2
¼ �

X
j 6¼i

Gmimj ~ri �~rj

� �
r3

ij

; (8)

where i; j ¼ 1;…;N þ 1, with the i¼Nþ 1 corresponding to
the star. To simplify the calculations, we assume that the
motion is confined to the x�y plane, and that all the planets
have the same mass m and the star mass is M, with M� m.

Because there are more than two bodies in the system, the
dynamics may become chaotic.6 Chaos can be detrimental to
the stability of a planetary system and can result in cata-
strophic events. Because the gravitational potential is
bounded from above and is unbounded from below, chaos
can lead some planets to either gain enough kinetic energy to
escape altogether from the planetary system, or to lose
kinetic energy and end up falling into the star or to collide
with another planet. These catastrophic events are what we
found by numerically integrating Eq. (8) for arbitrary initial
conditions. For example, we consider a system with a star of
mass M¼ 2.0� 1030 kg (the mass of our sun) and N¼ 8 plan-
ets with mass m¼ 0.0001 M (one tenth of the mass of
Jupiter) with radii initially uniformly distributed between 2
and 16 a.u. (the astronomical unit corresponds to the mean
earth-sun distance). The initial velocity of each planet is cho-
sen such that in the absence of its gravitational interaction
with the other planets, it would follow a stable circular orbit
around the star.

The planets and the star can collide with each other during
the evolution, leading to the termination of the simulation.
To prevent such catastrophic events, we introduced a soften-
ing of the gravitational potential.8 The softened potential is
constructed so that the force between the masses vanishes
for separations r¼ 0 and the interaction potential and its
derivative are continuous at the cutoff distance r¼ d, compa-
rable to the planetary diameter

V rð Þ ¼
� 2d3 � 2dr2 þ r3ð ÞGm2

d4
r � dð Þ

�Gm2

r
r > dð Þ:

8>><
>>: (9)

In our simulations, we used d on the order of 10�3 a.u.
In Fig. 5, we show the planetary orbits obtained for the

first two thousand earth-years of the evolution. We see that
the orbits are nearly circular around the sun, and there is just
a small precession of the orbits due to the gravitational inter-
action between the planets. In Fig. 6, we show the evolution
of the distance between each planet and the star. In Fig. 6(a)
we show the evolution up to t¼ 20 thousand earth-years.
Notice that up to t¼ 6 thousand earth-years the planets

Fig. 4. The relative error of the energy, jEfinal � Einitialj=Einitial, as a function

of the time step Dt.
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maintain their nearly circular orbits around the star with
some minor radial oscillations. After this time, the planets
start to show erratic trajectories and even change their order
with respect to the star. For instance, if we consider the
planet that starts at 14 a.u. from the star (black curve in Fig.
6), we see that from t� 8 to 10 thousand earth-years it
switches places with the planet that started at 16 a.u., becom-
ing the outermost planet. Moreover, as times evolves, this
same planet undergoes other jumps, becoming the fourth
closest planet at t¼ 20 thousand earth-years. The jumps
occur when two bodies pass near each other causing a sud-
den change in momentum analogous to the slingshot effect
used to accelerate artificial satellites.

As the system evolves even further, slingshot type events
drive the planets to very large radial velocities that allow
them to escape the planetary system. See Fig. 6(b) where we
show the evolution for longer times in a log-log plot. Half of
the planets are gone by t¼ 1 million earth years, the duration
of the simulation. We stress that the type of phenomena seen
in Fig. 6 occurs for almost any initial condition—it is almost

impossible to find at random an initial condition that leads to
a stable, durable, planetary system. We note that because we
are using the adaptive time step numerical method with a
stringent tolerance, the catastrophic events are real and are
not induced by the numerical errors. This observation can be
verified, for instance, by computing conserved dynamical
quantities such as the total energy of the system

E ¼
XN

i¼1

miv2
i

2
� 1

2

X
j 6¼i

Gmimj

rij

" #
; (10)

and the total angular momentum

L ¼
XN

i¼1

miðxivyi � yivxiÞ: (11)

The evolution of these quantities is shown in Fig. 7, confirm-
ing that despite the very complex planetary dynamics, the
energy and angular momentum are conserved to less than
0.01% during the entire evolution. Note that the total energy
is negative, corresponding to a bound state, meaning that the
modulus of the attractive gravitational potential energy is
larger than the kinetic energy. Nevertheless, planets can
escape from the system.

IV. CONCLUSIONS

To simulate the dynamics of a planetary system over a
span of billions of years is not an easy task. The integration
time step of such simulations cannot be too small, otherwise
the simulations will result in a large roundoff error due to the
finite precision of numbers stored in computer memory. We
have argued that one practical way to overcome this diffi-
culty is to use a Runge-Kutta algorithm with an adaptive step
size. The advantage of this approach is that the integrator
automatically adjusts the time step to capture the most rele-
vant time scale of the system. By using this approach, we
have demonstrated that even an extremely symmetrical, ide-
alized, system of the planets in precise circular orbits around
the star, becomes unstable over millennia due to small inter-
planetary interactions. These gravitational interactions lead
to catastrophic events in which planets can collide or be
ejected from the planetary system. We observe that it is prac-
tically impossible to find initial conditions that lead to stable
arrangements of the planets in the infinite time limit, unless

Fig. 5. Planetary orbits found at the initial stage of the planetary evolution

up to t¼ two thousand earth-years. The distances are measured in astronomi-

cal units (a.u.).

