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In many practical applications, ions are the primary charge carrier and must move through

either semipermeable membranes or through pores, which mimic ion channels in biological

systems. In analogy to electronic devices, the “iontronic” ones use electric fields to induce

the charge motion. However, unlike the electrons that move through a conductor, motion

of ions is usually associated with simultaneous solvent flow. A study of electroosmotic flow

through narrow pores is an outstanding challenge that lies at the interface of non-

equilibrium statistical mechanics and fluid dynamics. In this paper, we will review recent

works that use dissipative particle dynamics simulations to tackle this difficult problem. We

will also present a classical density functional theory (DFT) based on the hypernetted-chain

approximation (HNC), which allows us to calculate the velocity of electroosmotic flows

inside nanopores containing 1 : 1 or 2 : 1 electrolyte solution. The theoretical results will be

compared with simulations. In simulations, the electrostatic interactions are treated using

the recently introduced pseudo-1D Ewald summation method. The zeta potentials

calculated from the location of the shear plane of a pure solvent are found to agree

reasonably well with the Smoluchowski equation. However, the quantitative structure of the

fluid velocity profiles deviates significantly from the predictions of the Smoluchowski

equation in the case of charged pores with 2 : 1 electrolyte. For low to moderate surface

charge densities, the DFT allows us to accurately calculate the electrostatic potential profiles

and the zeta potentials inside the nanopores. For pores with 1 : 1 electrolyte, the agreement

between theory and simulation is particularly good for large ions, for which steric effects

dominate over the ionic electrostatic correlations. The electroosmotic flow is found to

depend very strongly on the ionic radii. In the case of pores containing 2 : 1 electrolyte, we

observe a reentrant transition in which the electroosmotic flow first reverses and then

returns to normal as the surface change density of the pore is increased.
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1. Introduction

There are numerous examples in which ion-solvent ow takes place in strongly
conning environments – such as narrow channels,1–5 nano-wires,6,7 carbon
nanotubes (CNTs)8–10 or across porous media.11,12 Such electroosmotic ows play
a major role in transport phenomena important in many technological13–17 and
biological18–22 applications. Examples range from osmotic equilibrium in living
cells,23,24 charge storage devices,25,26 and solvent ltering27,28 to desalination of
seawater.29–33 From a practical viewpoint, the transport of solvent through
synthetic nanotubes can be optimized by adjusting the tube's molecular inner
structure. This can facilitate solvent ow while avoiding the passage of ions,34

thus resulting in efficient salt ltering. On the other hand, ion transport through
ion channels is of fundamental importance in many biological processes, such as
the propagation of electrical signals in nervous systems35,36 and electrical stimuli
in muscle cells.37 The action potential across the cell membrane38–40 is controlled
by selectivity lters, which can block the passage of some ions while allowing the
passage of others.20,28,41–43 One of the reasons for the selectivity of ion channels is
the dehydration of ions upon entering the nanopore.44,45 This dehydration is the
result of interaction of ions with the proteins of the selectivity lter. Moreover,
specic ion interactions with the channel inner walls are also known to play
a crucial role in determining the dynamics of their transport along the
channel.29,46,47 In all these cases, solvent and ion motion through the pore depend
crucially on the interactions of particles with the surface.48 In analogy to elec-
tronic devices, the “iontronic” ones use electric elds to induce charge motion
that results in the delivery of precise amounts of substances, which can be
biomolecules, ions, or pharmaceuticals, to specic locations. In spite of its
enormous practical relevance, the theoretical description of transport
phenomena through narrow cylindrical pores remains poorly understood,49,50 and
many open questions must still be elucidated.51 The difficulties arise from the
inherently interfacial nature of such systems, typical of strongly conned envi-
ronments, for which traditional theoretical tools designed for bulk systems52,53 do
not directly apply.54,55

Ion transport through narrow pores takes place whenever a gradient in
pressure,56–58 concentration2,59–61 or electric potential62–64 is established across the
tube's longitudinal length. If the channel connects two microscopic volumes, the
ions and solvent ow can be characterized as a transient state that lasts until an
equilibrium condition of zero gradient of electrochemical potential is established
across the channel and the ow ceases to exist. On the other hand, a stationary
state of non-vanishing ion ux can be established via an active process in which
an applied force drives the ion ow along the channel connecting two mesoscopic
or macroscopic volumes. When the driving force for the ow is the electric eld
across the longitudinal direction of the pore, the resulting ion-solvent motion is
denoted as the electroosmotic ow.2,60,65 Even though the applied electric eld
does not couple directly to the solvent dipoles, the motion of ions will partially
transfer their momentum to the solvent molecules through particle collisions,
resulting in solvent motion. If the pore surface is charged, the moving ions will be
further subjected to a radial static eld produced by the dissociated charge on the
pore surface.
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Simulation of such charged systems is a highly non-trivial task. The long-range
nature of the Coulomb force precludes the interaction between particles being
simply cut off at the boundary of the simulation box using the minimum image
convention, standard for systems with short-range interactions. Instead, one
needs to construct a periodic replication of the simulation box so that the force
felt by a given ion arises not only from the other ions inside the simulation box,
but also from their innite periodic replicas. For bulk systems, the summation
over replicas can be efficiently performed using Ewald methods;66 however, if the
periodicity of the simulation box extends only in two (slab geometry) or one
(cylindrical geometry) dimension, additional corrections must be included in 3D
Ewald summation method.67,68 Recently, dissipative particle dynamics (DPD)69,70

simulations have been proposed to investigate electroosmotic ows through
narrow channels, combining both the Green function formalism64,71,72 and the
Ewald summation to efficiently account for the electrostatic interactions between
innite numbers of replicas in a cylindrical geometry.73 Embedding of a pore into
a medium of an arbitrary dielectric constant, such as a cell membrane, is taken
into account using the Green function formalism.74 Since a uniform surface
charge does not produce any electric eld inside an innite cylindrical pore, it can
be neglected for the calculation of the force acting on each ion. However, if this is
done, the pore will no longer be charge-neutral. The traditional approach is to use
point surface charges to account for the pore's surface charge density, keeping the
overall charge neutrality of the pore + surface system. This, however, is very
inefficient, since one must include the surface point charges inside the Ewald
summation. To overcome these difficulties, one can use an implementation of the
Ewald summation method for charge-non-neutral systems.64 This method only
requires a small modication of the total electrostatic energy of the replicated
system and is signicantly more efficient than the point charge approach.

The surface–ion interactions result in radial dependence of the ow along the
cylinder. Of particular interest is the radial distance at which the ion average
velocity vanishes – the so-called shear plane – and the associated electrostatic
potential, known as the zeta potential.75 The zeta potential can be related to the
ow velocity at the center of the pore using the Smoluchowski equation.76–78

Under some conditions, it is possible to nd a reversal of the electrophoretic
mobility,79 characterized by the change in the direction of the uid ow. This
effect can be attributed to the reversal of the surface charge near the pore surface –
the counterion condensation that overcompensates the surface charge.52,80 As
a result, the effective surface charge of the pore becomes reversed. From the
overall charge neutrality, this means that the net charge of free (i.e., uncon-
densed) ions available to respond to the external eld also reverses sign, resulting
in the reversal of the electroosmotic ow.

If the external electric eld is not too large, the Smoluchowski equation can be
used to relate the uid velocity with the zeta and electrostatic potential.81

However, application of the Smoluchowski equation requires knowledge of the
location of the shear plane and of the electrostatic potential inside the pore. At the
moment there is no theoretical method available to locate the position of the
shear plane. However, within the DPD formalism, it can be easily calculated using
an independent salt-free simulation of a pressure- or gravity-driven ow through
a cylindrical pore.82 On the other hand, theoretical calculations of the electrostatic
potential inside a strongly charged pore containing multivalent counterions, the
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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characteristic regime for which reversal of the electroosmotic ow takes place,82

are rather challenging. The traditional Poisson–Boltzmann (PB) equation is able
to accurately predict the distribution of monovalent,83–85 point-like ions close to
a moderately charged surface,86 but fails50,87–89 to capture the effects of electro-
static correlations present inside the double layer in the strong coupling regime,
or when packing effects become important. To overcome these difficulties, in the
present paper we will use a new density functional theory (DFT), designed to
accurately describe both strong electrostatic and size correlations inside the
double layer close to the cylindrical pore surface.90

