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Abstract. We present a new
theory of rodlike polyelectrolyte solutions. It is found that

at low densities, and below teInperature T~i, the counterions associate with the polyions forIn-

ing clusters consisting of one polyion and
n counterions. The distribution of du8ters sizes is

Gaussian, leading to strong logarithmic corrections to the liIniting laws obtained by Manning.
In the Inathelnatical limit of infinite dilution the distribution of the cluster sizes approaches

a

delta function centered
on

the value postulated by Manning. Above Tci the solution consists of

free (unassociated) counterions and polyions, and the liIniting laws reInain unaffected. Finally,
unlike

soIne recent suggestions, we denlonstrate that the counterion condensation is distinct

fron1the Kosterlitz-Thouless transition. In fact, the association phenoInena inside
a

polyelec-
trolyte solution

can
be coInpared to a

fornlation of nlicelles in anlphiphilic systenls. There is,
however,

an iInportant difference. While the aInphiphilic rnicelles
can

be diluted away (bro-
ken apart) by increasing the aInount of 801vent, the strong electrostatic interactions keep the

polyion-counterion8 clusters froIn dissociating, even a8
the concentration of polyelectrolyte is

decrea8ed all the way down to zero.

1. Introduction

Many complex organic molecules such as DNA and other polyphosphates, upon dilution in

aqueous solutions, beconle ionized. The importance of a polyelectrolyte nature of these poly-

mers has been realized for a long time, and is expected to strongly affect how these molecules

interact with their environment. Because of the paramount role that polyphosphates play in

nature the desire to understand the ionized state of these molecules has attracted tremendous

amount of effort over the years. In this respect polyelectrolyte chemists have been at a great
disadvantage compared to their colleagues involved in research on simple electrolytes. For over

seventy years electrolyte chemists have possessed an important tool at their disposal, Debye-
Hfickel limiting, low density, laws for pressure and other thermodynamic functions ill. The

knowledge of the limiting laws is of a great importance since it allows the extrapolation of the

measurements done at a finite concentration into a very dilute region providing a "reference

point". The "deviation from the limiting law" can then be measured and an appropriate theory
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can be attempted attributing the deviation to the effects not take into account in the deriva-

tion of the law, such as molecular nature of the solvent, the presence of short range forces,

etc. [2]. In addition, the Debye-Hfickel (DH) theory provides a simple and an intuitive picture
of an electrolyte solution at low densities. Thus, the unusual properties of the electrolytes, as

compared to the systems in which short range forces play the dominant role, can be traced

to the statistical distribution of the electrostatic potential inside the solution. This, in turn,

forces the ions to arrange themselves in such a way as to screen the interactions between the

particles, thus reducing the effective range of the potential. Furthermore, the DH theory can

be extended from the low density limit to an intermediate regime if the allowance is made

for the fact that oppositely charged ions have a tendency to stick together, forming dipolar

pairs [3j. In fact, it has recently been shown that this extended Debye-Hfickel-Bjerrum (DHBj)
theory [4] can account for the observed liquid-liquid and liquid-gas phase separation in ionic

systems [5]. In the case of the Restricted Primitive Model of Electrolyte (RPM), which con-

sists of a gas of hard spheres half of which carry a positive charge while the other half carry a

negative charge, the DHBj theory predicts a coexistence curve in an excellent agreement with

the Monte Carlo simulations (MC) [6]. Furthermore, the theory can be easily extended to

general dimensions and, in particular, reproduces Kosterlitz-Thouless result [7j of an infinite

order line of metal-insulator transitions in two dimensions, but in addition predicts that this

line will terminate in a tricritical point, after which an insulating vapor phase will coexist with

a conducting fluid [8j, the conclusion which is once again in agreement with the MC [9j.

The situation regarding the polyelectrolyte solutions is far less clear. The difficulty lies in

the fact that a polyion contains on an order of a thousand charged groups. Thus, in addition to

the already difficult problem of long range inter-particle Coulomb interactions, one must also

account for the conformational state of the polyions [10j. Fortunately, this latter difficulty can

be overcome for one important class of polyelectrolytes, which are the subject of this 8tudy.

Many biological macromolecules, such as polyphosphates and polysaccharides, are intrinsi-

cally rigid. This rigidity is responsible for the "rodlike" shape characteristic of these biomolec-

ules on short length scales. The local linearity of these polymers dramatically simplifies their

study. Even though, for a long time there remained some doubt if the whole concept of limiting
laws is applicable to the polyelectrolyte solutions [2j. It was argued that a strong electrostatic

potential produced by a polyion will lead to a high concentration of the counterions in its

vicinity. The problem would then be that of a concentrated solution, even for
a

polyelectrolyte
at very low densities, and no limiting laws should be anticipated. Fortunately these fears have

since proven to be unjustified [2j.
A number of approaches have been tried in order to find a solution to this complex problem.

