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For a simple, continuum two-dimensional Coulomb gas (with "soft" cutoff), 
Gallavotti and Nicol6 [J. Stat. Phys. 38:133-156 (1985)] have proved the exist- 
ence of finite coefficients in the Mayer activity expansion up to order 2n below 
a series of temperature thresholds T, = T o [ 1 + (2n - 1 ) - i ] (n = 1, 2, ...). With 
this in mind they conjectured that an infinite sequence of intermediate, multi- 
pole phases appears between the exponentially screened plasma phase above T I 
and the full, unscreened Kosterlitz-Thouless phase below T~--TKT. We 
demonstrate that Debye-Hfickel-Bjerrum theory, as recently investigated for 
d--2 dimensions, provides a natural and quite probably correct explanation of 
the pattern of finite Mayer coefficients while indicating the total absence of any 
intermediate phases at nonzero density p; only the KT phase extends to p > 0. 
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Bjerrum ion pairs; Debye-H/ickel theory; absence of intermediate phases; 
Mayer coefficients; density and virial expansions; anomalous activity expan- 
sions; equation of state in two dimensions; restricted primitive model. 

1. INTRODUCTION AND S U M M A R Y  

Cons ider ,  for concre teness ,  the restricted primitive model ( R P M )  of  an  e lectro-  

lyte o r  C o u l o m b i c  fluid, namely ,  h a r d  spher ical  ions  in d d imens ions  (disks 

when  d =  2) o f  d i a m e t e r  a in a d o m a i n  g2 o f  v o l u m e  V =  It~l with  N +  = p +  V 

ions  ca r ry ing  charges  q / =  q whi le  N _  = p _ V car ry  charges  qj = - q. The  
na tu ra l  r educed  dens i ty  and  t e m p e r a t u r e  var iab les  are  

p* = p a  d and  T* = k n T a a - 2 / q  2 (1.1) 
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where p = (N+ + N _ ) / V  denotes the total, overall (ionic) density. In d =  2 
dimensions the Coulombic interaction potential is conveniently taken as 

q~g(r)=-qlqjln(r/a) for r > a  (1.2) 

[This corresponds to the limit e =  d - 2  ~ 0 of the general form ~po.(r)= 
q i q j ( r - ' - a - ' ) / E  which, apart from a harmless additive constant, reduces 
to the standard law when d =  3.] 

Now, celebrated arguments by Kosterlitz and Thouless (KT) (1"2~ for 
two-dimensional Coulomb gases predict 2 the appearance at temperatures 
below 

TKT = T o~ = �88 (1.3) 

of a low-density, unscreened phase of "bound charges" which exhibits 
algebraic decay of correlations. 3 This contrasts with the normal high- 
temperature, low-density plasma phase, which (for d~>2) displays Debye 
screening and exponential decay of correlations. 

In the standard scenario the KT phase is pictured as consisting of 
bound dipolar pairs. (The importance of such associated + / -  ion pairs 
was stressed originally for d =  3 by Bjerrum. (3)) The density of the ion pairs 
in the KT phase is p2>0,  while the density of "free ions" p] vanishes 
identically, so that the total (ionic) density is just p = 2p2. Above a tran- 
sition locus To(p), which extends to some positive density and satisfies 
To(p) ,~ TKT as p ~ 0, free ions appear: these result in screening through 
the normal Debye mechanism in which the correlation length 4 varies as 

~D( T, p) ~ ( kB T/q2p ] )1/2 (1.4) 

In other words, the plasma phase, with exponentially decaying correlations 
and 

p l > 0 ,  p - p l + 2 p 2  (1.5) 

directly abuts the KT phase. 

- 'Fr6hlich and Spencer t~5j have rigorously proved the existence of a low-temperature 
unscreened phase with only power-law decay of correlations in d =  2 lattice Coulomb gases. 
However, they state ~tS) that their methods extend to "regularized continuum Coulomb gases 
in two dimensions," which, we presume, include the restricted primitive model. At high tem- 
peratures Brydges and Federbush c~s~ had already proven that exponential screening occurs 
in d>~ 2 Coulomb gases. More recently the earlier results have been sharpened ~tT~ to cover 
all T <  TKT and to prove power-law decay for d =  2 lattice Coulomb gases at low enough 
activity, z < z?(T) > 0. 