Classical DFT is a powerful tool to predict the equilibrium distribution of
microscopic particles subject to external elds. It is particularly suitable for
studying interfacial phenomena with a high degree of accuracy,53,91–95 yet with
a reasonably low computational cost in comparison to most computer simula-
tions.96,97 Another clear advantage of the DFT formalism is the possibility of
treating various contributions to the free energy using different levels of
approximations.98–100 The key idea is to construct a free-energy functional that
accounts for the electrostatic and steric interactions inside an inhomogeneous
uid, and then subject it to the stationary (Euler–Lagrange) condition in order to
obtain the desired equilibrium proles (usually through a set of coupled integral
equations).101,102 While ideal contributions to the free-energy functional are
known exactly, contributions from different inter-particle interactions (the so-
called excess contributions) beyond the mean-eld are unknown, requiring the
employment of approximations that must account for the correlational effects.
Depending on the particular system regime and/or the nature of the inter-particle
interactions, some contributions can be handled at the mean-eld level103,104 or
through simple local approximations, while other relevant contributions can be
treated separately using more sophisticated approaches.93 One classical example
is the hard-sphere interactions and the underlying packing effects, which are
known to be very accurately described by the Roselfeld fundamental measure
theory105–107 (FMT) and its various extensions,107–111 up to very high packing frac-
tions and degrees of polydispersity. The theory is based on the classical weight-
density approximation,112 whereby the weighting densities are chosen so as to
incorporate some key geometrical features of overlapping particles, and the local
free energy is constructed so as to reproduce the correct dimensional crossover, as
well as to satisfy some prescribed properties in the bulk limit.53,107 The remaining
interactions can be treated in a number of different approaches, depending on
the desired degree of accuracy. Traditional approaches involve, for example, the
use of either weighted113–116 or local117–119 concentrations in a known free-energy
density of a related bulk uid, functional expansions about a reference (either
non-uniform or bulk) system,120–122 gradient expansions,91,123 or the introduction
of coupling parameters that allow one to continuously change the equilibrium
properties from a known reference state to the nal one.53,124–126 In the case of
electrostatic correlations, solutions of the mean spherical approximation
(MSA)124,127,128 for the bulk ion correlations are oen employed in a combination
with the methods mentioned above. The great advantage of the MSA is that closed
analytical formulae for the key thermodynamic quantities and pair correlations of
the bulk uid (usually required as inputs in the DFT formalism) are known, which
greatly facilitates the numerical implementation of thesemethods.129–132However,
the MSA relation loses its accuracy in the case of strong electrostatic couplings,
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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since it neglects the non-linear correlations that become relevant in these
regimes.133–135 An alternative is to rely on the hypernetted-chain (HNC) closure
relation136 (which does incorporate non-linear effects) for computing the under-
ling bulk properties. Although the use of the HNC approach requires numerical
solutions of the Ornstein–Zernike (OZ) integral equations, these solutions are
expected to be considerably more accurate in capturing strong ion correlations
than their MSA counterparts.137,138 In spite of additional computation cost, this
gain in accuracy might represent a good compromise whenever ne details of
equilibrium distributions close to interfaces are required, as is the case for the
calculation of the zeta potential close to a highly charged pore surface.

In this work, the theoretical tools described above (DPD simulations and
classical DFT) are combined to investigate the electroosmotic ow along an
innite cylindrical channel, driven by a static electric eld. A DFT method is
proposed that uses the Percus particle-insertion idea to compute the local excess
chemical potential in the framework of the HNC approach.139–141 These chemical
potentials are then evaluated over all the grid points using suitable weighted
densities, thus allowing us to calculate the equilibrium proles in a self-
consistent fashion. The method is then applied to calculate zeta potentials that
characterize the electroosmotic ow through charged cylinders, and compared
with the results of the DPD simulation. Different combinations of ionic charges
and sizes are considered, and a good agreement between DFT and simulation
results is found in all cases. Our simulations show that in the case of divalent
ions, reversal of electroosmotic ow always takes place aer the pore-surface
charge density reaches a threshold value, clearly indicating charge reversal
produced by the condensation of divalent counterions close to the pore surface.
Increasing the ionic size makes the electroosmotic ow reverse back to its normal
direction aer a sufficiently large surface charge is reached. This behavior can be
understood to be a consequence of steric repulsion between the counterions that
prevents the critical number of counterions needed to reverse the pore surface
charge from packing close together within the shear plane.

The remaining part of the paper is organized as follows. In Section 2, the
model system and the applied DPD simulations are described. The Smoluchowski
equation is derived in Section 3. An overview of the DFT formalism used to
compute equilibrium distributions and zeta potentials is provided in Section 4.
Results are then presented and discussed in detail in Section 5, followed by the
closing remarks and perspectives for further investigations discussed in Section
6. Finally, specic details regarding the DFT calculations and implementation are
presented in the Appendices.

2. Model and simulations

Consider a cylindrical pore of radius R, length L and uniform surface charge
density s < 0, as depicted in Fig. 1. Inside the cylinder there are Nsol solvent and N
charged particles. Periodic boundary conditions are applied along the longitu-
dinal z-direction. The no-slip boundary condition is implemented using the
bounce-back method142 at r = R − ri, where ri is the effective ionic radius. The N
charged particles consist of N+ a-valent cations (counterions) and N− monovalent
anions (coions). The total ionic charge at the pore wall is −2pRLs. The “bulk”
concentration of an a : 1 salt is dened as the concentration in the center of the
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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Fig. 1 A sketch of the system. A hollow cylinder, bearing a negative uniform surface
charge density s, has radius R and length L. It contains ions of radius ri and charge q+ = ae
and q−=−e, as well as soft DPD particles representing solvent (not shown in the figure). In
our simulations, a static electric field is applied along the longitudinal axis leading to an
electroosmotic flow. The cylinder is inside a simulation box with periodic boundary
conditions, whose transversal dimensions aremuch larger than L. A 3D Ewaldmethodwith
a correction term, which accounts for the preferential z-wise summation and for the lack
of charge neutrality inside the pore,82 is used to treat all the electrostatic interactions
between the ions. In the DFT calculations, the limit L / N is implicitly considered.
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pore at r = 0, r0 = 0.025lB
−3 (where lB is the Bjerrum length), which gives around

112 mM. We note that in addition to cations derived from salt dissociation, there
are Nc = 2pRLjsj/ae counterions present to neutralize the surface charge, where e
is the elementary charge of a proton. These additional counterions are the result
of dissociation of the surface groups.

The simulations are performed using the DPD method,69 which consists of
conservative, friction, and random forces acting on each particle in such a way as
to respect the uctuation–dissipation theorem and the conservation of
momentum in order to achieve the hydrodynamic limit with a small number of
solvent particles. The simulations are carried out inside a cylinder of R= L= 10lB,
considering the solvent as water at room temperature. Within the DPD
formalism,69 a solvent particle does not correspond to an individual water
molecule, but rather to a cluster of Nw water molecules, which are treated as so
spheres of radius rc. The natural unit of length for the simulations is the Bjerrum
length, lB = e2b/3 = 7.2 Å, where b = 1/kBT and kB is the Boltzmann constant, T is
the temperature and 3 is a uniform dielectric constant over all space – inside and
outside the pore. We will set the size of the pseudo-solvent particles to be rc = lB.
The number of these particles inside the pore is Nsol, with the average concen-
tration set to nsol = 4lB

−3. On average, in bulk, a water molecule occupies 30 Å3 of
volume, which means that a pseudo-particle contains 3 water molecules. The
effects of the dielectric discontinuity across the pore surface can be added using
the Green function formalism developed in ref. 74. Both solvent and ions are
considered with the same mass m and all other DPD parameters are the same as
in the earlier work.82 The electrostatic energy is calculated using a 3D Ewald
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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summation method, corrected for a pseudo-1D geometry inside the pore.73 The
cylinder is placed along the minor axis of a rectangular simulation box of sides Lp
× Lp × L, with periodic boundary conditions in the z-direction. Outside the pore,
the simulation contains empty space. This empty space is necessary because the
3D Ewald method creates spurious replicas of the pore in all 3 dimensions. The
value Lp = 4R allows the formation of an empty space outside the cylinder,
necessary to avoid the interaction between the undesired periodic replicas along
the x and y-directions. The electrostatic force acting on each ion can be calculated
from the gradient of the electrostatic energy.82 Additionally to the DPD and
electrostatic forces, a truncated Lennard-Jones potential143 with sLJ = 2ri, strength
3LJ= 2b−1 and cutoff radius rLJ= 21/6sLJ is included in the interactions between all
charged particles. The electroosmotic ow is induced by an external electric eld
E0 = 1(belB)

−1 applied in the +z-direction, leading to a force Fz = qiE0ẑ on an ion i.
Note that the electric elds used in computational simulations are much stronger
than the typical experimental elds, which would induce very weak currents,
similar to the numerical error in simulations. In the regimes studied in the
present paper, the induced ows are linearly proportional to the external eld, so
that the corresponding ows under the experimental conditions can be easily
obtained by a simple scaling. The integration of the equations of motions is
implemented using the Velocity–Verlet algorithm.144 The statistical analysis is
performed over 5 × 104 samples obtained each 10 time steps, aer a stationary
ow is established, which takes approximately 5 × 105 time steps.
3. Smoluchowski equation

When a static electric eld is applied along the pore axis, a steady current is
established aer a transitory period. From symmetry, the stationary velocity
prole depends only on the radial distance from the cylinder’s major axis. In
a cylindrical geometry, the Stokes equation reduces to82

0 ¼ E09q þ hV2v (1)

where h is the dynamic viscosity and v is the z component (along the major axis of
the cylinder) of the uid velocity. The ionic charge density 9q is dened as
9q ¼P

i
aieri, where ri is the local concentration of ionic species i, and is related to

the electrostatic potential f(S) by the Poisson equation:

V2fðSÞ ¼ �4p

3

�
sdðS � RÞ þ 9qðSÞ

�
; (2)

where S is the radial distance measured from the center of the pore and d repre-
sents the Dirac delta function. Combining eqn (1) and (2), we obtain the Smo-
luchowski equation,

vðSÞ ¼ 3E0

4ph
ðfðSÞ � zÞ; (3)

where we have dened the electrostatic potential at the shear plane as f(Ssh)h z.
The location of the shear surface is dened as the radial position at which the
uid velocity vanishes, v(Ssh) = 0. The DPD simulations allow us to calculate the
uid velocity in the center of the pore v(0) – see Fig. 3. Setting the electrostatic
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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potential at the center of the pore to be zero, we can use the uid velocity at the
center of the pore and eqn (3) to calculate the zeta potential,

~z ¼ �4p~h~vð0Þ
~E0

; (4)

where ~h = h(b/m)0.5lB
2, ~E0 = bqlBE0 , and the reduced velocity is dened as ~v =

v(mb)0.5. The reduced dynamic viscosity for our system can be calculated using
a separate DPD simulation of a simple Poiseuille ow,145 yielding ~h=1.13. We
should note that with the natural time scale of our simulations s0 ¼ lB

ffiffiffiffiffiffiffi
mb

p
the

characteristic viscosity is about two orders of magnitude smaller than that of
water. It is easy to rescale the characteristic time, so as to get the exact value of
viscosity of water; however, this will perturb other properties, such as the
electric eld, diffusivity, and velocity of ions. There is a large part of the DPD
community working on a way to adjust various parameters in the conservative
and dissipative parts of force in the DPD algorithm to properly describe various
aspects of solutions, and in particular to get the correct Schmidt number. In our
case, however, we shall not worry about these complications, since our goal is to
test the Smoluchowski equation, which for the pore geometry should be valid
for an arbitrary solvent viscosity. The value of ~z obtained using eqn (4) can be
compared with an independent calculation of the electrostatic potential at the
location of the shear plane. To do this, we will now proceed to construct a DFT
theory that will allow us to accurately calculate the ionic distributions inside the
pore.