Because of a strong electrostatic potential produced by a polyion, and because of its almost

linear conformation, most of the early attempts have relied on solving the full non-linear

Poisson-Boltzmann equation (NLPBE) in a cylindrical geometry. Although promising, these

approaches fell short of elucidating the full physics of the problem. Nevertheless, as long ago as

1951 Fuoss, Katchalsky and Lifson noted that their exact solution of the cylindrically symmetric
NLPBE exhibited qualitatively different behavior for small and large temperatures [11]. The

peculiarity of the low temperature solution of the NLPBE, was interpreted by Imai, Omishi and

Oosawa as corresponding to the fact that a certain number of counterions have "condensed"

onto a polyion [12].
One of the major problems of all approaches based on solving the NLPBE is the internal

inconsistency of its solutions. This inconsistency, already noticed by Onsager in the context of

a simple electrolyte [13], makes all the conclusions derived on the basis of the NLPBE suspect.
The process of linearization of the NLPBE, besides simplifying the calculations, restores the

internal self consistency of the theory. This, of course, comes at a price since linearization
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effectively reduces the Boltzmann weight of the configurations in which oppositely charged
ions come into a close contact to form clusters, 8uch as dipoles, tripoles, quadrupoles etc. The

success of the DHBj theory is exactly due to the fact that through the assumption of chemical

equilibrium it reintroduces these important nonlinear configurations back into the DH theory
while preserving its internal consistency [4,14].

The most promising approach to the problenl of strong polyelectrolyte was developed by
Manning in a pioneering paper published a quarter of a century ago [2]. In order to explain
Manning's approach, as well as to proceed farther, we shall first define

a Primitive Model of a

Polyelectrolyte (PMP).

I.I. PMP AND MANNING's APPROACH. The PMP consists of N polyions inside a volume

V. The molecules are idealized as long cylinders of cross-sectional diameter ap and length
L, each carrying P ionized groups of charge -q spaced uniformly, with separation b, along
the axis of the cylinder. A total of PN counterions are present to preserve the overall charge
neutrality of the system. The counterions are assumed to be spherical in shape with a diameter

ac, each carrying a charge q. It will prove convenient to define the distance of closest approach
between the centers of a polyion and a counterion, a =

(ap + ac)/2. The solvent is modeled as

a uniform medium of a dielectric constant D. The PMP should give a good representation of

a stiff polymers such as DNA and polysaccharides, while for flexible chains such as polyacrylic
and polystyrenesulfonic acids it should be at most qualitative. In this respect the recent

simulations of flexible polyelectrolytes by Stevens and Kremer are not directly applicable to

PMP [15].
In the low density limit, we shall neglect the discrete nature of the charge distribution and

assume a uniform charge density ao "
-Pq/L

=
-q16 along the polyion. It is then easy to

see that, sufficiently close to the polyion r < R, the interaction potential between it and a

counterion is given by an unscreened form

#jr)
=

-2qjao/D)Injr/ro),
r < R il)

where ro is an arbitrary zero point of the potential and the arbitrary distance R is less than

the characteristic Debye length inside the polyelectrolyte solution (see the discussion following
Eq. ill)). Following Onsager, Manning observed that below certain temperature Tc, in the

limit of a vanishing hardcore size (a
-

0) this potential will result in an infinite contribution

to the partition function [2]. Namely,

R
~~~~

j( j~ /~~)2-2j (~ /~~)2-2jj
L
/

e
~~~ d~r

"

~Lrl
j~ ~~

(~)

«

where (
=

(qao(/DkBT
=

q~/DkBTb, will diverge logarithmically as (
-

l~ and a -
0.

Manning then interpreted the divergence above (
=

I as signifying that n counterions have

condensed onto a polyion, thus reducing its charge density from ao to an =
ao(P n)/P.

He then assumed that the number of condensed counterions will be such as to prevent the

effective value of (, (ef
=

(qan( /DkBT, from ever becoming greater than one, and in this way

preclude the phase integral from becoming divergent. Thus, for all ( > I, Manning assumed

that (ef
=

1. For this to be true the number of condensed counterions must be nc =
P(1-1If).

Using this simple observation and treating the uncondensed counterions within usual linearized

DH theory, Manning was able to derive a set of limiting laws for the polyelectrolytes, which

have since proven to work quite well [2].
Not withstanding its success, there are remain quite a few problems with the theory de-

scribed above. In particular, since the condensation phenomena is not a result of a free energy
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nlinimization, but is instead based on a somewhat ad hoc assumption, it appears to violate the

law of mass action. This point, already noticed by Manning [16], has been left unanswered for

a quarter of a century, in view of otherwise successful predictions of the theory. It would, to

say the least. seem strange that a success of a classical theory would rely on a breakdown of

one of the most fundamental laws of Statistical Mechanics.

A different problem with the approach outlined above is the divergence of the integral,
but only, in the limit of a vanishing hardcore size. If the polyion is treated as a cylinder of

finite diameter, no divergence occurs, and it then becomes more difficult to come up with the

proper basis for the theory of counterion condensation [17]. In fact, one is quite naturally
led to observe a similarity between the Manning's theory of counterion condensation and the

Kosterlitz-Thouless (KT) theory of metal-insulator transition in a two dimensional hard disk

Coulomb gas [7]. The interaction potential between two oppositely charged coulombic particles
in two dimensions is given by equation (I) with a substitution ao - -q (or b

-
I). In this

case it is found that below certain temperature all ions will associate into dipolar pairs. Just as

in equation (2), one finds that, in the limit of vanishing ionic size, the phase integral diverges
logarithmically at the temperature kBT~D/q~

=
I. However, once the hardcore is restored, no

singularity is observed at this temperature and the true phase transition, between a plasma
and a dipolar phase, occurs at kBTKTD/q~

=
1/2 [7]. Furthermore, even in this case one can

show that the law of mass action is not violated [8].