3 For pohlt ions (a-= 0) in d =  2 dimensions the thermodynamic limit can be defined only for 
T > T~ = 2 TKT.112.13.18) For T < T 1 the system is often said to "collapse."r See also below, 
following Eq. (2.3). 

4 For poflTt ions above T I ~. 2TKT, see ref. 18, Eqs. (4.16)-(4.20), and ref. 19. 
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However, this scenario has recently been challenged by Gallavotti 
and Nicol6 (GN). (4) They conjecture, instead, that between the high- 
temperature plasma phase and the low-temperature KT phase an infinite 
sequence of "intermediate" multipole phases is present in the d = 2  
Coulomb gas, the nth phase being associated with a threshold 
temperature 

T , = T ~ [ I + ( 2 n - 1 ) - ' ] ,  n = l , 2  .... (1.6) 

Although GN were not more explicit, 5 this conjecture, to be meaningful, 
must imply an infinite sequence of phase bmmdaries, say, Tc..(p) [or  
boundary pairs, T.+(p) and T._(p), if some or all of the transitions are of 
first order] each extending to some positive density p,, and, presumably, 
satisfying Tc.,,(p), T.• ~ T. as p --* 0. On crossing each phase boundary 
the pressure (or other thermodynamic potential) would display some non- 
analytic behavior. Of course, the necessary singularities might be quite 
weak; recall that KT theory predicts only an essential singularity of 
the form ~ e x p [ - c ( p ) / l t l  1/2] when t = l - T ~ ( p ) / T ~ O + ,  where c(p)is 
positive. 

GN related their conjecture to a theorem (4~ they established for a d =  2 
Coulomb gas with a specially chosen smooth ultraviolet cutoff on the 
interaction potential (1.2). The cutoff scale a may be identified with the 
hard-core diameter of the RPM (which implies ~p/j= + ~ ,  V i,j, for r < a). 
Although the behavior of a Coulomb gas at high densities, p* > 1, must 
depend strongly on the details of the cutoff, qualitative properties at the 

5 GNI4) title their paper, The "Screenhlg Phase Transitions" in the Two-Dimensional Coulomb 
Gas, and refer to "an infinite number of 'intermediate phases '" in their abstract; but they 
discuss these conjectured phase transitions otherwise only in Remark (iii) on p. 154 of their 
paper, there referring to "an infinite sequence of phase transitions passing from the plasma 
phase" on decreasing the temperature. However, they also cite Benfatto et aL, (2~ a work 
entitled, On  the Massive Sine-Gordon equation in the First Few Regions of Collapse, and 
Nicolr, (2~ On the Massive Sine-Gordon Equation in the Higher Regions of Collapse. These 
articles address the "ultraviolet stability problem" for + and - "ions" coupled via the two- 
dimensional Yukawa interaction. Benfatto et al. present the same infinite sequence of 
temperature thresholds T,,, deriving them heuristically by considering the clustering ofn  
positive and n negative ions. They attribute the discovery of the thresholds to Fr6hlich in 
ref. 18: but in Chat article Frrhlich seems to mention only T I and Too (in our notation). The 
idea that "at the [inverse] temperatures ft,..., there should be phase transitions" also 
appears in Benfatto et al. ~2~ and, seemingly, is subscribed to by Nicol6 ~21) as well. The 
counter arguments we present here seem likely to apply equally to the Yukawa gases with 
repulsive cores, so the conjectured sequence of phase transitions is again to be seriously 
doubted. However, we postpone a closer investigation to another occasion. 
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low densities in question here are expected to depend only weakly if at all 
on the cutoff (which, however, is essential to prevent thermodynamic 
collapse). In any event, we believe no special significance attaches to the 
GN choice of cutoff for the point at issue: note, e.g., that the thresholds 
(1.6) are independent ofa. 

