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PACS. 05.70Ce ~ Thermodynamic functions and equations of state. 
PACS. 61.20Qg ~ Structure of associated liquids: electrolytes, molten salts, etc. 
PACS. 61.25Hq - Macromolecular and polymer solutions; polymer melts. 

Abstract. ~ A new theory of a polyelectrolyte solution at low densities is proposed. It is shown 
that below temperature Tel, counterions associate with polyions forming clusters consisting of 
a polyion and of n counterions. The distribution of cluster sizes is Gaussian, and leads to a 
strong logarithmic correction to the limiting laws obtained by Manning. Above Tci the limiting 
laws remain unchanged. Furthermore, unlike some recent suggestions it is demonstrated that 
counterion condensation is distinct from the Kosterlitz-Thouless phase transition. 

For almost a century it has been realized that the electrolyte solutions behave in an in- 
trinsically different fashion than the solutions composed of neutral molecules do. In order 
to  understand this unusual behaviour Debye and Hückel (DH) created their, now famous, 
theory of strong electrolytes [l]. The theory has proved to be even more successful than 
its creators could have possibly expected. The limiting, low-density laws, for pressure and 
other thermodynamic functions derived by DH, have been subsequently shown to  be the exact 
consequences of statistical mechanics [ 2 ] ,  while the general prediction of the screening inside the 
electrolyte solution has been proved in a rigorous way through field-theoretic methodology [3]. 
However, the validity of the DH theory seems to  extend far beyond the limiting laws. Thus, 
it has recently been shown that the full DH theory augmented by Bjerrum’s idem of dipolar 
formation [4] can account for the observed liquid-liquid and liquid-gas phase separation encoun- 
tered in the ionic systems [5]. In the case of the Restricted Primitive Mode1 of an Electrolyte 
(RPM), which consists of a gas of charged hard spheres, the extended Debye-Hückel-Bjerrum 
theory (DHBj) [6], [7] predicts a coexistence curve in excellent agreement with the most 
recent Monte Carlo simulations (MC) [8]. Furthermore, the theory can be easily extended 
to  general dimensions [9] and, in particular, reproduces the Kosterlitz-Thouless result [10] of 
a line of metal-insulator transitions in two dimensions, but in addition predicts that  this line 
will terminate in a tricritical point, after which an insulating vapour phase will coexist with a 
conducting fluid [9], a conclusion which is once again in agreement with the MC [Il]. 

No such fully thermodynamic theory seems to  be available in the case of polyelectrolytes. 
Polyions are molecules which can carry any number of charged groups of the same sign. There 
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are usually charged groups of the order of a thousand on a polyion, the most common examples 
of which are the DNA and other polyphosphates or polyacrylates. 

The most promising approach to the problem of strong polyelectrolytes was developed by 
Manning [12a] in a pioneering paper published a quarter of a century ago. In order to explain 
the basis of Manning's approach we shall first define a Primitive Mode1 of Polyelectrolyte 
(PMP). This mode1 consists of N polyions inside a volume V. The molecules are idealized as 
long cylinders of cross-sectional diameter a and length L,  each carrying P ionized groups of 
charge-q spaced uniformly, with separation b, along the axis of the cylinder. A total of P N  
counterions are present to preserve the overall charge neutrality of the system. The counterions 
are assumed to be spherical in shape with diameter a ,  equal to that of a cylinder, each carrying 
a charge q. The solvent is represented as a uniform medium of dielectric constant D. The 
PMP should best represent stiff polymers such as DNA and polysaccharides [13], while for 
flexible chains such as polyacrylic and polystyrene sulfonic acids the theory should be at most 
qualitative. In this respect the recent simulations of flexible charged polymers by Stevens and 
Kremer [14] are not directly applicable to the PMP. 

In the low-density limit, we shall neglect the discrete nature of the charge distribution 
and assume a uniform charge density, g = -Pq/L = -q/b, along the polyion. It is then 
easy to see that, sufficiently close to the polyion r < R, the interaction potential between it 
and a counterion is given by an unscreened form, y(.) = -2q(a/D) ln(r/ro), where TO is an 
arbitrary zero point of the potential. Following Onsager, Manning observed that in the limit 
of a vanishing hardcore size ( a  + O) this potential will result in an infinite contribution to the 
partition function below a certain temperature T, [12a]. Namely 

where [ = q2/DkBTb, will diverge logarithmically as [ + 1- and a + O. Manning then 
interpreted the divergence above E = 1 as signifying that a certain number of counterions 
have condensed ont0 a polyion. Since the parameter E is effectively proportional to the charge 
density, Manning assumed that P( 1 - l /c)  counterions will condense ont0 a polyion, thus 
lowering the effective charge density of a polyion and preventing the integral in eq. (1) from 
diverging. Using this observation and treating the uncondensed counterions within DH theory, 
Manning was able to derive a set of limiting laws for the polyelectrolytes, which have since 
proved to work quite well [12]. 