4. Density functional theory

As discussed above, the uid velocity prole can be related with the equilibrium
electrostatic potential via the Smoluchowski equation. The electrostatic potential
can in turn be computed once the equilibrium proles are known, e.g. by a simple
application of the Gauss law. In order to compute the equilibrium proles, we
shall here employ the DFT formalism for the model system described above. We
begin by writing the equilibrium grand potential as a combination of different
functionals:

U½friðrÞg� ¼ F id½friðrÞg� þ F ex½friðrÞg� þ
X
i

ð
ðfiðrÞ � miÞriðrÞdr; (5)

where {ri(r)} denotes the collection of density proles of the various conned
species, F id and F ex denote the ideal gas and excess (over ideal) free-energy
functionals, respectively, mi is the reservoir chemical potential of component i,
and fi(r) is the external (surface) potential acting on species i and is composed of
an electrostatic contribution, fel

i (r), in addition to the hard repulsion potential,
fhs
i (r), at wall–ion contact. The ideal gas contribution is

F id½friðrÞg� ¼ kBT
X
i

ð
riðrÞ

�
log
�
L3riðrÞ

�� 1
�
dr; (6)

where L denotes the thermal wavelength. The excess free-energy, F ex, contains
the contributions from all particle interactions. It is convenient to further split
this quantity into hard-sphere and electrostatic contributions, F ex ¼ Fhs þ F el.
The hard-sphere contribution is known to be accurately described by the FMT
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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formalism, where it is written in terms of a local free energy density F[na(r)]
as106,107

F hs½friðrÞg� ¼
ð
F½fnaðrÞg�dr (7)

The quantities na(r) are obtained as weighted averages over the particle
proles,

naðrÞ ¼
X
i

ð
ri
�
r 0
�
ui

ðaÞ�r� r 0
�
dr 0; (8)

where ua
i (r − r ′ ) are a set of suitable weighting functions (either scalar or vector

elds) that depend on the geometry of the overlapping particles. In the case of
hard-spheres, these quantities correspond to four scalar functions u(3)

i (R)=Q(ri−
R), u(2)

i (R)= d(R− ri), u
(1)
i (R)= u(2)

i (R)/4pri and u0
i (R)= u(1)

i (R)/4pr2i , and two vector
functions u(2)

i (R) = −Vu3
i (R) = d(R − ri)êR and u(1)

i (R) = u(2)
i (R)/4pri. Here, Q

denotes the Heaviside step-function, which vanishes if x < 0 and equals one
otherwise and R = jr − r′j, ri is the radius of particle component i, and êR denotes
a unit vector pointing in the direction of r − r′. Due to the translational symmetry
along the longitudinal direction z and the azimuthal symmetry around the
principal axis of the pore, the equilibrium proles only depend on the radial
distance S from the cylinder center. It follows that the integrals over both the
azimuthal angle 4 and the longitudinal coordinate z can be performed explicitly.
The detailed calculations can be found in Appendix A. Here, we apply the White-
Bear version of the FMT, in which the free energy density is given by107,109,110

bF½fnaðrÞg� ¼ �n0 lnð1� n3Þ þ n1n2 � n1$n2
ð1� n3Þ þ n2

3 � 3n2n1$n2

36pn23ð1� n3Þ2

�
h
n3 þ ð1� n3Þ2lnð1� n3Þ

i
: (9)

This functional was constructed to correctly reproduce the Mansoori–Carna-
han–Starling–Leland (MCSL) equation of state in the bulk limit.146

The electrostatic functional F el can be separated into mean-eld and residual
functionals, F el ¼ Fmf þ F res, the latter containing all effects from the electro-
static correlations, which are fully neglected in the mean-eld contribution. The
mean-eld functional reads

Fmf ¼ e2

23

X
ij

ð
aiajriðrÞrj

�
r 0
�

jr� r 0j drdr 0; (10)

where the sum is performed over all ionic species. This contribution can be clearly
recognized as the electrostatic energy arising from ion interactions, if their
positional correlations are ignored. It is convenient to combine this contribution
with the ion-surface Coulomb interactions present in the last term of eqn (5):

X
i

eai

ð
fel
i ðrÞriðrÞdr ¼

X
i

e2

3

ð
airiðrÞ9pore

�
r 0
�

jr� r 0j drdr 0; (11)
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.

https://doi.org/10.1039/d3fd00062a


Faraday Discussions Paper
Pu

bl
is

he
d 

on
 1

1 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

by
 P

N
N

L
 T

ec
hn

ic
al

 L
ib

ra
ry

 o
n 

9/
23

/2
02

3 
11

:3
4:

44
 P

M
. 

View Article Online
where 9poreðr 0Þ ¼ sdðS 0 � RÞ is the cylinder surface charge density. We thus arrive
at the total mean-eld electrostatic contribution given by:

F coul�mf ¼ e

2

X
i

ai

ð
riðrÞjðrÞdr; (12)

where j(r) denotes the mean-eld averaged electrostatic potential inside the
cylinder:

jðrÞ ¼ e

3

ð X
i

airi
�
r 0
�þ 9pore

�
r 0
�! dr 0

jr� r 0 :j : (13)

Since the ionic density distributions depend only on the radial distance, the
averaged potential will clearly possess the same symmetry. Performing the inte-
gration over the azimuthal angle 4′ and the longitudinal coordinate z′, one nds

jðSÞ ¼ 4pe

3

X
i

ai

ðS
0

ln

�
S
0

S

�
ri
�
S
0�
S
0
dS

0
; (14)

where we have set the potential to vanish at the center of the cylinder. Note that
the surface charge does not contribute explicitly to the internal potential (apart
from an arbitrary shi), a fact that could have been anticipated based on the
Gauss law and symmetry considerations. Its contribution is, however, implicitly
accounted for by the lack of electroneutrality of the conned ions, whose charge
must balance the charge on the pore surface.

The only contribution le in eqn (5) is the residual contribution F res, which
accounts for the electrostatic correlations. Instead of calculating this contribution
explicitly, we shall here adopt a different approach, in which the corresponding
chemical potentials will be evaluated in the context of the HNC approach, as

shown below. Application of the Euler–Lagrange condition
dU

driðrÞ
¼ 0 to the

functional eqn (5) then yields

ri(S) = r0i exp(−baij(S) − mhsi (S) − mresi (S)) (15)

for S # R − ri, and ri(S) = 0 for S > R − ri. The latter condition is due to the

hard-core ion–surface interactions. In the relation above, r0i ¼
ebmi

L3 are the particle

activities in the reservoir which is implicitly in contact with the system. In prac-
tice, these concentrations are adjusted to provide the desired “bulk” concentra-
tions far away from the surface, at S = 0. The hard-sphere and residual chemical

potentials are dened as mhs
i ðSÞ ¼ dFhs

driðSÞ
and mres

i ðSÞ ¼ dF res

driðSÞ
, respectively. The

former quantity can be readily evaluated from eqn (7) to be:

mhs
i ðSÞ ¼

X
a

ð
vF

vnaðr 0Þu
ðaÞ
i

�
r 0 � r

�
dr 0: (16)
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Again, we emphasize that, due to rotational and translation symmetries across
the longitudinal axis, the integration above is a function of the radial coordinate S
alone (see Appendix A).

