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Crystallization of hard spheres under gravity
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Abstract

We present a simple argument to account for crystallization of hard spheres under the action of
a gravitational �eld. The paper attempts to bridge the gap between two communities of scientists,
one working on granular materials and the other on inhomogeneous liquid state theory. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Sedimentation of colloidal particles in a gravitational �eld has been the subject of
continued interest since the early work of Jean Perrin. The external gravitational �eld
breaks the translational symmetry, producing an altitude-dependent density pro�le. For
a dilute suspension in which the interactions between the colloidal particles can be
neglected, the density pro�le takes a simple exponentially decreasing form. In fact, it
was this observation which had �rst allowed Perrin in 1910 to obtain an estimate of
the Avogadro number and the Boltzmann constant [1]. This early work has stimulated
much of the modern development of inhomogeneous uid theory.
A few years ago it was observed in Monte Carlo simulations that a system of hard

spheres can become unstable under the action of a su�ciently strong gravitational �eld
[2]. This instability appeared as a sudden crystallization of the bottom layers of the
sample con�ned to a three-dimensional rectangular box. In order to understand this
transition the authors appealed to the weighted density functional theory (WDF). Un-
fortunately, the WDF is quite computationally demanding and is not very physically
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transparent. Perhaps it is for this reason that this work went unnoticed by the commu-
nity of physicists studying granular materials [3,4]. Thus, the uid–solid condensation
under the gravitational �eld has been recently rediscovered in the context of granular
materials. Here the instability appeared as the break down of the Enskog kinetic theory
for elastic hard spheres [5], which Hong associated with the formation of a solid layer
at the bottom of a sample [3,4]. However, we must stress that the identi�cation of
the break down point of the Enskog equation with crystallization is far from obvious.
In particular, it is possible to show that at equilibrium the Enskog theory is equiva-
lent to the local density approximation (LDA) [3,4]. Within the liquid state theory it
is well known that the LDA cannot be used to obtain reliable information about the
uid–solid coexistence. The reason for this is that the LDA fails to account for strong
density variations in a highly structured phase, such as the solid [6–8]. Furthermore,
in the absence of an external �eld, the LDA for hard spheres is reduced to the usual
Carnahan–Starling equation of state [9], which carries no information about the entropy
driven crystallization of a homogeneous hard sphere uid. Therefore, it is di�cult to
understand how a theory which knows absolutely nothing about the existence of an
instability in a homogeneous system, suddenly develops this “knowledge” in the pres-
ence of a gravitational �eld. Thus, it is dubious that the break down of the LDA –
and, therefore, of the Enskog theory – can be associated with a phase transition, and
not with the failure of the approximations underlying the theory.
In view of all this, it seems worth while to present a simple argument to account

for crystallization of hard spheres under the action of an external gravitational �eld.

2. Lattice gas in a gravitational �eld

Before entering into the discussion of a phase transition in the system of hard spheres,
we shall explore a much simpler model of uid and granular matter [10] in a gravi-
tational �eld – a non-interacting lattice gas. Consider a three-dimensional rectangular
volume V =L2H , divided into cubic cells of volume a3. Each cell can be occupied by
at most one “cubic” particle of mass m and volume a3 equal to that of a unit cell. The
constant gravitational �eld of strength g acts in the −z direction. Since the particles
do not interact, in the thermodynamic limit, it is a simple matter to write an exact
Helmholtz free energy functional,

�a2F[�(z)]
L2

=
∞∑
z=0

{[1− �(z)] ln [1− �(z)] + �(z)ln �(z) + �magz �(z)} ; (2.1)

where � = 1=kBT , and �(z) is the average occupation of the row z. The equilibrium
density pro�le can be obtained by minimizing the functional (2.1), subject to the
constraint of conservation of the total number of particles N ,

∞∑
z=0

�(z) = Na2=L2 ≡ n : (2.2)
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Performing a simple calculation we �nd