Notwithstanding its success, there remain quite a few problems with the theory described 
above, the most fundamental one being that it is thermodynamically inconsistent, since the 
number of condensed counterions is postulated on the basis of the divergence of the two-body 
polyion-counterion phase integral, instead of a minimization of the Gibbs free energy for 
the polyelectrolyte solution. The latter, of course, is equivalent to the law of mass action 
which governs any association phenomena in nature. Another problem with the approach 
outlined above is the divergence of the integral, but only in the limit of a vanishing hardcore 
size. If the polyion is treated as a cylinder of finite diameter, no divergence occurs, and 
it then becomes more difficult to corne up with a proper basis for the theory of counterion 
condensation [12b]. In fact, one is quite naturally led to observe a similarity between Manning's 
theory of counterion condensation and the Kosterlitz-Thouless (KT) theory of metal-insulator 
transition in a two-dimensional hard-disk Coulomb gas [ l O ] .  The interaction potential, ~ ( r ) ,  
between the two oppositely charged Coulombic particles in two dimensions is the same as 
for polyion-counterion interaction, with a substitution 0 + -4. In this case in the limit 
a -+ O, just as for a polyelectrolyte, the partition function, eq. (l), is singular and the ionic 
condensation occurs at kBTcD/q2 = 1 [15]. For any finite a ,  however, the transition happens 
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at k B T K T D / q 2  = 1 / 2 ,  while at T, al1 the thermodynamic functions remain analytic [Io]. Could 
this also be the case for a polyelectrolyte? 

In this letter a new theory of a polyelectrolyte solution which addresses al1 of the above 
issues will be presented. We find that below temperature Tcl counterions will associate with 
the polyions forming clusters consisting of one polyion and of n counterions. We find that 
the distribution of cluster sizes is Gaussian, centred on the value close to the one postulated 
by Manning. 

In general, we expect that 
a polyelectrolyte solution will be composed of free unassociated polyions of density po, of 
free unassociated counterions of density p+, and of clusters, consisting of a polyion and of 
1 5 n 5 P associated counterions of density pn. We are led to two conservation equations, 
p = np,, where p is the total density of the polyions, associated 
or not. The pressure can be expressed as a Legendre transform of the Helmholtz free-energy 
density, f = - F / V ,  p ( T ,  p+, {p,}) = f ( T ,  p+, { p n } )  + CS psps,  where the chemical potential 
of a species s is p, = -af/ap,. The free energy is constructed as a sum of the most relevant 

where p = l / k ~ T ,  IsI = 7î, + 1, As's are the thermal wavelengths, and Ç+ = 50 = 1, Ç,>i(T) 
represent the internal counterion, polyion, and cluster partition functions, respectively. The 
expression for Ç1 is given by eq. (1). To obtain the higher cluster internal partition functions, 
we shall assume that the counterions are "territorially bound" to the polyion, that is, they are 
free to move along the length of the cylinder. This assumption seems to be consistent with 
the experiments on polyphosphates, and has been extensively discussed by Manning [12d]. 
Alternatively, since we are considering equilibrium association, counterions are in a constant 
flux of binding and unbinding with the polyion. This process can be visualized as a random 
motion of the counterions along the length of the polyion. This, then, leads to an effective 
renormalization of the charge density of the polyion. We shall assume that the charge density 
of an n-cluster is O, = a ( P  - n) /P .  The internal partition function for the formation of an 
n-cluster, from an (n  - 1)-cluster and a counterion, is then given by an integral in eq. (1) 
multiplied by a3(n-1),  and with a substitution (T + ( ~ ~ - 1 .  

The DH excess electrostatic free energy is calculated in a usual way based on the linearized 
Poisson Boltzmann equation. The standard argument yields the Debye screening length 
(D = l / ~ ( T , p + )  via ( K a ) z  = 47rp;/T*, where the reduced density and temperature are 
p,* = psa3, T x  = k B T D a / q 2 .  In terms of the reduced temperature Manning's condensation 
parameter is E = a/T*b. For convenience, we shall also set TO = a. Notice that only free, 
unassociated, counterions contribute to the Debye length, while polyions and clusters are too 
massive to be polarized, and contribute only to a neutralizing background. The electrostatic 
free energy of an n-cluster is obtained through the Debye charging process [9]. We find 

We shall work in the context of the PMP defined above. 

P P 
p n ,  Pp = p+ + 

contributions, starting with an ideal-gas (entropic) term pfIdea l  = c, Ps[1 - ln(psA:'"'/cs)1, 

where K l ( z )  is a modified Bessel function. The total free-energy density is then f (p+,  {p,}) = 

f Ideal(p+)  + Ci=o fIdea'(pn) + cf=o fnDH(p+, p,). In this expression, we do not include the 
electrostatic free energy due to counterion-counterion and polyion-polyion interactions, since 
it can be easily shown that in the limits of low densities, these will not contribute to the 
limiting laws. The law of mass action then States that p, = po + np+,  which reduces to 