More specifically, GN's theorem concerns the nature of the Mayer 
activity expansion for the pressure p, namely 

ff=-p/kBT= ~ b / (T)2  t (1.7) 
I = 1  

where ;t = 22+ - - - 2 2  is the activity of the ions. [ In a finite neutral system 
one has b l ( T ; O ) = 0  for all odd/;  but it may be convenient to relax 
neutrality in a finite system.] GN proved (4~ (a) that for T <  T, all coef- 
ficients bt(T) up to l=2n are bounded and well defined in the thermo- 
dynamic limit ( t 2 ~  ~ ) ,  and (b) that for T<To~=TK-r all the b~(T) are 
fmite. On the other hand, GN also demonstrated (c) that, barring highly 
unlikely cancellations, the finite-system coefficients b2n(T; O) diverge when 
f2 --. oo if T >  Tn. 

These changes in the nature of the Mayer expansion as T drops below 
the successive thresholds 7", seemed to GN supportive of the infinite 
sequence of multipole phases described above. (See also footnote 5.) 
However, we will show, first, that there is a plausible and, indeed, probably 
correct general form for the full activity expansion for the pressure and for 
the related density expansion, that reproduces all the GN results for the 
bt(T; 12) without, however, entailing any type of phase transition across 
boundaries related to the thresholds 7",,. Second, we show how this form of 
expansion is explicitly generated by the Debye-H/ickel-plus-Bjerrum 
(DHBj) theories for the restricted primitive model 15'61 which we have 
recently extended to general d and studied explicitly for d = 2 .  (7"8~ In 
particular, the DHBj theory and its various extensions (5-8~ predict, for 
d = 2 ,  the existence of a "pure dipole" KT phase separated from the 
normal screened Debye or plasma phase by an infinite-order critical line 
in accord with the standard scenario. Even though the thresholds Tn 
appear naturally in the density and activity expansions predicted by 
these (approximate) theories, there are no associated intermediate phases 
whatsoever. Accordingly, we believe that in the absence of significantly 
improved supporting arguments, no credence should be accorded the GN 
conjecture. 6 

6 Or, pending further analysis, to the corresponding conjectures in ref. 20 for the d= 2 
Yukawa gases: see footnote 5. 
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2. ACTIVITY AND DENSITY EXPANSIONS 

For orientation recall, first, the general relation 

p = 2(0/02 ) fi(T, 2) (2.1) 

through which any form of activity expansion for the reduced pressure can 
be converted to a corresponding density expansion and, employing the 
ideal limit, vice versa. For a fluid with short-range forces, only integral 
powers 2 t ( l=  1, 2,...) appear in the activity expansion and the coefficients 
bl(T) of the corresponding Mayer series may be computed by the usual 
graphical methods. Correspondingly, one then has a virial series with only 
integral powers p" and finite coefficients B,,(T). 

However, in three dimensions a Coulombic fluid does not possess a 
regular virial expansion: rather, as first shown by Debye and Hiickel, c9"~~ 
it obeys the limiting law 

/~ = P -- ~3/2(T) ,0 3/2 d- ' "  (2.2) 

with a coefficient ~ 3 / 2 ( T ) =  ,v/r~ qa/3(ka T) 3/2 that is purely "electrostatic" 
in origin. Higher-order terms in the expansion for the RPM vary as p2, 
which includes the hard-core, second-virial excluded-volume contributions, 
and as p3 In p*, p3, p7/2, etc.t~o, at) Since in leading order one has 2 ~ p  for 
fully dissociated ions, the activity expansion contains the ideal leading term 
2 followed by a 2 3/2 term, etc. Although the Mayer coefficients bl(T; ~)  in 
a finite system are always well defined, it is clear that the presence of the 
2 3/2 term for d =  3 implies the divergence of b2(T;/2) when g2--, ~ .  On the 
other hand, despite the anomalous nature of the density and activity 
expansions, the pressure, free energy, etc., are surely analytic functions of 
T and p for small enough (positive) p. We remark only that the singularity 
at p = 0  and the divergence (1.4) of ~D(T, p) as p ~ p ~ - , 0  imply that a 
Coulombic fluid may be regarded t6) as having a line of critical points at 
p = 0 that continues up to T = ~ .  