In order to calculate the residual ionic contribution mresi (S), we adopt an
approach rst introduced by Percus, in which the addition of a particle at some
location of an otherwise uniform uid is considered as the source of an external
eld. This allows for the application of the tools of classical DFT for computing
equilibrium distributions and free-energy changes, which in this case can be
directly assigned to pair correlation functions and excess chemical potentials,
respectively, of the corresponding uniform system. Our strategy here is to relate
the quantity mresi (r) to the free-energy change upon adding a particle in a uniform
system whose concentrations can be identied as suitable average concentrations
at point r. The physical picture behind this idea is that the insertion of an ion at
a given point will induce a polarization cloud in its vicinity, which comes at the
expense of an energy uctuation. Alternatively, the energy change upon particle
insertion can be identied as the work that must be done in order to bring the
particle from innity up to its actual position – the so-called potential of mean
force. In the context of the HNC approach, the change in excess free energy when
an ion is inserted into an otherwise uniform electrolyte is (see Appendix B):

bmex
i ¼ 1

2

X
j

r0j

ð�
1þ hijðrÞ

2

�
Gsr
ij ðrÞdr� bDji; (17)

where hij(r) are total correlation functions, Gsr
ij (r) h hij(r) − csrij (r), with

csrij ðrÞ ¼ cijðrÞ þ lBaiaj

r
being the short-range contribution of the direct pair

correlations cij(r), and bDjihbji � bj0
i ¼ lB

P
j
r0j aj

Ð hijðrÞ
r

dr is a density-

dependent correlation potential – the change in electrostatic potential induced
by the polarizing cloud upon insertion of an ion of species i. These quantities are
related via the Orstein–Zernike equation,

GijðrÞ ¼
X
k

r0k

ð
Gik

�
r 0
�
ckj
�		r� r 0

		�dr 0; (18)

where GijðrÞ ¼ hijðrÞ � cijðrÞ ¼ Gsr
ij �

aiaj lB
r

. This equation is to be supplemented
by the HNC closure relation,

cij(r) = e−buij(r)+Gij(r) − Gij(r) − 1 (19)

allowing for the unique determination of the two unknowns cij(r) and Gij(r).
Now, eqn (17) can be used to estimate the residual chemical potential in the
context of a local-density approximation, in which the bulk concentrations r0j are
replaced by the corresponding local equilibrium proles, r0j / rj(r). The quan-
tities mexi (r) would in that case be local functionals of the density distributions.
However, such local DFTs are inaccurate or even unstable in the case of strongly
charged surfaces, when the local density proles undergo strong spatial varia-
tions. A more appropriate approach is to consider the free energy to be a func-
tional of weighted densities:

ni(r) =
Ð
ri(r

′ )ui(r − r ′)dr ′ (20)
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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where the weighted functions ui(r) are normalized to unity, in such a way as to
recover the uniform densities in the bulk regime. We take the weighting functions

to be uiðrÞ ¼ 3
4pRi

3 Qðr � RiÞ, where Ri= ri + x/2, and x ¼
�
4plB

P
i
riai

2

��1=2
is the

local Debye length at a given point – see the discussion in Appendix B. The residual
chemical potentials are then evaluated in a self-consistent fashion as follows. First,
a set of guess functions ri(r) is introduced (e.g., via solutions of the mean-eld PB
equation) and used in eqn (20) to evaluate the corresponding set of weighted
densities. At each observation point r, eqn (18) and (19) are numerically solved
(under the replacement r0j / nj(r)) to provide the corresponding functions cij(r) and
Gsr
ij (r), which now become functionals of the equilibrium densities. The excess

chemical potentials are then computed via eqn (17) at each grid point r. Note that
the pair interactions uij(r) in eqn (19) comprise both electrostatic and hard-sphere
interactions, and as a result the excess chemical potential also contains contri-
butions from hard-sphere correlations. Since these contributions are already
accounted for in eqn (16), they have to be removed from eqn (17) to avoid double-
counting. This is done by evaluating this quantity for a uncharged system (qi= 0) of
same concentrations. The resulting excess chemical potentials only contain elec-
trostatic correlation effects, and can be readily identiedwith the residual chemical
potentials mresi in eqn (15). Aer calculating the electrostatic potential and hard-
sphere chemical potentials from eqn (14) and (16), respectively, new proles can
be obtained from eqn (15). The process is then repeated until convergence is
achieved, following an optimized estimation method described in ref. 147.

In order to test the relevance of electrostatic correlations for ionic distributions
inside charged pores – as well as the performance of different approaches in
accounting for electrostatic correlations – we show in Fig. 2 comparisons between
computer simulations and DFT approaches with different levels of approxima-
tion. Apart from the proposed weighted-HNC approach (red curves), we also show
results in which the electrostatic correlations are fully neglected (amounting to
set mresi = 0, see black curves), as well as predictions from a functional expansion
around the bulk electrolyte in which the MSA approach is used to compute
electrostatic correlations. In the latter case, the residual electrostatic correlations
are computed via the following expression:

bmres
i ðrÞ ¼ bmres

0i þ
X
j

ð
c0ij
�		r� r 0

		�drj�r 0�dr 0; (21)

where mres0i are the bulk residual chemical potentials, while c0ij(jr − r′j) are the
electrostatic contributions to the bulk direct correlations (computed in the
framework of the MSA approximation) and drj(r

′) = rj(r) − r0j represent the rst-
order deviations from bulk distributions. Eqn (21) follows directly from a func-
tional expansion of the excess free-energy around a reference bulk uid. The
resulting bulk-MSA approach has been widely applied as a robust DFT approach
due to its reasonable accuracy and ease of implementation.

It is clear from Fig. 2 that the electrostatic correlations in the case of 2 : 1
electrolyte are signicant, and cannot be neglected (see black curves). We also see
that the bulk-MSA approach is slightly more accurate than the bulk-HNCmodel in
predicting the depth in counterion distributions, although the position of the
minimum is better captured by the bulk-HNC approach. Overall, both approaches
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Comparison between equilibrium ionic profiles of 2 : 1 electrolyte close to highly
charged cylindrical surfaces, obtained using different DFT approaches and the results from
DPD simulations (open circles). Blue lines are the results of the bulk-MSA expansion
approach, while red curves are the predictions of the weighted-HNC approximation. In all
cases, the ion size is fixed at ri= 0.25lB. The upper panels show counterion (a) and coion (b)
ionic distributions for a surface charge density of s = −0.30 C m−2, whereas the lower
panels show counterion (c) and coion (d) distributions for a pore-surface charge density
s = −0.42 C m−2.
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perform reasonably well in predicting the counterion distributions. However,
a large difference is observed when it comes to the coion distributions. In that
case, the bulk-MSA approach is able to correctly predict the position of the peak in
the anion distribution close to the charged wall. However, the height of the peak
is clearly underestimated (see Fig. 2(b) and (d)). The proposed weighted-HNC
approach is, on the other hand, able to accurately predict both the position
and the height of the maximum of anion distribution. These results indicate that
the proposed HNC approach can work as a promising alternative to the MSA-
based theories in the presence of strong charge-layering effects. As we shall
shortly see, this better agreement between theory and simulations is reected in
a more accurate prediction of the zeta potentials by the weighted-HNC approach,
at least in cases where electrostatic correlations play a signicant role in deter-
mining static ionic distributions.
5. Results
5.1 Monovalent electrolyte

In this section, we show results for the case of conned monovalent electrolyte.
The uid velocity proles obtained from DPD simulations for various cylinder
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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Fig. 3 Fluid velocity profiles for monovalent electrolyte solution considering two different
ionic radii. The parameters are described in the text. The left and right panels show profiles
for ionic radii ri = 0.25lB and ri = 0.5lB, respectively.
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surface charge densities and two different ionic radii are shown in Fig. 3. It can be
observed that, in the case of weakly charged surfaces, the uid ow increases
monotonically with the surface charge density. However, different qualitative
behaviors are observed as the ionic size is changed. For a small ionic radius, ri =
0.25lB, the uid ow is already saturated at s = −0.18 C m−2. This is not the case
for ri = 0.5lB, where the uid ow continues to increase even at higher charge
densities. This behavior may appear to be somewhat counter-intuitive since, at
rst sight, the stronger connement in the case of larger ions might be expected
to reduce the ionic mobility. According to Smoluchowski's equation, however, the
steady state velocities at the cylinder center are proportional to the potential drop
at this position with respect to the shear plane. Initially, an increase in surface
charge leads to larger potential drops, which thus enhances ionic ow. However,
as the surface charge increases beyond a certain threshold value, an increasingly
large number of counterions will condense onto the shear plane, which effectively
renormalizes the surface charge and saturates the zeta potential. This is not the
case when the ionic size is increased. In this case, the ability of counterions to
screen the surface charge is reduced by the packing constraints, preventing the
condensation of a very large number of counterions within the shear plane. In
order to clearly observe the saturation (monovalent counterions) and inversion
(divalent counterions) of uid ow, we plot the uid velocity in the center of the
pore, S = 0, as a function of surface charge density in Fig. 4. In the case of
monovalent ions, the ionic size does not play a signicant role for the uid ow in
the regime of weak to moderate surface charges (jsj ( 0.2 C m−2). A signicant
size dependence, however, is observed for strongly charged pores. While for small
ions the ow velocity saturates with the surface charge density, for large ions it
increases linearly (Fig. 4, rst panel).

Similar behavior is observed with the zeta potential. In previous DPD simu-
lations of a pure DPD uid,82 the shear surface was found to be located at
a distance 0.1rc from the channel surface. Since the hard-core repulsion prevents
ions from coming closer than ri to the pore surface, in the presence of counterions
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Fig. 4 Fluid velocity profiles in the middle of the nanopore as a function of charge density
for various parameters. The left and right panels show profiles for monovalent and divalent
ions, respectively.
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we will dene the shear plane to be located at Ssh = R − ri − 0.1rc. The zeta
potential is then dened as the electrostatic potential at the location of the shear
plane, z= f(Ssh). This quantity is crucial for understanding the velocity proles in
the stationary regime and can be obtained using simulations, DFT, or the mean-
eld PB theory. Consider the electrostatic potential proles, shown in Fig. 5. We
observe that zeta potentials, in the case of smaller ions, achieve a saturation
regime beyond which the dependence on the surface charge is very weak. On the
other hand, for large ions, an unbound growth of the zeta potential is observed as
the surface charge on the pore increases. This is consistent with the stationary
ow observed in our DPD simulations. The Smoluchowski equation, eqn (4), can
Fig. 5 Electrostatic potential inside a pore for 1 : 1 electrolyte solution for a stationary flow
obtained fromDPD simulations. Two different ionic radii are considered, as indicated in each
panel. Further details about the considered parameters can be found in the text.

