
Physica A 274 (1999) 8–18

www.elsevier.com/locate/physa

Charge inversion in DNA–amphiphile complexes:

possible application to gene therapy

Paulo S. Kuhn, Yan Levin∗, Marcia C. Barbosa
Instituto de F ��sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970,

Porto Alegre, RS, Brazil

Abstract

We study complex formation between the DNA and cationic amphiphilic molecules. As the

amphiphile is added to the solution containing DNA, a cooperative binding of surfactants to

the DNA molecules is found. This binding transition occurs at a speci�c density of amphiphile,

which is strongly dependent on the concentration of the salt and on the hydrophobicity of the

surfactant molecules. We �nd that for amphiphiles which are su�ciently hydrophobic, a charge

neutralization, or even charge inversion of the complex is possible. This is of particular impor-

tance in applications to gene therapy, for which the functional delivery of speci�c base sequence

into living cells remains an outstanding problem. The charge inversion could, in principle, allow

the DNA–surfactant complexes to approach the negatively charged cell membranes permitting

the transfection to take place. c© 1999 Elsevier Science B.V. All rights reserved.

PACS: 87.14.Gg; 87.15.Nn

1. Introduction

In the last few years gene therapy has received signi�cant attention both from the

scienti�c community and from the general public. The development of new techniques

for transferring genes into living cells allowed for the potential treatment of several

diseases of genetic origin [1–11]. The central problem of gene therapy lies in the de-

velopment of safe and e�cient gene delivery system. Since both the DNA and the cell

membranes are negatively charged, the naked polynucleotides are electrostatically pre-

vented from entering the cells. Furthermore, the unprotected DNA is rapidly degraded

by nucleases present in plasma [11].
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Although, much e�ort has concentrated on viral transfection, non-viral methods have

received increased attention. This is mostly due to the possible complications which

can arise from recombinant viral structures, and the consequent risk of cancer. In

the non-viral category, the DNA–liposome complexes have shown the most promise.

Cationic liposomes can associate with the DNA segments, neutralizing or even inverting

the electric charge of nucleotides, thus signi�cantly increasing the e�ciency of gene

adsorption and transfection by cells.

In this paper we present a model of DNA–amphiphile solutions. We �nd that in

equilibrium, solution consists of complexes composed of DNA and associated counte-

rions and amphiphiles. As more amphiphiles are added to solution, a cooperative bind-

ing transition is found. At the transition point, a large fraction of the DNA’s charge

is neutralized by the condensed surfactants. If the density of surfactant is increased

beyond this point, a charge inversion of the DNA becomes possible. The necessary

density of amphiphile needed to reach the charge inversion is strongly dependent on

the characteristic hydrophobicity of surfactant molecules. In particular, we �nd that

for su�ciently hydrophobic amphiphiles, such as for example some cationic lipids, the

charge inversion can happen at extremely low densities.

2. The model

Our system consists of an aqueous solution of DNA segments, cationic surfactants,

and monovalent salt. Water is modeled as a uniform medium of dielectric constant D.

In an aqueous solution, the phosphate groups of the DNA molecules become ionized

resulting in a net negative charge. The salt is completely ionized, forming an equal

number of cations and anions. Similarly, the surfactant molecules are assumed to be

fully dissociated producing negative anions and polymeric chains with cationic head

groups.

Following the usual nomenclature, we shall call the ionized DNA molecules the

“polyions”, the positively charged ions the “counterions”, and the negatively charged

anions the “coions”. To simplify the calculations, all the counterions and coions will

be treated as identical, independent of the molecules from which they were derived.

The DNA strands will be modeled as long rigid cylinders of length L and diameter ap,

with the charge −Zq distributed uniformly, with separation b ≡ L=Z , along the major

axis. The cations and anions will be depicted as hard spheres of diameter ac and charge

±q. For simplicity we shall also suppose that each one of the s surfactant monomers

is a rigid sphere of diameter ac with the “head” monomer carrying the charge +q.

The interaction between the hydrophobic tails is short ranged and characterized by the

hydrophobicity parameter � (see Fig. 1). The density of DNA segments is �p=Np=V ,

the density of monovalent salt is �m=Nm=V , and the density of amphiphile is �s=Ns=V ,

where Ni is the number of molecules of specie i and V is the volume of the system.

The strong electrostatic attraction between the polyions, counterions, and amphiphiles,

leads to the formation of complexes consisting of one polyion, nc counterions, and ns
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Fig. 1. A cylindrical polyion of diameter ap, length L, and charge −Zq, surrounded by spherical ions of

radius ac and amphiphilic molecules of s monomers. Each monomer of a macroion is free or has one

counterion, or a ring made of l amphiphilic molecules associated with it.