These conclusions extend to general d >  2 since one easily sees (7'8) that 
the singular p3/2 term in (2.2) is replaced by pd/2 (with logarithmic factors 
possible when �89 is an integer), while regular virial terms Bn(T) p" appear 
up to order n < �89 Clearly, the activity expansion behaves similarly, so 
that the bl(T; I2) have finite thermodynamic limits for l <  �89 but diverge 
for l >  1_ ~d. [Here it is convenient, grand canonically, to allow deviations 
from neutrality in constructing the b~(T;/2).] 

The sitffation in d = 2 dimensions is somewhat different. For a system 
of point charges in which (1.2) holds for all r > 0, Salzberg and Prager ~2) 
have shown that the equation of state is simply 

i f= [ 1 - (Too/T)]p provided T >  T 1 =2Too (2.3) 
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The condition T > Ti is essential since the partition function for point ions 
is undefined for T~< T~ .,2) (A later note by May (~3) overlooks the need for 
a limitation with T~ > Too, although May was subsequently corrected by 
Knorr. c]4)'7) Now it seems very likely (although we know of no proof) that 
this result remains true asymptotically for general two-dimensional 
Coulomb gases with hard cores or other reasonable short-distance cutoffs 
in the limit p * ~  0. In that case there will always be a finite first virial 
coefficient (when T >  T]). However, the activity expansion for T >  T~ must 
then take the strongly anomalous form 

/~(T, 2) =b~o(T) 22+cr)[ 1 +e(T, 2)] (2.4) 

where the temperature-dependent exponent is 

2~,(T) = [1 --(Too~T)]-1 (2.5) 

which satisfies ~k < 1 for T >  T~. s To ensure a proper correction factor 
[1 +E(p, T)]  in (2.3) with E(p, T ) = o ( 1 )  we must also have e(T, 2), 
2(0e/02)=o(1).  Clearly, a form like (2.4) cannot derive simply from the 
standard finite-size expansions! 

Finally, let us address the situation below Tl where G N  anticipated an 
infinite sequence of phase transitions. With their concrete results for the 
activity series and the previous discussions in mind, consider the ansatz 

if(T, 4)=b,(T) 22'(r)[ 1 +e(T, 4)] + ~ /~2~.(T) 22* 
k = l  

(2.6) 

where ~k(T) is still given by (2.5) and so remains finite for T>Too. 
Furthermore, we suppose now that b~,(T) and/~2,(T) (V k) are analytic for 
T~> Too, that, similarly, e(T, 2) is analytic in T> Too and in 2 > 0 ,  and that 
the power series in 2 converges for small enough p ( > 0 )  and T~> Too. These 
conditions ensure that fi(T, 2) exhibits no singularities for T >  Too and 
small 2 > 0 and, hence, that there are no intermediate phase boundaries for 
T >  Too. Furthermore, (2.6) is clearly consistent with the form (2.4) when 
T >  T~. 

Now notice that if(T) rises monotonically as T decreases and, further- 
more, that at the thresholds T, defined in (1.6) we have ~ ( T , ) =  n = 1, 2 ..... 

7 Neither May ~ nor Knorr tl4) in 1967-1968 nor Fr6hlich clg~ in 1976 shows awareness of the 
earlier pioneering work of Salzberg and Prager, tt2) although in 1974 Deutch and Lavaud 122) 
cite Salzberg and Prager, May, and Knorr. They I=~ also provide other informative back- 
ground references and perspectives on the pre-Kosteditz-Thouless era. 