Fig. 6. Evolution of the distance of the planets from the star. The time is measured in earth-years and the distance in astronomical units.
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the masses of the planets are unrealistically small, as was
noted by Henon more than fifty years ago.4

What can then explain the stability of the solar system,
which appears to be more or less unperturbed over the span of
billions of years? In a recent paper,8 it was argued that the sta-
bility of planetary systems may be a consequence of energy
non-conserving perturbations, such as the interaction of pri-
mordial planetesimals with a residual gas and dust of the pro-
toplanetary disk. The dust particles of the protoplanetary disk
move in Keplerian orbits with angular velocity xðrÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3

p
, where r is the distance from the star.9,10 We can

suppose that if the velocity of the planetesimal at a given posi-
tion r is lower than that of the surrounding dust, it will gain
kinetic energy from the collisions with the dust particles. In
contrast, if the velocity is higher than the rotational velocity of
the gas and dust particles, the planetesimal will lose energy.
As time progresses the amount of gas and dust in the proto-
planetary disk will be progressively depleted, and eventually
the interaction of planets with the disk will become negligibly
small. We find8 that this small viscous-like interaction drives
a protoplanetary system into a periodic self-organized state in
which the relative arrangement of planets repeats itself each
synodic period T (see Problem 3). Note that the trajectory of
the individual planets can be very complicated, with the orbits
precessing around the star. Nevertheless, the relative arrange-
ment of the planets repeats itself exactly each t¼T. Once
achieved, the periodic state will persist forever.

We stress that for realistic planetary systems it is practically
impossible to find a priori initial conditions which will result
in periodic orbits. Such initial conditions correspond to a set
of measure zero of all possible initial conditions.
Nevertheless, a non-energy conserving perturbation intro-
duced in Ref. 8 turns such periodic orbits “attractive,” driving
a planetary system toward a self-organized periodic state (see
Problem 3). This may be a possible explanation for the sur-
prising stability of the solar system and of other exoplanetary
systems which appear to be quite abundant in the universe.

V. SUGGESTED PROBLEMS

(1) Consider two planets of mass m, one located at x1

! �1, y1¼�b and moving with velocity~v ¼ v0~ex and
the other at x1 !1, y1¼þb and moving with velocity

~v ¼ �v0~ex. The trajectories of the planets are similar to
Rutherford scattering, with the scattering angle given by
h ¼ 2arctanðGm=4v2

0bÞ. Use the subroutine dverk for
Runge-Kutta with an adaptive step size available from
Netlib7 to calculate the trajectories of the two planets
and verify the Rutherford scattering formula.

(2) Use the subroutine dverk to compute the orbits of four
planets of mass m¼ 0.001 M, approximately equal to
that of Jupiter, uniformly distributed from 1 to 4 a.u.
along the x axis from a star of mass M equal to that of
our sun. Choose the initial velocity of each planet such
that in the absence of interactions with the other planets
it would follow a circular orbit. How much time in earth
years does it take before one of the planets escapes from
the planetary system? To prevent numerical instability
use the softened gravitational potential, Eq. (9) with the
softening radius equal to that of Jupiter. Suggestion:
rewrite the equations in dimensionless form with the
time measured in earth years and the distance in a.u.

(3) If a planet at position ri rotates faster than the surround-
ing dust, it will lose energy to the dust and will slow
down. If it rotates slower, it will gain energy from the
collisions with dust particles and will speed up.
Phenomenologically the interaction of planetesimals
with a protoplanetary disk can be modeled as an effec-
tive force8

~Fi ¼ �bð2pÞ2ðvdust
i � vh

i Þ L� m
X

i

vh
i ri

� �
êh ; (12)

where b� 0.0025 a.u.�2 is a small phenomenological
constant that controls the interaction between dust and
planets, vdust

i ¼ rixðriÞ is the angular velocity of dust at
the location of planet i, and vh

i is the angular velocity of
planet i

vh
i ¼

_yixi � yi _xi

ri
: (13)

The term in the square brackets of Eq. (12) is included
so that the interaction between the dust and the planets
“turns off” when the net total angular momentum
reaches a predetermined value L � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3R
p

=p. This
form is used to model a progressive depletion of dust
from the protoplanetary disk. Add the planet-dust inter-
action to the planetary system of Problem 2 and show
that after a million earth years, the planetary system will
reach a periodic state in which perihelion distance of the
outermost planet is repeated each synodic period T� 3.7
years. Note that there is a synchronization between the
planets with the ratio between all the orbital periods of
different planets being a rational number. To simplify
the analysis fix the position of the star at the origin dur-
ing the simulation.
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Fig. 7. Evolution of the total energy and total angular momentum of the

planetary system. The time is measured in earth-years, energy in units of

GM2/(2p)2R¼ 4.5� 1037 J, and angular momentum in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3R
p

=2p
¼ 1:4� 1045 kg m2=s, where R¼ 1 a.u.¼ 1.5� 1011 m.
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