One might then wonder if the counterion condensation belongs to the same class of phase
transitions as a two-dimensional gas of Coulomb point particles studied by Hauge and Hemmer

[18j. These authors found that although partition function for point ions is divergent, the

equation of state is well defined in the limit a -
0. In this case the transition to an insulating

(dipolar) state does indeed happen at T~
=

2TKT. This phase transition, however, is associated

with a singular specific heat diverging
as (T Tc(~~, leading to a non integrable free energy.

It is, therefore, apparent that the phase transition found by Hauge and Hemmer is an unlikely
candidate for describing any natural phenomena. Furthermore, the system of point particles is

not realistic, since in practice no two ions can approach each other closer than their respective
Bohr radii. Hence, one must either apply quantum statistical mechanics or introduce a hardcore

for each ion. In all classical applications the latter, of course, is sufficient [19].
The crucial dependence of all the properties of a two-dimensional Coulomb gas on the size

of ions is an intrinsic characteristic of a system whose entities interact through a logarithmic
Potential. Since a polyelectrolyte solution is also

a
realization of such a system, a particular

care must be taken in treating both counterions and polyions as realistic molecules of finite

volume.

The purpose of this papers is to explore the properties of a polyelectrolyte solution at low

densities. A new theory will be presented which addresses and resolves all the issues raised

above [20]. The paper is organized in four sections. In Section 2 we shall develop a fully
self consistent thermodynamic theory of a neutral polyelectrolyte solution in the absence of a

monovalent salt. In Section 3 this theory will be extended to allow for the presence of simple
I:I salt, and its effects on the properties of a polyelectrolyte solution will be analyzed. In

Section 4 some concluding remarks will be presented.

2. Debye-Hfickel-Bjerrunl Theory of a Polyelectrolyte Solution

We shall work in the context of the PMP defined above. The overall density of polyions
is p =

NIV, while the total density of counterions is Pp. The reduced density is defined
as
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p* =
pa~. The bare interaction potential between a polyion and a counterion at separation r is:

~~~~ l~j~jlao/D) In(rla).
j

~~~

where to simplify notation we have set To " a. It is important to remember that we are

modeling a polyion as a long cylinder of a uniform charge density, and for this reason neglect
all the end effects.

Because of a strong electrostatic interaction between the polyions and the counterions, we

expect that a polyelectrolyte solution will be composed of clusters, consisting of one polyion and

of I < n < P associated counterions, with density pn, as well as free unassociated polyions of

density po, and free unassociated counterions of density p+. We are then led to two conservation

equations,
P

P "

~Pn, (4)

n=o

p

Pp
= p+ +

~j
nPn, 15)

n=o

Equivalently we have

P P

P ~j
pn " P+ +

~j
ilpn. (6)

n=o n=o

The pressure can be expressed as a Legendre transform of the Helmholtz free energy density,
f

=
-F/V,

PIT, p+, lpnl)
=

AT, p+, lpnl) +
~j

/Jsps, (7)

s

where the chemical potential of a specie s is, /1~ =

~~
,

and the sum is over all the species,
0p~

polyions, counterions and clusters. The free energy, is constructed as a sum of the most relevant

contributions, starting with an ideal gas (entropic) term

flf'~~~~
=

~ psli inlpsAl~~/(s)1, 18)

s

where fl
=

I/kBT, and k~ is the number of entities comprising species s, I.e., k+
=

ko
=

I,

kn
= n + I. The thermal wavelengths are

~~~~~
skBT'

~~~

where Ms is the geometric mean mass for a specie s. For a n-cluster Mm
=

(mpm])~/~»
The internal coiinterion, polyion, and a n-cluster partition functions are respectively, (+

=

(o
=

1, (n>i (T). The expression for (i is given by the equation (2). To obtain the higher cluster

internal partition functions, we shall assume that the counterions are "territorially bound" to

the polyion, that is, they are free to move along the length of the cylinder. This assumption

seems to be consistent with experiments on polyphosphates, and has been extensively discussed

by Manning [19]. Alternatively, since we are considering equilibrium association, counterions

are in a constant flux of binding and unbinding with the polyion. This process can be visualized

as a random motion of the counterions along the length of the polyion. This, then, leads to
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an effective renormalization of the charge density of the polyion. We shall assume that the

charge density of an n-cluster is an =
ao(P n) IF. Since the already bound counterions

contribute only to the renormalization of the surface charge, the internal partition function for

the formation of a n-cluster, from a
(n -1)-cluster and a counterion, is given by an integral in

equation (2) multiplied by a~~"~~) and a substitution
a - an-1 (22].

We are still left with an arbitrary distance R which defines the separation between a polyion
and a counterion at which they can be interpreted as forming a cluster. The presence of an

arbitrary cutoff is a usual artifact of a Bjerrum type of approach [14]. The final answers should

be insensitive to the exact value of the cutoff, which for concreteness we can set equal to 2a.

For an extensive discussion of the equilibrium constant in the case of a simple electrolyte see

reference [14]
Next we consider the expression for f~~, the excess free energy arising from the electrostatic

interactions. There are in principle three distinct contributions to the electrostatic free energy

coming from: (1) polyion-polyion interactions; (2) counterion-counterion interactions; and

(3) polyioii-counterion interactions. It seems impossible to find a general theory that would

incorporate all three of the above mentioned mechanisms in a self consistent fashion. However.

since we are only interested in a limiting behavior, p -
0, a number of major simplifications

are applicable. First consider the polyion-polyion interaction. At present no simple mean

field theory of the DH type is available to find
a leading order virial contribution due to a

polyion-polyion interaction. Nevertheless we can make some general statements to its effect.