8 For point ions (with T> T~) this form has been proven by Fr6hlich t381 with e(T, 2)=-0. 
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It is then evident that (2.6) represents a Mayer expansion with finite coef- 
ficients bt(T)=[~z(T) up to order l=2n provided T<T,,. Conversely, 
when T exceeds T,, but not T,,_I, an anomalous term b~,2 2~' with 
n - 1  <~k<n  intervenes so that the finite-system Mayer coefficient 
b2,(T;/2) must diverge when t2 ~ ~ .  In addition, ~k(T) becomes infinite at 
T =  Too = TKT, SO that below Too one is left with a complete Mayer expan- 
sion. [However, analyticity of/~(T, 2) for T <  Too is neither implied not 
expected: rather, the nonanalytic KT transition line To(2 ) should be 
encountered below Too when 2 > 0.] Thus our ansatz is fully consistent 
with the theorem of Gallavotti and Nicol6 and with the associated results 
summarized in (a)-(c) following (1.7) above. 

In summary, the expression (2.6) (together with the stated conditions) 
constitutes a realistic possibility for the equation of state of a two- 
dimensional Coulomb gas. It is consistent with the GN behavior of the 
activity series, but implies the absence of all low-density phase transitions 
above Too. Consequently, it represents a strong counterexample to the GN 
conjecture of an infinite sequence of intermediate phases lying above the 
KT phase. 

From (2.6) a corresponding density expansion can be derived straight- 
forwardly. In the next section we show that a density expansion essentially 
consistent with (2.6) is, in fact, implied by DHBj theories. Indeed it seems 
likely that (2.6) represents the correct general result for Coulomb gases 
when d = 2. 

3. THE E Q U A T I O N  OF STATE A C C O R D I N G  TO 
D E B Y E - H O C K E L - B J E R R U M  T H E O R I E S  

We outline briefly here the relevant aspects of the Debye-Hfickel and 
Bjerrum theories (and various extensions) in d =  2 dimensions: the reader 
desiring more details should consult refs. 7 and 8. The DHBj theories ~5-7~ 
postulate that a Coulombic fluid in thermal equilibrium can be regarded as 
an interacting mixture of three distinct chemical species, free + and - 
ions, and neutral, associated + / -  ion pairs or Bjerrum dipoles, of den- 
sities p § p_ = p § = �89 and P2, respectively. (Further multi-ion species, 
charged and neutral, can be incorporated in an essentially straightforward 
manner, but are expected to produce only relatively minor, quantitative 
effects.) The charged species alone contribute to the screening via the 
standard Debye mechanism that yields the correlation (alias screening) 
length ~D as in (1.4). ~5-7"9'1~ The total Helmholtz free-energy density 
f = - F / V  is then constructed as a sum of specific physical contribu- 
tionstS-7~: (i) ideal-gas terms f)d for each species ( j  = + ,  - ,  2); (ii) hard- 
core repulsion terms f iac which admit a virial expansion in p~ and P2; 
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(iii) the ionic excess free energy computed according to DH theory, which 
for d =  2 is found to be (7,s) 

fDH(pl ; T) = (kB T/2na 2) In[ (a/~D) K,(a/~D)] (3.1) 

where Kl(z) is the standard modified Bessel function and a2 /~  = 21rp */T*; 
and (iv) a dipole-ionic fluid solvation free energy fDI(pl,pz; T)oc 
P~ P2 ln(a/~D) ( d=  2), which, however, plays no essential role in the present 
considerations. Various further refinements of the theory, in particular to 
incorporate the Kosterlitz-Thouless picture of smaller dipoles modifying 
the effective dielectric constant for larger dipoles, etc., may be contem- 
plated, but seem unlikely to alter the basic features relevant here. 

The dipoles and ions are maintained in mutual chemical equilibrium 
so that their densities are related by (s-s) 

p~ = �88 .2 exp[(2p~ x --pE~)/k s T] (3.2) 

where K(T) is an association constant for the ion ~ dipole reaction, while 
the excess chemical potentials are given by 

Of Ex 
/~X(p,, P2) = - - - -  (i = 1, 2) (3.3) 

fEX(p~, P2) =fDH +fD~ + f n c  (3.4) 