P*, = ~n(T)pO(p;)n exp[PpF + dP-L" ;  - BPPl 2 (3) 

where the equilibrium constant is K,(T) = Çn(T)/a3,, and the excess chemical potentials are 
p p  = -dfEX/dps, with fEx  = ci=o f:". In general, solving the coupled set of equations (3), 
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under the constraint of conservation equations, is a very difficult task, not to Say impossible, 
in particular when P is very large. In the limit of small densities, the problem, however, 
simplifies dramatically. We first observe that 

where TE is the Euler constant, TE = 0.577215664.. . . Inserting these expressions into eq. ( 3 )  
and using the explicit form for KU,  it becomes evident that in the limit of large dilution the 
densities of n-clusters are ordered in powers of p$ri) where g ( n )  = n - n< + n2</2P. In the 
mathematical limit, p+ -+ O, only the term with n, = P(1 - l/<), such that g ( n c )  is at its 
minimum, will survive. But this is exactly Manning’s assumption that for < > 1, P(1 - l/[) 
counterions condense ont0 a polyion! For < < 1, n, = O. Equivalently, we can Say that in this 
limit the distribution of cluster sizes approaches a delta-function form, p ( n )  = pS(n - nc). 

The limiting laws for the osmotic pressure are found to be Pp= (1- $)Pp+O(  (Pp)2-c+c/zP) 
for < < 1, and Pp = Pp/2< + O((Pp)1+c/2P) for < > 1, where the corrections come from the 
next dominant clusters. The leading-order terms in these equations are the same as the ones 
obtained by Manning based on the assumption of counterion condensation [laal. The limiting 
law for < < 1 should work quite well for reasonably small densities, since the corrections will 
indeed be sufficiently small. We are, however, led to observe that in practice the mathematical 
limit p+ -+ O will be impossible to take for < > 1, since it would require (Pp)tIzP < 1, or 
equivalently 1 ln(Pp*)I > P .  This, of course, is impossible for realistic densities, since P is 
assumed to be of an order of a thousand groups. The implication of this result is that at 
realistic densities other clusters besides n, are important as well. In fact from eqs. ( 3 ) ,  (4), it 
can be shown that in the realistic low-density limit, 1 < 1 ln(Pp*)I << P, the distribution of 
cluster size densities, instead of being a delta-function, assume a Gaussian form: 

where n* = P - p; /p* ,  C? = -P/<(lnp; + c ( T * )  - 1/2), and the density of free counterions 
p; is determined by the solution of p+ = Pp* lnp;/[(lnp; + c ( T ) ) ,  where c(T) = 2 y ~  - 1 /2+  
ln(n-/T*). The Peak in the distribution function is now found to shift from its zero-density limit 
to n* = P(1 - l/<) + Pc(T)/<d(p)  + O(l /d’ (p) ) ,  where d(p)  = ln(Pp*/<). The temperature 
at which the clusters begin to form, .*(TC-) = O ,  is given as a function of the total density of 
polyions by the solution of ln(Pp*) = c(T$)a/(T,?b - a) .  The pressure can now be calculated 
straightforwardly by replacing al1 the sums by the integrals over the cluster distribution. For 
T < Tc1, to leading order in density we find 

Thus, for T < TCl Manning’s limiting law for the pressure will have a strong logarithmic 
correction. It is also interesting to note that, for  large P, the limiting law is independent of 
the equilibrium constant, implying that the exact mechanism of binding is not of importance. 

The most striking difference between a simple electrolyte and a polyelectrolyte is that in 
the case of the former, the clusters, such as dipoles, quadrupoles etc., are diluted away as the 
density of solute is decreased. This is a realization of the fact that at low densities the increase 
in entropy, due to the break-up of clusters, outweighs the increase in the electrostatic energy, 
due to the separation of oppositely charged ions, and thus helps to reduce the overull free 
energy of solution. On the other hand, the electrostatic interaction between a polyion and a 
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counterion is so strong as to prevent the break-up of the clusters even as the density of solute 
is reduced al1 the way down to zero! The DHBj theory captures this fundamental property of 
a polyelectrolyte solution. 

Although the DHBj theory is intrinsically mean field, we do expect that just as in the case 
of the pure DH theory and the primitive mode1 of electrolyte, the limiting laws obtained on its 
b a i s  will be exact for the PMP. Finally, a crucial distinction between the KT transition in a 
two-dimensional Coulomb gas and a polyelectrolyte should be made. While the K T  transition 
is a real thermodynamic transition characterized by a diverging Debye length, this is not the 
case for a polyelectrolyte for which a fraction of counterions remains unassociated, producing 
a finite screening length, al1 the way down to zero temperature. In principle, however, the 
counterion association can be compared to the micellar formation in amphiphilic systems [16]. 

From metal-insulator transitions in two dimensions, to electrolytes and polyampholytes [17], 
the DHBj theory has proved to be successful in explaining a wide range of complex behaviours 
found in the systems where Coulombic interaction plays the dominant role. For polyelectrolytes 
it gives a novel, and dramatically different picture of the low-density state, which from a 
theoretical perspective, at  least, is an improvement over the previously available theories. In 
a future work the experimental ramifications of the new theory will be addressed [18]. 

*** 
1 am grateful to Prof. G. S. MANNING for careful reading and commenting on the 

manuscript. This work was supported by CNPq and FINEP, Brazilian Science agencies. 
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