Certainly the interaction between two polyions will be screened by the cloud of counterions.

Thus, although the bare interaction between two polyions is long ranged, the screening by
counterions is expected to make the effective interaction short ranged, acting only over a

distance of an order of the screening length. If this is indeed the case, then the polyion-polyion
contribution to the free energy density is expected to behave in a usual van der Waals fashion

characterized by a second virial term, flfpp m L~p~ m
(Pp)~. Even if this assumption is

oversimplifying, nevertheless, at most we can expect that flfpp m (Pp)~, where z > [23].
In the limit of small density the counterion-counterion contribution to the free energy density

can be easily estimated from the standard DH theory. Thus we find that flf~~ m
(Pp)~/~

Finally, it will be demonstrated later on that the polyion-counterion interaction results in

a contribution ~N~hich scales as flfp~ m
PpIn(Pp). Since we are concerned only with the low

density limit (Pp* < 1), both the polyion-polyion and the couiiterion-counterion contributions

to the free energy will be negligible compared to the polyion-counterion contribution. Similarly
the short ranged forces will be irrelevant in the limit of low densities. We shall now proceed

to calculate the polyion-counterion contribution to the free energy.
Let us concentrate our attention on one polyion Pi, see Figure 1. Because of the hardcore

repulsion, counterions are excluded from a cylinder r < a centered on Pi. Thus, the electro-

static potential y7(r) in this region satisfies the Laplace equation i7~y7
=

0, with a cylindrical
symmetry.

Outside the exclusion sphere the mean charge distribution will be specified by a polyion-
counterion pair correlation functions, g-+(r). Within the DH theory this is approximated by

a Boltzmann factor leading to the charge density

P

Pq =

~iP n)qp~ + qp+e-pq~<~>

n=o

(10)

Notice that only free, unassociated, counterions are assumed to get polarized while the polyions
and clusters are too massive to be affected by the electrostatic fluctuations, and contribute only

to the neutralizing background. Substituting pq into the Poisson equation, i7~y7
=

-4~pq ID,
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Fig. 1. a) The side view of a salt free polyelectrolyte solution in a
vicinity of the polyion. The

polyion is approximated
as a very long cylinder of

a
cross-sectional diameter ap carrying P ionized

groups uniformly distributed along the major axis. The counterions
are

represented by the hard spheres
of diameter ac. b) A top view of

a
polyion molecule. The dashed circle repreqents the excluded volume

region of radius a into which no counterion
can penetrate. Inside this region the electrostatic potential

satisfies the Laplace equation. Outside the counterions are distributed according to the Boltzmann

distribution, equation (10), and the electrostatic potential satisfies the Helmholtz equation (11).

leads to a nonlinear Poissoii-Boltzmann equation (NLPBE). As a second approximation of the

DH theory, the exponential factor in the equation (10) is linearized leading, with a help of

equation (6), to a Helmholtz equation,

T/~v7 = t~~v7, (11)

~vhere the inverse Debye length K =
1/(D is given by ~~a~

=
4~p[/T*, and the reduced

temperature T'
=

kBTDa/q~ is related to Manning's condensation parameter through (
=

a/T*b. As was discussed in the introduction, besides the technical simplifications linearization

insures that the theory satisfies important electrostatic selfconsistency condition which the full

NLPBE is lacking [13]. Naively one might expect that the linearization is only valid in the

high temperature limit, namely when fly7 < 1. This, however, turns out to be incorrect and, in

particular, when the formation of clusters is taken into account the extended theory appears

to have validity far into the nonlinear regime [14].
Both the Laplace and the Helmholtz equation can now be solved. As the boundary conditions

one must require that both y7(r) and the electric field -17y7, are continuous across the exclusion

cylinder
r = a, and that qJ(r) vanishes as r - oo. In the exterior region, r > a, we find [8, 23]

~~~~
i~

(~(~~~al' ~~~~

where Kv(z) is a modified Bessel function of order
u.

Since for large x, Ko(x) decays expo-

nentially, we find the anticipated Debye screening. For r < a the electrostatic potential is

~~~~ ~i~ ~~~~~~~ ~
~i (~~~~~al' ~~~~

It is evident that the first term of the equation (13) is just the potential produced by the polyion
itself. The second term is more interesting and corresponds to the potential of a polyion with
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respect to the ionic atmosphere. The electrostatic free energy due to the polyion-counterion
interaction is then given exactly by a Debye charging process. Denoting the potential of a

polyion with respect to the counterions by

2ao Koi~a)
~i~~

" w j~ca)Kii~cal' i~~~

the free energy density of all unassociated polyions is given by Debye charging process

f)~
=

-aoLpo d~~(~q). (15)
~

The integral can be easily performed using a Bessel function identity

j16)djziijl~)) =
-zA'olz).

Since the counterion association leads to an effective renormalization of the charge density, the

free energy of the clusters is found by replacing (ao
- an, po - pm) in the above formulas.

The electrostatic free energy density of an n-cluster is then given by,

The total free energy density of a polyelectrolyte solution is

P P

flP+, lPn))
=

f~~~~~lP+) +
~j f~~~~~lPnl +

~j fi~lP+, Pn). l18)

n=o n=o

Given the free energy all the thermodynamic functions can in principle be found.