�(z) =
1

1 + e�magz+��
; (2.3)

where the chemical potential � is the Lagrange multiplier associated with constraint
(2.2). It is convenient to de�ne the reduced parameters, �∗=�mga and �∗=�=mga. In
the limit −��/1 the reduced chemical potential is very well approximated by �∗=−n.
The density pro�le now takes a particularly simple form

�(z) =
m
a3

1
1 + e�∗(z−n)

: (2.4)

On the other hand, the static pressure inside the lattice gas satis�es,

dP(z)
dz

=−ga�(z) ; (2.5)

where to simplify the calculations we have passed to the continuum limit. Eq. (2.5)
can now be integrated yielding

P(z) =
mg
a2

(
n+

ln[1 + e�
∗(z−n)]

�∗
− z

)
: (2.6)

We note that the pressure is a uniformly decreasing function of the height z. At high
altitudes – where the average density is small and the excluded volume constraint
is irrelevant – the density pro�le reduces to the exponentially decreasing form �rst
obtained by Perrin.

3. The hard sphere uid in the gravitational �eld

It is evident from the analytic expressions derived above that the lattice gas – in
spite of its hard core repulsion expressed through the constraint of one particle per
lattice site – is completely stable for all temperatures. It is reasonable to suppose that
to zeroth order the density pro�le of a hard sphere uid in a gravitational �eld should
also be well approximated by Eq. (2.4). In fact, it has been found that the Fermi-like
distribution (2.4), provides an excellent �t for various granular materials including the
hard spheres [11,12].
Unlike the non-interacting lattice gas, the homogeneous system of hard spheres is

known to undergo a structural uid–solid transition [13] when the bulk pressure reaches
Pb ≈ 12kBT=a3. This entropic transition was �rst observed in Monte Carlo simulations
almost half a century ago [14], and has since been con�rmed by various theoretical
methods [7,8,15,16]. In the presence of a gravitational �eld the pressure inside the
suspension varies uniformly with maximum value located at z=0. In the limit �∗n/1,
the pressure at the bottom is well approximated by P(0)=mgn=a2. Therefore, the �rst
layer will crystallize when

P(0) =
mgn
a2

≈ 12kBT
a3

(3.1)
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or when

T ¡Tc =
mgan
12kB

: (3.2)

This is a discontinuous �rst-order transition. If the temperature is lowered further,
additional uid layers will solidify and a growing crystal will coexist with a diminishing
uid phase. The number of layers in the crystal can be determined by comparing P(z)
with Pb. We note that in the region of phase transition,

�∗n ≈ −�∗�∗ ≈ 12/1 ; (3.3)

so that all the approximations adopted above are indeed justi�ed.
We have presented a simple argument for crystallization of hard spheres in a grav-

itational �eld. This transition is nothing more than a realization of the well-known
entropically driven liquid–solid phase separation of a homogeneous hard sphere uid.
The presence of a gravitational �eld leads to an altitude-dependent pressure, which
increases with the depth of suspension. If the temperature is reduced below the criti-
cal value Tc, the pressure on the bottom layers becomes so large as to lead to their
crystallization.
A comment should be made about the real granular materials. For macroscopic parti-

cles, temperature is an irrelevant parameter. Thus, in order to study dynamic equilibrium
or steady-state, kinetic energy must be supplied to the system through, say, a vibrating
bed [12]. If the collisions between the particles are elastic, in the disordered (uid)
state, then we can think of the kinetic energy as a form of “temperature”. Appealing to
the same argument as above, we reach the conclusion that the granular materials also
undergo phase separation under the action of a gravitational �eld. However, some care
must be taken with this argument. It is well known that unlike for uids, the pressure
inside a container �lled with packed granular matter saturates at some value [17]. The
excess pressure is transferred to the walls and is equilibrated by friction forces. At high
packing fractions, where the solidi�cation takes place, the stress is not uniform but is
concentrated along force lines. This unusual characteristics can signi�cantly a�ect the
location of the phase transition in real granular materials.
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