The precise form of the association constant K(T) is a matter of some 
delicacy. ~s'8'231 Clearly, however, it should be positive and vary analytically 
with T >  0: beyond that its behavior will not matter for the points at issue. 
Nevertheless, we mention that for low temperatures (T<T] ,  d = 2 )  it 
varies as 2naZT*/(1 - 2T*)J  7'8) 

Now the crucial feature of the DH theory in d = 2 dimensions, which 
is unique to that dimension, is that the excess chemical potential /~Zx 
entering (3.2) varies as - �89 ln(a/~D) ~ -- �88 In p* when p~ ~ 0. Conse- 
quently the equilibrium condition takes the unusual low-density form 

P2 "~ K( T)p .2 -  1/2T* (3.5) 

where factors analytic in T have been combined with K to yield the effec- 
tive association constant K', while an overall factor [ 1 + Go(p~, P2; T)]  and 
a similar factor [I+G~(p],pz; T)]  in the exponent of p* have been 
omitted for clarity: the G; are analytic in T, vanish with p~ and Pz, and 

j k have expansions (in powers p~ P2 In tp~ with l<~j + 1) convergent for small 
enough densities and so enter below only beyond leading orders. 
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The corresponding logarithmic Pl dependence in fDH leads to the 
equation of state 

(1)  
p(p,T)= 1--~T--~ P,+Pz+ ~, B:k,(T)p~p~lntp, (3.6) 

j + k > ~ 2  
I<~j 

where B]j~ =0  and, of course, Pl and P2 are related to p=p] +2p2 via 
(3.5). Now T*, = �88 so that, if P2 may be neglected relative to p~ ~p ,  this 
DHBj equation of state has, asymptotically, precisely the previous form 
(2.3), known for point ions and expected to be generally valid provided 
T>  T] = 2T:,; but recall T* = �89 so that by (3.5) we indeed have 

p2/Pl~P2/p~p*l--(rl/r)"~O (p--*O, T> Tt) (3.7) 

Thus DHBj theory is also consistent with the anomalous activity expan- 
sion (2.4). 

Just at the first threshold T, the result (3.6) reduces to 

f(p,  T])= �89 ~ ~k/n(l)~ke In/P (3.8) 
k > ~ 2  
I<~k 

where, clearly, the B~II ) can be expressed in terms of/~( T~ ), the coefficients 
B:.t(TI), and the functions Gi(pt, P2; T~). 

On the other hand, for all T~. < T <  T~ we find 

PJ Pt p,O(r~ with 0 (T)=  T I - T  . . . . .  >0  (3.9) 
P2 P 2 ( T -  T=~.) 

when p ~ 0. It follows from these considerations that for T >  Too and p 
small enough but nonzero, the pressure/~(p, T) is analytic in T>  Too and 
in p for p positive and hence displays no phase transitions. 

This is a central conclusion. However, to understand the appearance 
of the GN thresholds we need to study the behavior as p ~ 0 below T~. To 

1 this end we may expand P2 = ~ ( P - P l )  in powers ofpl/p when T <  Ti and 
reorganize the series (3.5) to obtain 

f i = l ~ p + � 8 9  / ( - - ~ / p ] + l  T, ~ ~kt(T)p~pklntp t (3.10) 
i+k>~2 

1 = s_p+ ~, Bt(T) y+p*r +E(p,  T)] (3.11) 
/~>2 

where ~(T) is just as defined in (2.5), while B~(T)=�89 
[2/((T)] -q'tr], and E(p, T) is analytic in p > 0  and T >  T~ and of order 
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(p~,tr~ In 2p, p) as p ~ 0. As written, this form is valid even for T--- T~ when 
~b = 1; but one should note that, in general, ul ~ :~/~k(T~). ~k0 

Now we see that for T, > T >  Too, the DHBj virial coefficients, B,= B, 
in (3.11), are evidently well defined up to order / =  n when T <  T,, and, 
presumably, can be computed from finite-system expressions by taking 
t2--, oo. However, the thermodynamic limit of B,(T;t2)  must diverge if 
T> T,,. When T ~  T~ a complete virial expansion appears. Of course, 
these properties are just the density analogs of the GN results for the 
activity series and, indeed, it is easy to see that (3.11) is quite consistent 
with the activity expansion (2.6) which embodies the GN properties [but, 
again, (3.11) exhibits no intermediate phases]. 