The respective density of all the species is controlled by the law of mass action, ~~ =

~o + n~+, which upon substitution of the definition of chemical potentials in terms of free

energy reduces to

PI
"

KnlT)Pllp[)~~~~l~~~~~~~~~~f~, fig)

where the equilibrium constant is

KalT)
"

jj~j~
"

Ill lRla)~~~
)~

Zn
"

2f ~~
) ~

2, (20)

~fEx P

and the excess chemical potentials are
~)~

= --,
with f~~

=

~j ff~ In general trying
~~~

n=0

to solve the set of coupled equation (19) under the constraint of equations (4, 5) is quite a

formidable task, in particular since we are interested in a long polyions with a large number

of charged groups. In the limit of low densities the problem, however, simplifies dramatically.
We first observe that

flvl~
=

~~
j"~~ i

~~~~~
+ in

iii]
+ rip+) 121)

fl~(~
=

( ~~ "~~~~
( + O(p+ ). (22)

~~~
2PP$
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where ~E is the Euler constant, ~E "
0.577215664... Inserting these expressions into the

equation (19) and using the explicit form of ~a, it becomes evident that, in the limit of small

densities, equation (6) is organized in the powers of pl'"~ where g(n)
= n R( + n~(/2P.

In the mathematical limit p+ -
0 only the term with R~ =

P(1-1If) such that g(n~) is

at its minimum, will survive. But this is exactly the Manning's assumption that P(1 -1If)
counterions will condense onto a polyion! Although, we have started with a very different

set of assumption about the structure of a polyelectrolyte solution at low density, we have

reached the same conclusion as Manning. It is, however, important to remember that while

Manning's result was based on a somewhat ad hoc assumption about the divergence of a

two-body polyion-counterion partition function in the limit of vanishing hardcore size, our

result is firmly imbedded in the framework of thermodynamics and statistical mechanics. In

particular, no unphysical limit of a vanishing hardcore size was necessary in order to reach our

conclusions. The law of mass action, properly applied to the polyelectrolyte solution, leads

to the fundamental prediction that in the limit p -
0, the distribution of the cluster sizes

approaches a delta-function centered on the value postulated by Manning,

Pin)
=

PbIn nc). 123)

Thus, although Manning's underlying assumptions might appear to be in violation of the law

of mass action, his conclusion is consistent with this fundamental law. For ( < 1 no clusters

will form and n~ =
0.

We conclude that in the limit p -
0, only the clusters of size nc will exist and contribute

to the osmotic pressure of the solution. Inserting equations (18, 21, 22) into the expression for

pressure (7), in the limit of vanishing density, we find

flp
=

1
Pp + O((Pp)~~~+~/~~); ( < 1, (24a)

2

~~ ~/ ~ ~~~~~~~~~~~~' ~ ~' ~~~~~

where the corrections come from the next dominant clusters, n~ +1, (?i~ +1 in the case of

Eq. (24a)). These equations, up to the correction terms, are the same as the ones obtains by
Manning based on the assumption of counterion condensation [2]. The first of these equations

should work quite well in the limit of reasonably small densities if ( < 1, since the corrections

will indeed be small. We are, however, lead to observe that in practice the mathematical limit

p+ -
0, will be impossible to take in the case of the equation (24b), since it would require

(Pp)f/~P < 1 or
(In(Pp*)( > P, which is, of course, impossible for realistic densities, since P

is assumed to be of an order of a thousand groups. The implication of this result is that other

clusters besides .n~ are important at the realistic densities and must be accounted for. One can

then attempt to construct a perturbation theory in the size of the clusters. This procedure,

however, seems to be quite complicated since a large number of clusters would have to be

considered to get a reasonable accuracy. Instead of pursuing a
perturbative route, we observe

that in the limit of small densities equation (19) can be cast into a Gaussian form in terms

of
n.

This is possible because for large P, the equilibrium constant, in the vicinity of n~, is

quasi-independent of the cluster size,

lt'~
+s =

~~~ ~~~
+ O l~ ~) (25)

~ a a P

All the dependence on n is, then, contained in the chemical potentials (21, 22). We can,
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therefore, try the following ansatz,

y~*)2"

p(R)
=

~
e

2a2 (26)
fi

The conservation equations can now be written in an integral form

/~Pln)dn = P, 127)

Pp
=

p++
/

np(n)dn. (28)
~

Since the distribution function is Gaussian, peaked around n*, to simplify the calculations

we can extend the limits of integration to (-oo, +oo). The first of the conservation equation
(4) is satisfied trivially, while the second one

Is) leads to a relation between the density of

unassociated counterions and the peak value of the distribution function,

R*
"

P P+/P. 129)

All the sums can now be easily evaluated by replacing them by the integrals over the cluster