Fig. 2. Schematic representation of a complex. Empty sites (monomers) (−), sites with associated counterion

(c), sites with l associated amphiphiles (sl).

amphiphilic molecules. We shall assume that to each phosphate group of the DNA

molecule can be associated at most one counterion or l6lmax surfactants. This assump-

tion seems to be quite reasonable in view of the fact that the electrostatic repulsion

between the counterions will prevent more than one counterion from condensing onto

a given monomer. On the other hand, the gain in hydrophobic energy resulting from

the close packing of the surfactant molecules might be able to overcome the repul-

sive electrostatic interaction between the surfactant head groups, favoring condensation

of more than one surfactant on a given monomer (see Fig. 2). The l amphiphilic

molecules form a “ring” of radius a around the central negative monomer of the DNA

(see Fig. 3). If we assume that most of the hydrocarbon chain of the associated sur-

factants is hidden inside the DNA molecule, the maximum number of surfactants in a

ring can be estimated from the excluded volume considerations, lmax = 2�a=ac, where

a ≡ (ap + ac)=2 is the radius of the exclusion cylinder around a polyion.

At equilibrium, each site (monomer) of a polyion can be free or have one counterion

or a ring of l=1; : : : ; lmax surfactants associated to it. We de�ne the surface coverage of

counterions as pc=nc=Z , and the surface coverage of surfactant rings as pl=nl=Z , where
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Fig. 3. Ring composed of l surfactant molecules, lmax = 15.

nc is the number of condensed counterions and nl is the number of rings containing

l surfactants. Each polyion has a distribution of rings containing from one to lmax
surfactants. We shall neglect the polydispersity in the size of the complexes, assuming

that all the complexes have nc counterions and ns amphiphilic molecules — in rings

of {pl} — with

ns =

lmax
∑

l=1

Zlpl : (1)

The total charge of each polyion is, therefore, renormalized from −Zq to −Ze� q, with

Ze� ≡ Z − nc − ns [12–16]. From overall charge neutrality, the density of free cations

is �+ = �m + (Z − nc)�p, the density of free anions is �− = �m + �s, and the density

of free surfactants is �
f
s = �s− ns�p. We shall restrict our attention to the limit of low

surfactant densities, so as to prevent micellar formation in the bulk.

The aim of the theory is to determine the characteristic values of nc; ns, and the sur-

face coverage by rings {pl}. To accomplish this, the free energy of the

DNA–surfactant solution will be constructed and minimized.

3. The Helmholtz free energy

The free energy is composed of three contributions,

F = Fcomplex + Felectrostatic + Fmixing : (2)
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The �rst term is the free energy needed to form the isolated complexes. The second

term accounts for the electrostatic interaction between the counterions, coions, surfac-

tants and complexes. Finally, the third term is the result of entropic mixing of various

species.

To calculate the free energy required to construct an isolated complex composed of

one polyion, nc condensed counterions, and ns condensed surfactants, we employ the

following simpli�ed model. Each monomer of a polyion can be free or occupied by

a counterion, or by 16l6lmax amphiphiles (see Fig. 2). Therefore, to each monomer

i we associate occupation variables �c(i) and {�l(i)}, which are nonzero if that par-

ticular monomer is occupied by a condensed counterion or a ring with l surfactants,

respectively. The free energy of Np isolated complexes can then be written as

�Fcomplex =−Np ln
∑

�

e−�E� ; (3)

where the sum is over all possible con�gurations of counterions and surfactants along

a complex. For a particular con�guration �, the energy can be expressed as the sum

of three terms, E�=E1+E2+E3. The �rst one is the electrostatic contribution arising

from the Coulombic interactions between all charged sites of a complex,

E1 =
q2

2

Z
∑

i 6=j

[− 1 + �c(i) +
∑lmax

l l�l(i)][− 1 + �c(j) +
∑lmax

l l�l(j)]

D|r(i)− r(j)|
; (4)

where we have assumed that the only e�ect of association is the renormalization of

the e�ective charge of each monomer. The second term E2, is due to hydrophobic

interactions between the surfactant molecules,

E2 =
�

2

Z
∑

〈i; j〉

lmax
∑

l; l′=1

(l+ l′)

2
�l(i)�l′(j) ; (5)

where in order to simulate the short-ranged nature of hydrophobic interactions, the �rst

sum is constrained to run over the nearest neighbors. The hydrophobicity parameter � is

negative, representing the tendency of the two adjacent surfactant molecules to expel

water. We can estimate its value from the experimental measurement of the energy

necessary to remove an amphiphile from a monolayer and place it in the bulk [17].