This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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Fig. 6 Zeta potential as a function of surface charge density for monovalent electrolyte
and two different ionic radii, as indicated in each panel. The parameters are described in
text.
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be used to relate the zeta potential to the uid velocity obtained from simulations
(Fig. 6, circles). Alternatively, it can be calculated directly from the electrostatic
potential at the location of the shear plane (Fig. 6, squares). Knowledge of the
location of the shear plane also allows us to use DFT or PB theory to predict the
value of the zeta potential. In Fig. 6, we show the comparison between zeta
potentials calculated using simulations, DFT, and PB mean-eld theory. The DFT
and PB perform well for low to moderate surface charge densities and small ions.
The PB approach predicts the saturation of the zeta potential for large pore
surface charge, which we clearly see not to be the case for large ions. On the other
hand, the DFT works very well even for high surface charges and large ions. We
also see that the calculations of the zeta potentials obtained using the uid
velocity at the center of the pore and the Smoluchowski equation agree reasonably
well with the ones obtained from the equilibrium electrostatic potential at the
shear plane. However a signicant difference can be noticed for very large surface
charge densities.
5.2 Divalent electrolyte

In Fig. 7, the uid velocities for 2 : 1 electrolyte in pores with different surface
charge densities are shown. For ions with radius ri= 0.25lB, the uid ow reverses
direction when jsj > 0.18 C m−2. For such pores, more counterions condense near
the pore surface than is necessary to neutralize the surface charge. This leads to
the vanishing of the radial component of the electric eld, indicating that the
“effective” charge of the pore has reversed sign. In Fig. 8, we show the electrostatic
potentials inside pores of different surface charge densities, containing 2 : 1
electrolyte. We can clearly see a highly non-monotonic behavior of the electro-
static potential, in contrast to the monotonic decay observed in Fig. 5. For 2 : 1
electrolyte inside pores with larger surface charge, the electrostatic potential
develops a maximum close to the shear plane, indicating that the radial electric
eld vanishes at this position, signifying that charge reversal has taken place. On
the other hand, for 1 : 1 electrolyte, the electric eld only vanishes at the origin, so
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Fig. 8 Electrostatic potential profiles for divalent electrolyte solution considering two
different ionic radii, as indicated in each panel. Details about the considered parameters
are described in the text.

Fig. 7 Fluid velocity profiles for 2 : 1 electrolyte solution for ions of two different ionic size,
as indicated in each panel. The parameters are described in the text.
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complete neutralization of the surface charge never takes place. Not all of the ions
that are reversing the pore surface charge are within the shear plane and are truly
“condensed”. This results in a very complex uid ow, where close to the pore
surface the uid ows in one direction, but farther away it reverses the ow. For
such complex ows, we nd that the Smoluchowski equation is only semi-
quantitatively correct. In particular, it does not precisely predict the location of
the stagnation surface where the ow velocity vanishes – see Fig. 7.

Comparing Fig. 7 and 8, we see that the appearance of a maximum in the
electrostatic potential can be associated with the reversal of the electroosmotic
ow. Furthermore, we observe that for bigger ions with ri = 0.5lB, the reversal
occurs even for relatively weakly charged pores, 0.06 C m−2 < jsj < 0.4 C m−2. Note
that the lower bound for the reversal of the electroosmotic ow in this case is 3
times smaller than for ions of radius ri = 0.25lB. On the other hand, for large ions
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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and jsj > 0.4 C m−2, the ow reverses again, returning to the original direction.
This behavior is a result of strong steric repulsion between large ions. For strongly
charged pores, there is no space near the pore surface to pack a sufficient number
of counterions necessary to neutralize or reverse the surface charge of the pore.
On the other hand, the fact that large ions are more efficient than small ions at
reversing the electroosmotic ow for weak-to-moderately charged pores, at rst
sight, appears very surprising. The explanation for this counterintuitive behavior
is two-fold. The contact theorem allows us to relate the concentration of ions in
contact with the surface to the osmotic pressure.148–151 For the same number of
ions, the pressure will be bigger for large ions than for small ones. This is due to
electrostatic and steric correlations between the counterions and coions. When
a counterion is in the bulk (far from the surface), its electric eld is perfectly
screened by the other ions of the electrolyte. This leads to favorable (negative)
electrostatic solvation free energy.52 When an ion moves to the surface, the
screening cloud is deformed and the solvation free energy becomes less negative.
Clearly the effect is much more important for small ions – when cations and
anions can come in close to each other – than for large ions. Therefore, the
electrostatic solvation free energy favors small ions to stay away from the surface
more than large ions. In addition, the steric repulsion between the ions in the
bulk raises the osmotic pressure of large ions, compared to the small ions at the
same concentration – again favoring the expulsion of large ions towards the
surface of the pore. These two mechanisms explain why, for the same bulk
concentration and (small to moderate) surface charge density, larger counterions
adsorb to the surface more than small ions.

Using the same location of the shear plane as for 1 : 1 electrolyte, we can once
again calculate the value of the zeta potential from the stationary electrostatic
potentials inside the pore. Alternatively, the zeta potential can be calculated using
the Smoluchowski equation, eqn (4), and the uid velocity at the center of the pore
obtained from the DPD simulations. The results are shown in Fig. 9. The proposed
DFT theory can also be applied to calculate the zeta potential considering the same
shear-plane denition. All approaches (including the DFT in the context of the
Fig. 9 Zeta potential as a function of the surface charge density for divalent electrolyte
and two different ionic radii, as indicated in each panel. The remaining parameters under
consideration are described in the text.
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Fig. 10 Velocity profiles for 2 : 1 electrolyte calculated using the Smoluchowski equation,
eqn (4), with the electrostatic potential calculated directly from the simulations, for two
different ionic radii as indicated in each panel. Although the fluid flow profiles are quali-
tatively similar to the ones observed in the DPD (Fig. 7), there are clear quantitative
differences. In particular, note that the peak in velocity predicted by the Smoluchowski
equation is significantly smaller than what we see in simulations. This clearly indicates the
breakdown of the Smoluchowski equation for multivalent electrolyte solutions.
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bulk-MSA approach) are compared in Fig. 9. From these results, it is clear that the
proposed weighted-HNC approach performs better than the traditional bulk-MSA
approximation in the case of smaller ions, where electrostatic correlations play
a major role. On the other hand, the weighted-HNC approach becomes less accu-
rate in the case of larger ion sizes and strongly charged surfaces. Such a lack of
accuracy can most likely be attributed to the large averaging size of the weight
function, which makes it difficult to capture strong local variations in the coun-
terion distributions of large ions in close proximity to highly-charged surfaces. We
also note that the agreement between zeta potentials calculated using the Smo-
luchowski equation and the shear plane can be improved by supposing that the
shear plane moves farther away from the pore surface for highly charged pores.
However, a more critical analysis indicates that for 2 : 1 electrolyte the Smo-
luchowski equation starts to breaks down. This is particularly evident when
a complex two-layer ow takes place. If we use the exact stationary electrostatic
potentials obtained from the DPD simulations to calculate the full velocity proles
using the Smoluchowski equation (eqn (4)) – see Fig. 10 – we nd only a qualitative
agreement. In particular, the peak in velocity close to the pore surface predicted by
the Smoluchowski equation when reversal of the electroosmotic ow takes place is
signicantly smaller than what we see in simulations, indicating that in the case of
2 : 1 electrolytes the Smoluchowski equation is only qualitatively valid.
6. Conclusions

In this paper, we have studied the electroosmotic ow in charged nanopores with
monovalent and divalent electrolyte with ions of two different sizes. The uid ow
depends strongly on ionic size and charge. This is due to strong steric and elec-
trostatic correlations close to the charged surface. The zeta potential obtained
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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from the DPD simulations can also be calculated using either the PB equation or
DFT, given the location of the shear plane. For low to moderate charge densities,
in the case of small ionic size and monovalent electrolyte, both theoretical
approaches are quite accurate. On the other hand, for large monovalent ions, the
PB theory fails to predict the correct zeta potentials and corresponding electro-
osmotic ow, while the DFT remains very accurate, even for highly charged
surfaces. The zeta potential obtained using the Smoluchowski equation agrees
reasonably well with the mean electrostatic potential at the shear surface, located
slightly away from the contact plane, for both monovalent and divalent electro-
lytes. The proposed weighted-HNC DFT approach works well up to high surface
charges, specially in the case of smaller ions, in which case its performance is
shown to be better than MSA-based DFT approaches. In the case of large ions, the
theory is only semi-quantitative when the channel surface charge becomes very
high. This is partially due to packing effects which can not be properly described
in the framework of the HNC approach. Moreover, the larger averaging sizes of
the weighted-densities in the case of bigger ions close to highly-charged surfaces
may underestimate the role of electrostatic correlations, thus requiring the need
for different weighting approximations in this case. We also note that the Smo-
luchowski equation starts to break down for 2 : 1 electrolyte, predicting uid
velocity proles that are signicantly different from the ones observed in DPD
simulations. In future work, it would be important to understand the mecha-
nisms responsible for the breakdown of this important equation.
Appendices
Appendix A: FMT in cylindrical coordinates

In this Appendix, we shall present some details regarding the FMT imple-
mentation in cylindrical coordinates. To this end, we consider a system subject to
an external potential which possess both azimuthal and longitudinal symmetries
in a cylindrical coordinate system, as depicted in Fig. 11. As a consequence of
rotational and translational invariances with respect to the longitudinal axis (z-
axis), the resulting density proles will depend only on the radial coordinate S,
i.e., the transversal distance from the z-axis. The quantities in FMT can be
expressed as convolutions of the type

f(r) =
Ð
u(r − r ′ )r(r ′ )dr ′ (A1)

where u(r − r′) are short-ranged functions which depend on the distance between
source (r′) and observation (r) points. In order to numerically evaluate the above
integral, it is convenient to consider (without loss of generality) a cylindrical coordi-
nate system in which the observation point lies along the x-axis, as shown Fig. 11. In
terms of Cartesian unit vectors êi, the observation and source points can be written as
r = Sêx and r′ = S′ cos4′êx + S′ sin4′êy + z′êz, respectively, where (S