distribution. In particular the excess chemical potential of unassociated counterions (Eq. (22) ),
reduces to,

~~~~ ~~P(~~~~)~ ~' ~~~~

The maximum and the standard deviation can now be obtained by completing the square in

equation (19), justifying our ansatz. We find

fi*
=

P Ii iinpl~ili~n~~~l
+ DIP°) 131)

and

~~
((ln p[ +

(T*) 1/21' ~~~~

where c(T*)
=

2~E -1/2 + In(~/T*). Combining equations (29) and (31) we obtain a self-

consistent equation for the density of the unassociated counterions,

~~ ((in Pi + cjT*))' ~~~~

Equations (31-33)
are the central results of this paper, with their help all the thermodynamic

functions of a polyelectrolyte solution at low densities can be obtained.

Solving equation (33) we observe that, the maximum of the density distribution is shifted

from its zero density limit to,

~~
~

p
~ [j ~

( (fi c~lT*)
~

j~~~~j~~~~j
j~~~

f f dlP*) d~lP*) '

where d(p*)
=

In(Pp* If). The success of Manning's theory can be attributed to the fact that

his postulate for the number of condensed counterions is close to the peak value of the Gaussian

distribution, which he effectively replaced by a delta function. Finally, it is interesting to note
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Fig. 2. The osmotic coefficient of
a

salt free polyelectrolyte solution. Note that the limiting value

is approached logarithmically from below.

that in the limit a -
0, the distribution of cluster sizes will once again approach a

delta

function centered on R = n~. The reason for this unusual behavior, is due to the fact that the

corrections to the leading order (Manning), behavior are only dependent on the reduces density
p*

=
pa~, which vanishes in the limit a -

0. Thus Manning's result is indeed exact for the

line of charge model in which polyion is approximated by a straight line, and the counterions

are treated as point particles.
Returning to the PMP, we observe that the temperature at which the clusters begin to form,

R*(T~i)
=

0, is given by the solution of

In(Pp*)
=

~~~~~
(35)

©b ~

Notice that the cluster formation temperature, T~(, is lo~A,er than the Manning condensation

temperature T(
=

a16.
The pressure can now be calculated straightfor~A~ardly by replacing all the sums appearing

in equations (7, 22) by an integrals over the cluster distribution. For T < T~i, to leading order

in density and P we find,

flp
= p+ 1

~~~
(36)

2Pp

The value of the counterion density p+ is given by the solution of the self consistent equation
(33). In Figure 2 we present a plot of the dependence of the osmotic coefficient ~bo (P) + flP/Pp,

on the density of counterions. From the solution of equation (33) we find,

flP
~

Ii I T
+ lllll~ + O

till
137>
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Thus, for T < T~i Manning's limiting laws will have strong logarithmic corrections. Finally,
it is important to note that the value of the equilibrium constant has not explicitly entered

into our final results. This implies that the exact mechanism of the counterion association

is unimportant for the determination of low density properties of a polyelectrolyte solution.

Explicitly this is a result of the fact that the equilibrium constant is quasi-independent of the

cluster size. This, however, is only true in the limit of large P. In particular the variation of the

equilibrium constant leads to the shift in the peak value of the cluster distribution. For large
P we find that the maximum possible shift in the peak value is n]

=
R* + 2(In(Rla)a~ IF,

where R
=

2a < ID From equations (31, 32), it is evident that both R* and a~
are of order

O(P), the shift in the peak value of the cluster distribution is, therefore, of order O(1) and can

be ignored. This once more justifies our ansatz for the density distribution of the cluster sizes.

lfotivated by our discussion of the PMP we are now
ready to explore the properties of a

polyelectrolyte solution in a presence of a simple 1:1 salt.

3. PMP in the Presence of Salt

For concreteness we shall assume that polyions are negatively charged, as is the case for the

DNA molecules. To simplify the presentation we shall then take the positively charged particles
of salt to be identical with the counterions. The overall density of salt ions is p$~~ =

pf~~
= ps.

As before, we denote the density of n-cluster by p~. We are then lead to three conservation

equations. The total density of the polyions as before is given by,

P

p =

~j
pm. (38)

n=o

Since the negatively charged ions of salt do not participate in the association, their density
remains unchanged,

P- = Ps. 139)

The density of unassociated positive ions is,

P

p+ =
Pp + ps

~j
npa. (40)

~=o

As before, the polyions and the clusters are too massive to be polarized by the fluctuating
electric field inside the polyelectrolyte solution and contribute only to the neutralizing back-

ground. The counterions and the ions of salt, on the other hand, are light and mobile and

can be easily polarized- As before, assuming a Boltzmann distribution for g+-(r) leads to

a NLPBE, which upon linearization of the exponentional reduces to the Helmholtz equation
(11), with the inverse Debye length, 1/(D

= ~, now given by,

(Na)~
=

~~~~, (41)
*~

where, pi = p+ + p-. The electrostatic free energy of an n-cluster is now found to be,

flf?~ipi, pm) = Pj[[j)~~~ iuiKaKii~a)). 142)
1

The leading contributions to the total free energy are,

P P

flP+, P-, lP~l)
=

f~~~~~lP+) + f~~~~~lP-) +
~j f~~~~~lPn) +

~j fi~ (Pi, Pm ). 143)

n=o n=o
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The law of mass action leads to the interdependence of the densities of clusters and of unas-

sociated ions and polyions, expressed by equation (19). We find that at low temperatures the

cluster densities are once again Gaussianly distributed with

~*
"

P
~~

~

~~

,

(44)

~~
((ln p( +

~T*)
-1/21' ~~~~

and the density of free unassociated positive ions is given by the solution of,

~~ ~~ ~ ((ln p(
~~(~)~

pj /p(1' ~~~~

Above T~i, such that n'(T~i, P*, P()
"