The third contribution E3, accounts for the internal energy of each ring,

E3 =

Z
∑

i

lmax
∑

l=2

�l(i)El : (6)

El is the interaction energy between l surfactants forming a ring. Each ring contains

a maximum of lmax sites, which can be occupied by surfactants. To each one of these

sites we associate an occupation variable �(j), which is zero if site j is unoccupied

by a surfactant and is one if it is occupied (see Fig. 3). The interaction energy of

surfactants forming a ring can then be written as

El =
q2

2D

lmax
∑

i 6=j

�(i)�(j)

2a sin(�|i − j|=lmax)
+
�

2

lmax
∑

〈i; j〉

�(i)�(j) : (7)
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The �rst term of Eq. (7) is due to electrostatic repulsion between the surfactant head

groups, while the second is the result of attraction between the adjacent hydrocarbon

tails.

The exact solution of even this simpler sub-problem (i.e. evaluation of the sum in

Eq. (3)) is very di�cult due to the long ranged electrostatic interactions. We shall,

therefore, resort to mean-�eld theory, which works particularly well for long-ranged po-

tentials. Evaluating the upper bound for the free energy, given by the Gibbs–Bogoliubov

inequality, and neglecting the end e�ects we obtain,

�Fcomplex = �Np[fel + fhyd + fring + fmix] : (8)

The �rst term,

�fel = �S

[

−1 + pc +

lmax
∑

l=1

lpl

]2

− �SNp ; (9)

is the electrostatic interaction between the sites along one rod and is related to E1.

S is expressed in terms of the digamma function [18],

S = Z[	(Z)−	(1)]− Z + 1 ; (10)

and � ≡ �q2=Db is the Manning parameter [19,20]. The second term in Eq. (8),

�fhyd = ��(Z − 1)

lmax
∑

n;m

(n+ m)

2
pmpn ; (11)

is the hydrophobic attraction between the rings inside a complex. 1 The third term

is the free energy due to the electrostatic and hydrophobic interactions between the

surfactants forming a ring,

�fring =
2 ln lmax + �0

4�T ∗

lmax
∑

l=2

Zpll
2 +

��

lmax

lmax
∑

l=2

Zpll
2

+

lmax
∑

l=1

Zpll ln

(

l

lmax

)

+

lmax
∑

l=1

Zpllmax

(

1−
l

lmax

)

ln

(

1−
l

lmax

)

; (12)

where �0 ≈ 0:25126591, and the reduced temperature is T ∗ = kBTDa=q
2. Finally, the

free energy of mixing for rings and counterions of a complex is,

�fmix = Z

(

1− pc −

lmax
∑

l

pl

)

+ ln

(

1− pc −

lmax
∑

l=1

pl

)

+ Zpc lnpc

+Z

lmax
∑

l=1

pl lnpl − Zp ln lmax + Zplmax

(

1−
1

lmax

)

ln

(

1−
1

lmax

)

; (13)

1 For the present calculation we shall neglect the additional hydrophobic contribution which arises from the

interaction of amphiphiles with the backbone of the DNA.
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where to be consistent with expression (12), we have included a contribution to the

free energy arising from the azimuthal motion of condensed counterions around the

polyion, i.e. the last two terms of Eq. (13).

Once a cluster, constructed in isolation, is introduced into solution, it gains an ad-

ditional solvation energy due to its interaction with other clusters, free counterions,

free coions, and free surfactants. The electrostatic repulsion between the complexes

is screened by the ionic atmosphere, producing an e�ective short-ranged potential of

DLVO form [21–25]. The electrostatic free energy due to interactions between various

clusters can be estimated from the second virial coe�cient,

�Fcc = (Z − nc − ns)
2
2�N 2pa

3e−2�a

VT ∗(�a)4K21 (�a)
; (14)

where (�a)2 ≡ 4��∗1 =T
∗ and �∗1 ≡ a3[�p(Z − ns − nc) + 2�m + 2�s] is the reduced

density of free ions. The free energy due to interaction between the complexes and

free ions and surfactants can be obtained following the general methodology of the

Debye–H�uckel–Bjerrum theory [13,14,26–32],

�Fci = Np(Z − nc − ns)
2 (a=L)

T ∗(�a)2

[

−2 ln(�aK1(�a)) + I(�a)−
(�a)2

2

]

(15)

with

I(�a) =

∫ �a

0

xK20 (x)

K21 (x)
dx ; (16)

where Kn is the modi�ed Bessel function of order n. The contribution to the total free

energy arising from the interactions between the free ions and surfactants is given by

the usual Debye–H�uckel expression [26,27]

�F ii =−
V

4�a3c

[

ln(1 + �ac)− �ac +
(�ac)

2

2

]

: (17)

This term is very small and is included only for completeness.