′, 4′, z′) denotes the
set of cylindrical coordinates of point r′. Dening R = r − r′ as the vector connecting
observation and source points, it follows from this choice of reference frame that

R = (S − S′ cos 4′)êx − S′ sin 4′êy − z′êz (A2)
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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Fig. 11 Cylindrical coordinate system that has been set up for our FMT calculations. The
observation point r lies along the x-axis, whereas the source points r′ can be located
anywhere.
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The distance between observation and source points can thus be written in

cylindrical coordinates as R ¼
ffiffiffiffiffiffiffiffi
jRj2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ S02 � 2SS0 cos40 þ z02

p
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R
2 þ z02

p
,

where ~Rh
		S� S0

		 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ S02 � 2SS0 cos40p

is the transversal distance between
these points, and can in the following be interpreted as an implicit function of S,
S′ and 4′. Let us rst consider the case in which u depends only on the distance
between observation and source points, i.e., u = u(R). In this case, the integral
eqn (A1) can be explicitly written as

f ðSÞ ¼
ðN
0

S
0
r
�
S
0�
dS

0
ðp
�p

d4
0
ðN
�N

uðRÞdz0; (A3)

where we have exploited the radial symmetry of the density distributions. Since R
is an even function of both z′ and 4′, the integrals above can be rewritten as

f ðSÞ ¼ 4

ðN
0

S
0
r
�
S
0�
dS

0
ðp
0

d4
0
ðN
0

uðRÞdz0; (A4)

where the factor of 4 accounts for the change in the lower integration limits. Now,
the integral over z′ can be converted into an integration over R via the substitution

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2
p

, which implies dz0 ¼ RdR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2
p

¼ d
dR


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2
p

dR
�
. With

this substitution, the function f(r) now reads

f ðSÞ ¼ 4

ðN
0

S 0
r
�
S 0�dS 0

ðp
0

d4
0
ð
~R

N

uðRÞ d

dR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2

q !
dR (A5)

Since the weight function u(R) vanishes beyond some cut-off distance Rc, the
replacement u(R) / u(R)Q(Rc − R) can be made above. Clearly, f(S) will be zero
when ~R > Rc, as the last integral above spans a region where u(R) vanishes
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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identically. More precisely, f(S) will be non-zero for a given S only in regions (S′, 4′)
in the transversal plane such that ~R # Rc. This condition limits the range of
integration along the planar variables S′ and 4′, which are constrained to satisfy:

~R2 = S2 + S′2 − 2SS′cos 4′ # Rc
2. (A6)

Since cos4′ is limited to the range−1# cos4′# 1, it is clear that the function ~R=

jS− S′j has its range limited to the region jS− S′j# ~R# S + S′. Therefore, for points in
the transversal plane inwhich Rc is larger than the upper bound of ~R, i.e., such that S +
S′# Rc, the condition above will be satised for all 4′ in the range 0# 4′# p, in such
a way that the limits of integration of 4′ need not be changed in eqn (A5). Note that,
since both S and S′ are non-negative, this requirement can only be satised at
observation points such that S < Rc (or, equivalently, jrj# Rc). This condition implies
that the integration over S′ (when S < Rc) can be performed over the range 0# S′# S−
Rc, while the integration limits in 4′ are kept unchanged. In the remaining interval (S
− Rc # S′ # S + Rc), the upper bound in the 4′ integration has to be changed in order
to full the condition in eqn (A6). This happens because, when S + S′ > Rc, the
fullment of the condition in eqn (A6) further requires that Rc should exceed the
lower bound of jS− S′j < Rc (since otherwise ~R# Rc for all 4

′). In that case, the integral
over S′ should be limited to the range jS− S′j < Rc, i.e., S− Rc# S# S + Rc if S > Rc and
Rc − S # S # S + Rc when S < Rc. This means that the inequality in eqn (A6) will
certainly be satised at the lower limit 4′= 0, but not at the upper boundwhere4′=p

(since S + S′ > Rc). As a consequence, there must be a maximum value of 4′ within the
range 0 # 4′ # p, up to which the condition in eqn (A6) is no longer fullled. The
corresponding value of 40

m is obviously the one that corresponds to the equality of
both sizes of eqn (A6), which leads to:

4m ¼ cos�1
 
S2 þ S02 � Rc

2

2SS0

!
¼ cos�1

 
ðS þ S0Þ2 � Rc

2

2SS0 � 1

!
: (A7)

It is important to notice that the algebraic equation above is limited to situ-
ations where jS − S′j # Rc # S + S′ (the case in which jS − S′j > Rc makes the
integrand vanish identically, whereas the case S + S′ > Rc / S < Rc − S′ has been

discussed above). These conditions make sure that the quantity
ðSþ S0Þ2 � Rc

2

2SS0
is

always limited within the range 0#
ðSþ S0Þ2 � Rc

2

2SS0
# 2, which guarantees that

a real solution for 4m in eqn (A7) can be found numerically.
In view of the above discussion, the integrals representing f(S) in the case of

functions u(R) that vanish beyond a given cut-off distance Rc can be simplied as
follows. In the situation where S < Rc, we have:

f ðSÞ ¼ 4

ðRc�S

0

r
�
S
0�
S
0
dS

0
ðp
0

d4
0
ðRc

~R

uðRÞ d

dR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2

q !
dR

þ
ðRcþS0

Rc�S

ð4m

0

d4
0
ðRc

~R

uðRÞ d

dR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2

q !
dR; ðS#RcÞ; (A8)

whereas in the region S > Rc, the function f(S) can be explicitly written as:
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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f ðSÞ ¼ 4

ðSþRc

S�Rc

r
�
S
0�
S
0
dS

0
ð4m

0

d4
0
ðRc

~R

uðRÞ d

dR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2

q !
dR ðS.RcÞ; (A9)

where 4m is the solution of eqn (A7). Notice that the rst term in eqn (A8)
corresponds to the situation where S + S′ < Rc, in which case condition eqn (A6) is
satised for all values of 4′. It is also important to note that the upper integration
limit S + Rc in the radial integrals is in practice to be replaced by min(S + Rc, Sm),
where Sm is the maximum radial distance from the z-axis (e.g., where the system
boundary is located). Finally, we mention that the integrals over R have been
written in a format suitable for evaluation via integration by parts, once the
functions u(R) are explicitly known.

We are now in a position to apply the above general results to obtain explicit
integrals for the FMT weighted densities in eqn (8). The weighted densities n(a)(S)
should now play the role of f(S) in eqn (A8) and (A9), while u(R) is to be replaced by
the corresponding weighted densities, with cut-off distances Rc / ri. Let us start
with u(3)

i (R) = Q(ri − R). This case corresponds to the replacements u(R) / 1, Rc
/ ri, and f(S) / n(3)(R) (together with an implicit summation over all particle
species i). The integrals over R in eqn (A9) can be evaluated right away, yielding:

nð3ÞðSÞ ¼ 4
X
i

ðSþri

S�ri

ri
�
S
0�
S
0
dS

0
ð4m

0

d4
0
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � ~R
2

q !#ri
~R

ðS. riÞ; (A10)

with similar relations holding for the case S # Rc = ri in eqn (A8). Evaluating
the upper and lower integration limits, we nd:

nð3ÞðSÞ ¼ 4
X
i

ðSþri

S�ri

ri
�
S
0�
S
0
dS

0
ð4m

0

d4
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q

¼ 4
X
i

ðSþri

S�ri

ri
�
S
0�
S
0
dS

0
ð4m

0

d4
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � S2 � S02 þ 2SS0 cos 40

q (A11)

Now, application of the trigonometric identity cos 4′= 1− 2 sin2(4′/2) followed
by a changing of variables 4 = 4′/2 / 4′ = 24 leads to:

nð3ÞðSÞ ¼ 8
X
i

ðSþri

S�ri

ri
�
S
0�
S
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
dS

0
ð4m=2

0

d4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ki

2 sin2
4

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eðki ;4m=2Þ

; ðS. riÞ;

(A12)

where we have written the azimuthal angle integration in terms of the elliptic
integral of the second kind E(k, q), dened as:

Eðq; kÞ ¼
ðq
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2

4

q
d4; (A13)

where kih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SS0

½ri2 � ðS� S0Þ2�

s
. Since E(q, k) is dened to be a real-valued function,

the above denition implicitly implies that k2 sin2 q# 1 or, equivalently, k# 1/sin
q. To check whether this is indeed the case when q / 4m/2 and
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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k/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SS0=½ri2 � ðS� S0Þ2�

q
, we use eqn (A7) (with the substitution Rc / ri) to

evaluate the quantity sin2(4m/2) as:

sin2ð4m=2Þ ¼
1

2
ð1� cos 4mÞ ¼

1

2

 
2þ ri

2 � ðS þ S0Þ2
2SS0

!