0,

TSb
~

lnlPP* + 2Pl) + clTS) PI /IPP* + 2Pl)
j~~~

a In(Pp' + p]

the cluster formation will be exponentially suppressed, and the polyelectrolyte-salt solution

will once again be composed of only free polyions, counterions, and salt. It should be noted

that the temperature at which clusters begin to form is shifted down from that of a solution

in the absence of salt. For T > T~i(( < (~i), the leading order contribution to the osmotic

pressure of the solution is found to be,

flp
=

2p~ + ~1- ~) Pp. (48)
2

Below T < T~i(( > (~i), the pressure and other thermodynamic functions can be easily calcu-

lated by replacing all the sums by the integrals over the cluster distribution. In particular, to

leading order in density and P, the pressure of a polyelectrolyte-salt solution is,

flP
= Pi

~~~~~~~
f, 149)

where p+, is determined from the solution of equation (46). For the purpose of comparing our

results with experiments, it is convenient to define the osmotic coefficient in the presence of

salt, #s IT; p, ps), so that flp + (Pp + 2ps)(s. In Figure 3, the value #s is plotted for various

fixed values of ps.

In the mathematical limit, (ps
-

0, p -
0), the number of unassociated positive ions is,

Defining the ratio of counterions to salt, X
=

Pp/ps, the osmotic coefficients in the mathe-

matical limit of low densities takes a particularly simple form,

~~ 2(~~ 21' ~ ~' ~~~~~

4~
=

~ ~ ~/~~
j > i. (sib)

These are the same expressions as obtained by Manning [2]. The logarithmic corrections to

this equations will, once again, vanish in the limit a -
0. The equations (51) are the exact

limiting laws for the line of charge model in the presence of point like ions of salt. As before,
however, neither the line of charge model nor the mathematical limit of extremely low densities

is very realistic, and the above equations should be taken with a grain of salt.
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Fig. 3. Dependence of the osmotic coefficient
on

the effective diameter of the excluded volume

cylinder for ps =
0.001 M. The circles depict the experimental values found in reference [26]. For

small X the osmotic coefficient is quite insensitive to the variations in a. For larger a, however, strong
deviations are observed when /k

> 6. This is the result of the breakdown in
our approximations

which have stipulated densities such that
~a < 1. For large a this condition is violated and the

expansions (21) and (22) are no longer valid, see
also Table I. In this case the full set of equation

(19) has to be solved in order to determine the cluster distribution. We do, however, observe that in

practice the small values of
a

provide an excellent fit to the experimental data. Also note that the

presence of hardcore produces
a

shift towards the lower values of the osmotic coefficient;
as compared

to the Manning's limiting law (a 0) represented by the dashed curvq, and in the direction of
a

better

agreement with experiment.

4. Discussion

We have presented a new theory of polyelectrolyte solutions at low densities. Unlike earlier

theories our approach is firmly imbedded in thermodynamics and statistical mechanics. We find

that at low temperature the polyelectrolyte solution is composed of clusters consisting of one

polyion and of
n associated counterions. The distribution of cluster sizes is Gaussian. This view

of the polyelectrolyte solution is fiindamentally different from the previously available theories,
which assumed that all the polyions will have an equal number of counterions condensed onto

them. Although, the DHBj theory is intrinsically mean field, we do expect that just as in the

case of pure DH theory and simple electrolytes, the limiting, low density laws, obtained on its

basis will be exact for the PMP.

The fundamental property of the polyelectrolyte clusters is that they cannot be diluted a~N.ay

by lowering the concentration of solute, or increasing the amount of solvent. This is intrinsically
different from any other association phenomena in nature. As the density is lowered, the

resulting increase in entropy per particle, always favors the distraction of clusters for systems

whose entities interact through short range forces. Even in the case of a simple electrolyte',
for which the interactioit potential is long ranged, at sufficiently low density the increase in
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entropy due to the break up of clusters such as dipole, tripoles, quadrupoles etc., overwhelms

the increase in the electrostatic energy due to the unfavorable separation of oppositely charged
ions. The overall free energy for the electrolyte solution is, then, minimized by the break up
of the clusters. For the rodlike polyelectrolytes, however, the electrostatic interaction between

the polyion and the counterions is so strong as to prevent the break up of the clusters even

as the density of solute is reduced all the way down to zero. This fundamental property of

the polyelectrolyte solution is captured by the DHBj theory. Furthermore, unlike a somewhat

metaphysical concept of condensation, counterion association is comparatively simple. The

clusters behave as a new species, the densities of which are governed by the law of mass action.

For large P, we have found that the exact mechanism of association is inconsequential, since the

density of the clusters is independent of the equilibrium constant. The unusual characteristics

of
~L

logarithmic potential, produced by a linear superposition of electric fields for individual

monomers, suggest that one should be very careful in trying to extend the formulas derived

on the basis of PMP to the flexible polyions [24] which might not have rodlike structure even

locally [15].
Recently there have appeared some suggestions that the counterion condensation is a spe-

cial case of a Kosterlitz-Thouless-like phase transition [25]. Our theory clearly demonstrates

that this is not the case. In thP low density limit, association occurs at a temperature T~i

about twice the value of the equivalent metal-insulator transition temperature for the two-

dimensional hard disk Coulomb ga;. Furthermore, while the Kosterlitz-Thouless transition is

a real thermodynamic phase transition, characterized by a diverging Debye screening length,
nothing like this happens in a polyelectrolyte solution. In fact

we have found that for all tem-

peratures T > 0, there will remain a finite fraction of unassociated polyions and counterions.

leading to a finite Debye length. There is, however, a similarity between the two dimensional

dipoles below TKr, and the polyelectrolj,te clusters below T~i, as a result of the logarithmic