The last contribution to the total free energy, Eq. (2), results from the entropic

mixing of the counterions, coions, surfactant and complexes,

Fmixing = Fm+ + Fm− + Fs + Fc : (18)

The free energy of mixing is obtained following the general ideas introduced by

Flory [33],

�Fm+ = Nm+ ln�m+ − Nm+ ;

�Fm− = Nm− ln�m− − Nm− ;

�Fs = Ns ln (�s=ns)− Ns ;

�Fc = Np ln

(

(Z + nc + ns)�c

Z + nc + nss

)

− Np : (19)
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In the above expression m+ denotes free counterions, m- free coions, s free surfactant

molecules, and c complexes. The

�m+ =
��∗+
6

(ac

a

)3

;

�m− =
��∗−
6

(ac

a

)3

;

�s =
s��

f∗
s

6

(ac

a

)3

;

�c = ��
∗
p

[

1

4(a=L)

(ap

a

)2

+
1

6
(nc + nss)

(ac

a

)3
]

(20)

are the volume fractions occupied by the free counterions, coions, surfactants, and

complexes, respectively.

4. Results and conclusions

The equilibrium con�guration of the polyelectrolyte–surfactant solution is determined

by the requirement that the Helmholtz free energy be minimum. Since F is the function

of ns; nc, and the surface coverage by rings {pl}, minimization of F implies that

�F =
@F

@ns
�ns +

@F

@nc
�nc +

lmax
∑

l=1

@F

@pl
�pl = 0 : (21)

Using the constraint Eqs. (1) and (2) can be separated into lmax + 1 equations,

@F

@nc
= 0 (22)

and

@F

@ns
Zl+

@F

@pl
= 0; l= 1; : : : ; lmax : (23)

The system of Eqs. (22) and (23) can, in principle, be solved numerically. However,

for reasonable values of lmax this requires a signi�cant numerical e�ort. Instead of

pursuing this brute force method, we note that to a reasonable accuracy, the surface

coverage by rings, {pl}, can be approximated by an exponential distribution [34],

pl =
nse

�l

Z
∑lmax

l=1 le
�l
: (24)

We have checked that this is, indeed, a good approximation by numerically solving

Eq. (23) for an isolated complex. Using ansatz (24), the total free energy becomes a

function of nc; ns, and �. For a �xed volume and number of particles, the equilibrium
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Fig. 4. E�ective binding fraction of amphiphiles �s ≡ ns=Z , as a function of amphiphile concentration �s.

The concentrations of DNA and of added salt is 2 × 10−6 M and 18 mM, respectively. The length of the

DNA segments is 220 base pairs. The solvent is water at room temperature, so that � = 4:17.

corresponds to the minimum of Helmholtz free energy,

@F

@nc
= 0 ; (25)

@F

@ns
= 0 ; (26)

@F

@�
= 0 : (27)

These are three coupled algebraic equations, which can be easily solved numerically

to yield the characteristic number of condensed counterions, surfactants, as well as the

shape of the distribution of ring sizes (�). In Figs. 4 and 5 we present a numerical

solution of these equations. As a speci�c example we consider a cationic surfactant

with an alkyl chain of s = 12 groups. In this case the hydrophobicity parameter can

be estimated [30] to be in the range of � ≈ −3; 5kBT . To explore the dependence of

condensation on the hydrophobicity of surfactant, we shall vary this value within reason.

The density of monovalent salt and the DNA is taken to be 18 and 2 × 10−3 mM,

respectively.

The resulting binding isotherms are illustrated in Fig. 4. The fraction of associated

amphiphilic molecules �s = ns=Z , is plotted against the density of surfactant for a

�xed amount of monovalent salt, �m. For small concentrations of cationic surfactant,

few amphiphilic molecules associate with the DNA segments. At a certain critical

concentration, however, the system forms surfoplexes [30,32] — complexes in which

the charge of the DNA is almost completely neutralized by the associated amphiphiles.

If the density is increased further, on average, more than one surfactant molecule

will associate to each phosphate group, leading to charge inversion of the surfoplexes.

For highly hydrophobic surfactants the charge inversion can happen very close to the
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Fig. 5. Average size of rings in a complex (parameters are the same as in Fig. 4).

cooperative binding transition. We note that our theory predicts the binding transition

to be discontinuous, this, most likely, is an artifact of the mean-�eld approximation

[32].

We have presented a simple theory of DNA–surfactant solutions. Our results should

be of direct interest to researchers working on the design of improved gene delivery

systems. In particular, we �nd that addition of cationic surfactants leads to a strong

cooperative binding transition. This transition happens far below the critical micell

concentration. A further increase of amphiphile density can result in charge inversion of

the DNA–surfactant complexes. This regime should be particularly useful in designing

gene or oligonucleotide delivery systems. Until now most of nonviral gene–delivery

systems were in the form of lipoplexes — complexes formed by DNA and cationic

liposomes. To form the liposomes, however, is required a signi�cant concentration of

cationic lipid. Unfortunately, at high concentrations both lipids and surfactants are toxic

to organism. Our model suggests that the charge inversion can be achieved with quite a

small concentration of cationic amphiphile, if it is su�ciently hydrophobic. This should

reduce the risk of unnecessary medical complications.
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