¼ ri
2 � ðS � S0Þ2

4SS0 ¼ 1

ki
2
:

(A14)

We then conclude that ki = 1/sin(4m/2). It is convenient, from a numerical
point of view, to use this identity to dene the coefficients ki numerically. This is
an important step during the numerical evaluation of the elliptic integrals, since
very small numerical uctuations in the evaluation of 4 from eqn (A7)
might render the square root in the denition of E(k, q) negative, leading to
inconsistent results. Using these denitions, the weighted-density n(3)(S) for S > Rc
simplies to:

nð3ÞðSÞ ¼ 8
X
i

ðSþri

S�ri

ri
�
S
0�
S
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki;4m=2ÞdS0

; ðS. riÞ: (A15)

Similar calculations apply for the case S < Rc = ri in eqn (A8), whereby the
substitution 4m / p must be done in the rst integral of eqn (A8), leading to:

nð3ÞðSÞ ¼ 8

ðri�S

0

ri
�
S
0�
S
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki; p=2ÞdS0

þ
ðSþri

ri�S

ri
�
S
0�
S
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki;4m=2ÞdS0 (A16)

We now proceed to the computation of the weight density n(2)(S), corre-
sponding to the substitutions u(R) = u(2)(R) = d(R − Rc) (with Rc = ri and an
implicit summation over particle competent i) in eqn (A8) and (A9). Again, the
integration over R can be performed straightforwardly, providing (for S > ri):

nð2ÞðSÞ ¼ 4
X
i

ðSþri

S�ri

r
�
S
0�
S
0
ð4m

0

d4
0 d

dR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2

q !
R ¼ ri

¼ 4
X
i

ri

ðSþri

S�ri

ri
�
S
0�
S
0
ð4m

0

d4
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � S2 � S02 þ 2SS0 cos 40p ; ðS. riÞ

(A17)

Once again, we invoke the trigonometric identity cos 4′ = 1 − 2 sin2(4′/2) and
change variables from 4′ to 4 = 24′, such that the angular integration takes the
form:

nð2ÞðSÞ ¼ 8
X
i

ðSþri

S�ri

ri
�
S
0�
S
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ðS � S0Þ2
q dS

0
ð4m=2

0

d4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2

4

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fðki ;4=2Þ

; ðS. riÞ; (A18)
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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where now we have identied the angular integral with the elliptic integral of the
rst kind F(k, q), dened as:

Fðk; qÞ ¼
ðq
0

d4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2

4

q ; (A19)

where again the identications q / 4m/2 and

k/ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SS0=½ri2 � ðS� S0Þ2�

q
¼ 1=sinð4m=2Þ have been made in eqn (A18),

where 4m is given by eqn (A7). The weighted function n(2) is thus simplied to:

nð2ÞðSÞ ¼ 8
X
i

ðSþri

S�ri

ri
�
S
0�
S
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ðS � S0Þ2
q Fðki;4m=2ÞdS0

; ðS. riÞ: (A20)

Proceeding along the same lines, it is easy to verify that in the region S < ri,
given by eqn (A8), the function n(2)(S) takes the form:

nð2ÞðSÞ ¼ 8
X
i

ðri�S

0

ri
�
S
0�
S
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ðS � S0Þ2
q Fðki;p=2ÞdS0

þ
ðSþri

ri�S

ri
�
S
0�
S
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ðS � S0Þ2
q Fðki;4m=2ÞdS0

; ðS\riÞ: (A21)

Although the elliptic integrals F(k, q) and E(k, q) are dened as integrals over 4,
it is important to notice that these functions can be efficiently computed through
their power-series expansions, since recurrence relations among successive
coefficients are known, allowing for a systematic and precise numerical evalua-
tion of these functions.152

Let us now consider the third independent weight-function in the FMT
formalism, u(2)

i (R) = d(R − ri)êR = −Vu(3)
i (R), which is a vector quantity. Here, êR =

R/R is the unit vector connecting observation and source points. It is now
convenient to go one step back and write each Cartesian component of n(2)(R)
using eqn (A2) and (A3). The resulting components read as:

nð2Þ$~ex ¼
X
i

ðN
0

ri
�
S
0�
S
0
dS

0
ðp
�p

d4
0�
S � S

0
cos 4

0� ðN
�N

		ui
ð2ÞðRÞ		
R

dz
0 (A22)

nð2Þ$~ey ¼
X
i

ðN
0

ri
�
S
0�
S02dS

0
ðp
�p

d4
0
sin 4

0
ðN
�N

		ui
ð2ÞðRÞ		
R

dz
0 (A23)

nð2Þ$~ez ¼
X
i

ðN
0

ri
�
S
0�
S02dS

0
ðp
�p

d4
0
ðN
�N

		ui
ð2ÞðRÞ		
R

z
0
dz

0 (A24)

It is now clear from the above relations that the y and z components of n(2)

vanish, since R is an even function of both 4′ and z′, and thus the integration over
these variables involves odd functions (for y and z components, respectively) in
a symmetric interval, and therefore will vanish. This is not the case for the x
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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component, since both integrations over 4′ and z′ involve even functions of these
variables. We then conclude that the vector n(2) points along the observation point
direction êr (which was chosen in such a way as to coincide with the x-axis). Again,

the z′ integration can be performed by changing variables to R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R
2 þ z2

p
(such

that dz ¼ RdR=z ¼ RdR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2
p

). Substituting jui
(2)(R)j = d(ri − R), we nd:

nð2ÞðSÞ ¼ 4êr
X
i

ðN
0

S
0
ri
�
S
0�
dS

0
ðp
0

�
S � S

0
cos 4

0� ðN
~R

dðri � RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ~R

2
p dR; (A25)

where the factor of 4 arises from the change in the lower integration limits in 4′

and z′. As before, the integration over R vanishes unless ~R# Rc = Ri. As discussed
above, this condition further restricts the ranges of integration in S′ and 4′,
depending on whether S# ri or S > ri. Again, the arguments presented above carry
over to this case as well. Therefore, for S > ri, the expression above simplies to:

nð2ÞðSÞ ¼ 4êr
X
i

ðSþri

S�ri

S
0
ri
�
S
0�
dS

0
ð4m

0

�
S � S

0
cos 4

0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q d4

0
; (A26)

In order to evaluate the angular integration, we notice that the integrand in
eqn (A26) can be written as:�

S � S
0
cos 4

0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q ¼ 1

2S

�
2S2 � 2SS

0
cos 4

0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q

¼ 1

2S

0
BBB@S2 þ S02 � 2SS

0
cos 4

0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{~R

2

� ri
2 þ S2 � S02 þ ri

2

1
CCCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q

¼ 1

2S



~R
2 � ri

2 þ S2 � S02 þ ri
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q ¼ 1

2S

2
64�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q

þ S2 � S02 þ ri
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ~R
2

q
3
75:

(A27)

Integrating both sizes of the above expression in 4′ leads to:

ð4m

0

�
S � S

0
cos 4

0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ~R

2
q d4

0 ¼ 1

2S

0
BBBBBBBBBBBB@

2
S2 � S02 þ ri

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q ð4m=2

0

d4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ki

2 sin2
4

q
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Fðki ;4m=2Þ

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q ð4m=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ki

2 sin2
4

q
d4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eðki ;4m=2Þ

1
CCCCCCCCCCCCCA
(A28)
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where the factor of 2 comes from the change of variable 4 = 24′ in the integrals.
Again, we have identied the integrals over angles with elliptic integrals of the
rst and second kind. Replacing the above result into eqn (A26), we nd:

nð2ÞðSÞ ¼ 4

S
êr
X
i

ðSþri

S�ri

S
0
ri
�
S
0�
2
64


S2 � S02 þ ri

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q Fðki;4m=2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki;4m=2Þ

3
75; (A29)

which is valid in the region S$ ri. Similarly, the calculations above can be equally
applied to the case S < ri, in which case one obtains:

nð2ÞðSÞ ¼

4

S
êr
X
i

2
64ðri�S

0

S
0
ri
�
S
0�
0
B@


S2 � S02 þ ri

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q Fðki;p=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki;p=2Þ

1
CA

þ
ðriþS

ri�S

S
0
ri
�
S
0�
0
B@


S2 � S02 þ ri

2
�
ðÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri2 � ðS � S0Þ2
q Fðki;4m=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri2 � ðS � S0Þ2

q
Eðki;4m=2Þ

1
CA
3
75:

(A30)

Eqn (A15), (A16), (A20), (A21), (A29), and (A30) provide explicit integrals for the
weighted-densities n(3)(S), n(2)(S) and n(2)(S) for all values of S. Since these integrals
involve only the coordinate S′, and are performed over the range of a particle
diameter, they can be easily evaluated numerically, once the functions ri(S) are
provided as input. The remaining weighted densities follow directly from the
relations among the corresponding weighted functions, i.e., u(1)(R) = u(2)(R)/
(4pR), u(0)(R) = u(2)(R)/(4pR2), and u(1)(R) = u(2)(R)/(4pR).
Appendix B: residual correlations in the HNC approach

In this Appendix, a detailed derivation of eqn (17) is presented in the context of
the proposed DFT-HNC approach. The model is based on a particle insertion
method, in which a change in local chemical potential is considered when an ion
is placed at a given location. To illustrate how the method works, we start by
considering a change in free energy in an otherwise uniform system, driven by
a given external potential that shis the local concentrations by an amount
Dri(r) = ri(r) − r0i , where r

0
i are the uniform concentrations in the absence of the

eld. It is convenient to consider that the change in particle concentrations takes
place continuously as the external eld is “switched on” slowly from zero up to its
nal value. This is done by assigning the particle densities a parameter l such that
ri(r; l= 0)=r0i and ri(r; l= 1)= ri(r). If the concentrations are assumed to change
across an equilibrium path, the one-to-one correspondence between equilibrium
densities and applied eld (assured by Henderson's theorem153,154) implies that
the coupling parameter l can be equivalently thought of as a controlling
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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parameter of the eld strength. When the coupling parameter l is changed by
a differential amount dl, the density proles undergo a change

of drðr; lÞ ¼ vrðr; lÞ
vl

dl at each point r. Accordingly, the change in excess free

energy is given by

dF exðlÞ ¼
X
j

ð
mex
j ðr; lÞ

vrjðr; lÞ
vl

dldr; (B1)

where mex
j ¼ dF ex

drjðr; lÞ
is the excess chemical potential. Integrating both sides

of this equation leads to the following exact relation for the free-energy change
due to the applied eld:

DF exhF ex � F ex
0 ¼

X
j

ð1
0

dl

ð
mex
j ðr; lÞ

vrjðr; lÞ
vl

dr; (B2)

where F ex
0 is the free energy of the corresponding homogeneous system. Since the

continuous path connecting initial and nal states is arbitrary, we can take it to be
of a linear dependence, rj(r; l) = r0j + lDrj(r). With this choice, the above relation
is simplied to

DF ex ¼
X
j

ð
DrjðrÞdr

ð1
0

dl

ð
mex
j ðr; lÞdl: (B3)

The excess chemical potential at coupling l can be similarly obtained by
considering the change in this quantity when l is continuously changed from zero
up to its actual value:

Dmex
j ðr; lÞ ¼ mex

j ðr; lÞ � m0
j ¼ �kBT

X
k

ðl
0

dl
0
ð
cjk
�
r; r

0
; l

0�
Drk

�
r
0�
dr

0
; (B4)

where m0j h mex(l = 0) is the excess chemical potential of the uniform system, and

cjkðr; r0; l0Þ ¼ �b dm
ex
j ðr; l0Þ

drkðr0; l0Þ
are direct correlation functions. In principle, these

quantities are to be computed for the inhomogeneous system, across the whole
set of continuous coupling parameters. The HNC approach amounts to setting
cjk(r, r

′; l′) = cjk(jr − r′j), where cjk(jr − r′j) are the direct pair correlations for the
uniform system (i.e., at l= 0). Inserting this approximation into eqn (B4) and (B3)
leads to the following expression for the excess free-energy change within the
HNC approximation:

DF ex ¼ �kBT

2

X
jk

ð
cjk
�		r� r

0		�DrjðrÞDrk�r0�drdr0; (B5)

where the particle conservation constraint
Ð
Dri(r)dr = 0 has been employed. This

relation is similar to a mean-eld approach, which is readily recovered when the
direct correlations are replaced by their long-range counterparts, cjk(jr − r′j) /

−bujk(jr − r′j). Now, the total change in the grand potential when the eld is turned
on is DU ¼ DFid þ DFex þP

j
rjðrÞðfjðrÞ � mjÞdr. Therefore, in the context of the

HNC approximation, the change in grand-potential induced by an external eld is
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023

https://doi.org/10.1039/d3fd00062a


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 1

1 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

by
 P

N
N

L
 T

ec
hn

ic
al

 L
ib

ra
ry

 o
n 

9/
23

/2
02

3 
11

:3
4:

44
 P

M
. 

View Article Online
bDU ¼
X
j

ð
rjðrÞ

�
log
�
L3rjðrÞ

�� 1þ bfjðrÞ � bmj

�
dr

�
X
j

ð
r0j



log


L3r0j

�
� 1� bmj

�
dr� 1

2

X
jk

ð
cjk
�		r� r

0		�DrjðrÞDrk�r0�drdr0:
(B6)

A straightforward application of the Euler–Lagrange condition
dDU

drjðrÞ
¼ 0 in

the above functional leads to the following equilibrium distributions:

rjðrÞ ¼ r0j exp

"
�bfjðrÞ þ

X
k

ð
cjk
�		r� r

0		�Drk�r0�dr0
#
: (B7)

Substitution of these equilibrium densities into eqn (B6) provides the total
change in grand-potential induced by an external eld:

bDU ¼ 1

2

X
jk

ð
cjk
�		r� r

0		�DrjðrÞDrk�r0�drdr0 þ r0j

X
jk

ð
cjk
�		r� r

0		�Drk�r0�drdr0
(B8)

These expressions are valid within the HNC framework, for external potentials
fj(r) of arbitrary sources. Now, we can take advantage of the Percus insertion
method by choosing the potential source as an ion of species i located at point r.
In this case, the potential acting on a particle of type j at position r′, fj(r

′), is to be
recognized as the pair interaction uij(jr − r′j), while the change in grand-potential
can be identied as the chemical potential mi(r) – the change in free energy upon
inserting a particle of type i at position r. Likewise, the density variations Drj(r

′)
are due to the polarization charges induced by ion insertion, Drj(r

′) / r0j (gij(jr −
r′j) − 1) = r0j hij(jr − r′j). With these replacements, eqn (B7) becomes:

gijðrÞ ¼ exp

"
�buijðrÞ þ

X
k

r0k

ð
hik
�
r
0�
ckj
�		r� r

0		�dr0
#
: (B9)

This relation can be further simplied using the OZ equations for the uniform
system,

GijðrÞhhijðrÞ � cijðrÞ ¼
X
k

r0k

ð
cik
�		r� r

0		�hkj�r0�dr0: (B10)

Replacement of eqn (B10) into (B8) leads to the traditional HNC closure rela-
tion for the bulk uid:

gij(r) = exp(−buij(r) + Gij(r)) (B11)

In the context of Percus insertionmethod, the change in free energy in eqn (B8)
can be identied with the excess chemical potential related to the addition of
a particle of type i at position r. Under the substitutions Drj(r

′)/ r0j gij(r
′) and DU
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss.
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/ mexi (r), and making use of the OZ relation, eqn (B10), the excess chemical
potential within the HNC formalism can be written as

bmex
i ¼ 1

2

X
j

r0j

ð
hijðrÞGijðrÞdrþ

X
j

r0j

ð
GijðrÞdr: (B12)

Notice that, since the unperturbed system was uniform, the chemical potential
does not depend on the particular point where the particle has been placed. In the
case of coulombic interactions, it is convenient to split the direct correlations into
short and long-range contributions, cij(r) = csrij (r) − lBaiaj/r and Gsr

ij (r) h Gij(r) +
lBaiaj/r = hij(r) − csrij (r). The contributions csrij (r) come from short-range correla-
tions, including hard-sphere interactions. The chemical potential in eqn (B12)
can thus be re-written as:

bmex
i ¼ 1

2

X
j

r0j

ð
hijðrÞGsr

ij ðrÞdrþ
X
j

r0j

ð
Gsr
ij ðrÞdr� ai lB

X
j

r0j aj

ð�
1þ hijðrÞ

2

�
dr

r
:

(B13)

The rst term in the last integral vanishes due to the overall charge neutrality
of the uniform system,

P
j
r0j aj ¼ 0, while the second term can be related to the

correlation potential, i.e., the change in the average electrostatic potential due to
the polarizing cloud around the inserted ion,

bDji ¼
X
j

aj lB

ð
DrjðrÞ

r
dr ¼

X
j

lBajr
0
j

ð
hijðrÞ
r

dr: (B14)

Note that, contrary to the mean-eld potential (which vanishes in virtue of
charge neutrality of the uniform uid), the uctuation potential takes account of
electrostatic correlations in the bulk system. These contributions are naturally
incorporated into the excess chemical potential in eqn (B13), along with the short-
range steric correlations. Once these steric correlations are removed from eqn
(B13), this quantity can be used to estimate the residual correlations in the
inhomogeneous system. This can be done via a local approximation in which the
bulk densities in eqn (B14) are replaced by their local values, r0j / rj(r). However,
this approximation is known to be problematic for strongly inhomogeneous
uids. Therefore, a more suitable approach in these cases is to replace the bulk
densities with the weighted densities ni(r), dened in eqn (20). Here, we propose
a simple approach by considering a uniform weighting ui(r) = 3Q(r − Ri)/(4pRi

3),
where the averaging radius is dened as Ri = (si + 1/k(r))/2, where si is the ionic

diameter and 1=kðrÞ ¼


4plB

P
i
riðrÞai

2

��1=2
is the Debye length. Since the

distance between two equally charged ions is expected to scale as ∼si + 1/k, the
proposed averaging size can be interpreted as the excluded radius of a single ion
(i.e., half of the averaged ion–ion distance). Therefore, the chosen quantities Ri are
typical distances that measure the decay of the polarization cloud around the
center of an ion of radius ri. The residual chemical potentials are then calculated
as follows. First, a set of weighted-density proles are computed starting from the
Faraday Discuss. This journal is © The Royal Society of Chemistry 2023
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initial PB solution. The excess chemical potentials mexi (r) = mexi ({nj(r)}) are then
evaluated at each position r by solving the OZ equation in Fourier space,

~GijðkÞ ¼
X
k

~hikðkÞ~ckjðkÞ; (B15)

where ~GijðkÞ ¼
ffiffiffiffiffiffiffiffi
ninj

p

ð2pÞ3=2
ð
GijðrÞeik$rdr (analogously for ĥij(k) and ĉij(k)). This

relation is supplemented by the HNC eqn (B11), yielding Gsr
ij (r

′) and csrij (r
′), from

which the excess chemical potentials can be evaluated via eqn (B13). Note that the
local densities appearing in eqn (B14) do not satisfy electroneutrality near the
pore surface. In order to avoid spurious divergences of chemical potentials,
a uniform, structureless neutralizing background has to be included in the HNC
chemical potentials eqn (B13), such that the mean-eld electrostatic contribution
in eqn (B13) vanishes. In a second step, the same HNC equations are solved
considering the same weighted functions for a system of hard spheres (ai = 0),
from which the corresponding hard-sphere excess chemical potentials, mhsij (r), can
be computed. Finally, the residual correlations for a given set of weighted
densities are obtained from mresi (r) = mexi (r) − mhsi (r). These residual contributions
are then used to obtain new proles, along with improved estimates for the weight
functions. The whole process is then repeated until a convergent solution is
achieved.
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