potential, neither dipoles nor the clusters can be diluted away.

Although froiri a theoretical point of view the new theory provides an improvement over

the previously available approaches. its experimental ramifications are much harder to assess.

Thus, for example, while the experiments are in agreement ~vith the general prediction that in

the absence of salt the osmotic coefficient asymptotes to its zero density value, #o(0)
=

1- (/2
for ( < 1, and to #o(0)

=
1/2( for ( > 1, the way the latter one of this limits is approached

disagrees with the theory. Thus while the experiments suggest that the limit is reached from

above [26] our calculations predict that the osmotic coefficient is a decreasing function of

density, see Figure 2. A partial resolution of these conflicting results may lie in the fact that

the experiments have not been conducted at a
sufficiently low density. Furthermore at low

density, the PMP is not a very true representation of a solution of DNA molecules. On large
length scales DNA in not "rodlike". In general we expect that PMP will be sufficiently true

representation of a stiff polyion if the screening length due to the counterions, (D. is shorter

than the persistence length Lp over which the DNA molecule is rodlike. Only in this case the

expression (17) will be a
good approximation for the electrostatic free energy, since only then

will all the contributions to the electrostatic free energy from the length scales larger than Lp
be screened away. It is evident that in the lo~v density limit this condition is violated, namely

as p -
0, (D

- oo and clearly (D > Lp.
In the presence of salt the Debye length ~A,ill always stay finite and even for very low densities

of the polyelectrolyte the condition (D < Lp can be satisfied. Thus, we do expect that in the

presence of salt the PMP will be a good representation of a polyelectrolyte solution at low

densities [27]. Indeed this expectation is realized, see Figure 3. At very low concentrations,

we
find that the value of the osmotic coefficient is not very sensitive to the distance of closest

approach, a. For moderate densities, however. the best agreement with experiment is found
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Table I. The variation of the osmotic coejficient with the diameter of exci~sion cylinder, a,

and with the concentration of poiyeiectroiyte, for a fixed density of salt ps =
0.001 M. For small

~K, the value of the osmotic coejfic~ent
is insensitive to a. For large.K and

a strong deviations

from the limiting vai~e (a
-

0) are observed. These are the res~it of the breakdown in o~r

approximation Ka < 1, see also Fig~re ~.

a ~b ~ca

8 0.176874 0.0495466

1 6 0.205642 0.037288

1 4 0.264046 0.0256733

1 2 0.454917 0.0155026

5 8 0.162574 0.252072

5 6 0.2034 0.181033

5 4 0.268538 0.127422

5 2 0.460551 0.0167528

10 8 0.13572 0.517822

10 6 0.200514 0.37552

10 4 0.272894 0.252886

10 2 0.464766 0.152186

15 8 0.0595288 0.82376

15 6 0.196331 0.566452

15 4 0.27733 0.376103

15 2 0.468158 0.22645

when the distance of closest approach is quite small, a m
1 (Fig. 3). It is important to

remember that our calculations were done in the limit ~a < 1, the increase in the distance

of closest approach, a, leads to the violation on this condition and to the breakdown of our

approximations, which in turn results in a poor agreement with experiments for higher concen-

trations, see Table I. Once again we would like to emphasize that the strong deviations from the

Manning's limiting law (a
=

0) observed for larger densities and values of are not necessarily
the true properties of the PMP, but only the result of the breakdown in our approximation,

Ka < 1, leading to equations (21, 22). When this condition is violated the full set of equation
(19) should be solved numerically in order to calculate the values of the osmotic coefficient for

larger X. In practice, however, this will be quite difficult to do since equation (19) corresponds
to P m

10~ coupled nonlinear equations. Nevertheless, it would not be too surprising that if

this ~vas accomplished, one might find that #s is not very sensitive to a up to much larger
values of,K, Figure 4.

The somewhat mixed results obtained when one tries to make the models more realistic is

not new for the theory of polyelectrolyte solutions. Thus, in order to make his line of charge
model more faithful to reality, Manning extended his calculations to allow for the discrete

nature of the charge distribution consistent with that of a real double-helical B-DNA [16].
Surprisingly instead of improving his agreement with experiment, which was quite good for

the uniform line of charge model, strong deviations were found. Only the introduction of a
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Fig. 4. Dependence of the osmotic coefficient
on

the effective diameter of the excluded volume

cylinder for ps =
0.0001 M. No experimental data are available for this density of salt. Note, however,

the high degree of independence of the osmotic coefficient from the value of
a.

For this ps our

approximation ~a « I, holds
over

the full extent of plotted X.

distance-dependent dielectric constant could restore the original agreement with experiment. It

is hard to understand why the solvent mediated short range forces should exactly compensate
for the deviation from uniformity existing in a charge distribution of a real DNA.

The intrinsic complexity of a polyelectrolyte solution and the ability of the simplest possible
models to produce a very good agreement with the experiments seems to raise more questions
than these theories are able to answer. As is common with many models of a complicated
phenomena, our solution contains both simplification of the physical reality abstracted into the

PMP and the mathematical approximations which are needed to solve even this comparatively
simple model. It, therefore, remains unclear whether the possible flaws of the theory reside in

the simplifications imbedded into the PMP, or in the mathematical methods used to solve it. To

understand which ones of our assumptions are really fundamental we need a control over input
which the real experiments are not able to provide. At this point in the development of the full

theory of polyelectrolyte solutions Monte Carlo simulations are essential [28]. Only MC will

allow us to say if the approximations used to solve the most basic model of a polyelectrolyte,
such as PMP, are sufficient

or if more work is required. Only then will we be able to explore
further the true complexity of real polyelectrolytes.
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