Lastly, we remark that an expansion of/~(T, p) for T >  T1 in powers 
of p alone can also be obtained in an analogous fashion using (3.5) and 
(3.7) in (3.6). The leading behavior is 

, 6=(1-%)p+( f f -~- l )K(T)p*2-~r ' / r~  + O(p*3-2cr'/r',p21n 2#) (3.12) 

so that a second virial coefficient is never well defined. The different form 
of this expansion for T >  T~ from (3.11) for T <  T~ might be thought to 
indicate the presence of a phase boundary of some sort at T = T~ : however, 
one can see directly from (3.6) with (3.5) that, as already stated,/~(p, T) is 
indeed analytic across T =  Tl. Nevertheless, one could well regard (p, T) = 
(0, T1) as locating a multicritical point on the DH critical line at p = 0, 
since the screening length ~D diverges in normal DH fashion 9 a s  1/(p*) 1/2 
when p ---, 0 for T~> Tt, whereas ~D "~ 1/(P*) ~'lr~/2 when T <  T~. Below T~., 
where ~b --, ~ ,  one is in the KT phase when p ~ 0 and then ~D = ~ .  

Finally, we mention again that the DHBj theories do automatically 
generate a pure dipole or KT phase (with p~=0)  below a critical line 
To(p)<<. Too across which the pressure and free energy exhibit essential 
singularities while ln[~D(T, p)/a] diverges as a power of T -  Tc(p). ~7'8) We 
conclude, once more, that there are no reasonable grounds for accepting 
the GN scenario of many intermediate phases. 
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Absence of Intermediate Phases in 2D Coulomb Gas 11 

REFERENCES 

1. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181-1203 (1973). 
2. J. M. Kosterlitz, J. Phys. C 7:1046-60 (1974); J. Phys. C 10:3753-60 (1977). 
3. N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat. Fys. Medd. 7:1-48 (1926). 
4. G. Gallavotti and F. Nicol6, J. Star. Phys. 39:133-156 (1985). 
5. M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71:3826-3829 (1993). 
6. M. E. Fisher, J. Star. Phys. 75:1-36 (1994). 
7. Y. Levin, X.-J. Li, and M. E. Fisher, Coulombic criticality in general dimensions, Phys. 

Rev. Lett. 73:2716-2719 (1994). 
8. X.-J. Li, Y. Levin, and M. E. Fisher, to be published. 
9. P. Debye and E. H/ickel, Phys. Z. 24:185-206 (1923). 

10. D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976), Chapter 15. 
11. H. L. Friedman, Ionic Solution Theory (Interscience, New York, 1962). 
12. A. M. Salzberg and S. Prager, J. Chem. Phys. 38:2587 (1963). 
13. R. M. May, Phys. Lett. 25A:282 (1967). 
14. G. Knorr, Phys. Lett. 2gA:166-167 (1968). 
15. J. Frrhlich and T. Spencer, Commun. Math. Phys. 81:527-602 (1981). 
16. D. Brydges and P. Federbush, Commun. Math. Phys. 73:197-246 (1980). 
17. J. Dimock and T. R. Hurd, Commun. Math. Phys. 137:263-287 (1991); D. H. U. Marchetti 

and A. Klein, J. Stat. Phys. 64:135-162 (1991). 
18. J. Frrhlich, Commun. Math. Phys. 47:233-268 (1976). 
19. W.-S. Yang, J. Stat. Phys. 49:1-32 (1987). 
20. G. Benfatto, G. Gallavotti, and F. Nicol6, Commun. Math. Phys. 83:387-410 (1982). 
21. F. Nicol6, Commun. Math. Phys. 88:581-600 (1983). 
22. C. Deutch and M. Lavaud, Phys. Rev. A 9:2598-2616 (1974). 
23. G. Stell, J. Star. Phys. 78:197-238 (1995). 


