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Canonical titration simulations

Amin Bakhshandeh and Yan Levin *

We present a Monte Carlo approach for performing titration simu-

lations in the canonical ensemble. The standard constant pH (cpH)

simulation methods are intrinsically grand canonical, allowing us to

study the protonation state of molecules only as a function of pH in

the reservoir. Due to the Donnan potential between a system and an

(implicit) reservoir of a semi-grand canonical simulation, the pH of

the reservoir can be significantly different from that of an isolated

system, for an identical protonation state. The new titration method

avoids this difficulty by using the canonical reactive Monte Carlo

algorithm to calculate the protonation state of macromolecules as

a function of the total number of protons present inside the

simulation cell. The pH of an equilibrated system is then calculated

using a new surface insertion Widom algorithm, which bypasses the

difficulties associated with the bulk Widom particle insertion for

intermediate and high pH values. To properly treat the long range

Coulomb force, we use the Ewald summation method, showing the

importance of the Bethe potential for calculating the pH of cano-

nical systems.

I Introduction

The stability of colloidal particles in aqueous suspensions is
intrinsically connected with their surface charge density, which
is controlled by the pH of the solution. Similarly the activity of
many biologically relevant proteins and polyelectrolytes is con-
trolled by the solution’s pH and ionic strength.1–18 Quantitative
understanding of charge regulation in such complex systems
is, therefore, of paramount importance in a wide range of
industrial and medical applications. For some simple colloidal
systems with a regular distribution of surface active groups, one
can use the Poisson–Boltzmann theory with the charge regula-
tion boundary condition to study the particle protonation
state.19–32 However, this approach breaks down for suspensions
containing multivalent counterions or when dealing with

flexible molecules, such as proteins or polyelectrolytes, whose
three dimensional conformation is intimately coupled with the
protonation state of the molecule. For such systems one is
forced to rely on computer simulations.33–37

pH is defined as the negative decadic logarithm of activity,

aH ¼ cHe
bmex

H , of hydronium ions, pH = �log10(aH/c~), where
c~ = 1 M is the standard reference concentration, b = 1/kBT, and
mex

H is the excess electrochemical potential. The constant pH
(cpH) Monte Carlo simulation method is a widely used
approach for generating titration curves in systems undergoing
protonation/deprotonation reactions.38 However, an indiscri-
minate application of this method poses a fundamental pro-
blem. In cpH simulations, entities such as proteins, colloidal
particles, or polyelectrolytes are confined within a simulation
box, while protons and ions have the freedom to exchange with
an acid and salt in an implicit external reservoir.34,35 Conse-
quently, the cpH simulation method is inherently semi-grand
canonical. During the course of a cpH simulation, a proton is
introduced into the system from an external reservoir held at a
predetermined pH. To maintain charge neutrality within the
simulation cell, one of the cations or protons within the bulk of
the cell is arbitrarily removed. However, this arbitrary removal
lacks adherence to the principle of detailed balance, potentially
yielding inaccurate outcomes,39,40 except in cases where the
system contains a substantial amount of salt and is highly
diluted in polyelectrolyte/protein. Fortunately, it is easy to
rectify the standard cpH algorithm34,35 by incorporating a
protonation step alongside a simultaneous grand canonical
insertion of an anion. Conversely, a deprotonation step can
be paired with a simultaneous grand canonical removal of an
anion. This adjustment restores the detailed balance of the cpH
algorithm, ensuring its internal consistency. We notice, how-
ever, that the simulation cell of such a semi-grand canonical
system will have a different mean electrostatic potential from
that of the external reservoir. This is known as the Donnan
potential. Therefore, the cpH simulation methods will allow us
to predict the charge of the polyelectrolyte only as a function of
pH in the reservoir. Due to the presence of the Donnan
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potential, however, the pH of the reservoir can be significantly
different from that of an isolated system, for an identical
protonation state.40,41 Thus, if one compares the titration
curves, in which, say, the charge of colloidal particles is plotted
as a function of the pH of the reservoir, with the titration curves
of an isolated (canonical) system, there can be a very large
difference between the two – in particular for large volume
fraction suspensions of low ionic strength.40 The difference
between the two ensembles disappears in the limit or large
ionic strength. This, perhaps, is the reason why this problem
was not noticed previously – since most cpH simulations of
proteins are performed at physiological concentrations and low
protein volume fractions, when the difference between the two
ensembles disappears. In fact, one can easily relate the pHc of a
canonical system, in which the number of ions and protons is
the same as the averages obtained using a semi-grand canoni-
cal simulation with a reservoir of pHgc, using equation40,41

pHc ¼ pHgc þ
bjD

lnð10Þ; (1)

where jD is the Donnan potential between the semi-grand
canonical system and its external reservoir. We note, however,
that the standard implementations of cpH simulations do not
provide us with the value of the Donnan potential since it
cancels out in the pair insertion/deletion moves used to pre-
serve the charge neutrality during the simulation.34,35 Recently,
however, we have developed a new reactive grand canonical
MC-Donnan (rGCMCD) method, which allows us to determine
the Donnan potential directly within the simulation,40 allowing
us to calculate both the titration isotherms of canonical and
semi-grand canonical systems simultaneously – showing that
for systems of low colloidal volume fraction and low ionic
strength, the number of deprotonated groups can be 100%
larger in an isolated system40,41 compared to a system con-
nected to a reservoir of exactly the same pH.

To perform rGCMCD simulations requires knowledge of the
chemical potential of all ions present in the reservoir. This can
be obtained using Widom’s particle insertion method or by
performing a separate grand canonical MC simulation just for
the reservoir. There is also an additional complication that the
Donnan potential must be calculated self-consistently during
the simulation. Clearly, it is desirable to be able to obtain the
titration curves directly for an isolated (canonical) system –
without going through a semi-grand canonical algorithm. The
difficulty is that in a canonical reactive MC simulation, one
does not control the pH of the system, instead the total number
of ions and protons present inside the simulation cell is
specified. The simulation then determines how many of the
protons will remain free and how many will be associated with
the polyelectrolyte monomers. After the equilibrium is estab-
lished, one can use Widom’s particle insertion method42,43 to
calculate the excess chemical potential of protons:

mex = �kBT ln(hexp(�bDE)i0), (2)

where DE is the energy difference between a system with a
virtual proton and without. The subscript 0 on the brackets

indicates that the sampling for calculating the average is
performed using the unperturbed system, without the virtual
proton. To obtain pH, however, one also needs the average
concentration of free hydronium ions inside the cell. For
intermediate and large pH, however, there might not be any
free hydroniums present inside the simulation cell at all,
preventing us from accurately calculating the pH of the system.
To overcome this difficulty, in this paper we will introduce a
new surface Widom insertion algorithm to easily and accurately
calculate the pH of a canonical system undergoing protonation/
deprotonation reactions.

The paper is organized as follows: In Section II we briefly
review the canonical reactive MC algorithm,36,37,39 in Section III
we present a new surface Widom insertion method and discuss
the modification of the usual Ewald summation necessary to
properly account for the electrostatics of an infinite charge non-
neutral system. We will also compare the titration isotherms
calculated using the canonical simulation algorithms with the
ones obtained using the rGCMCD method. Finally, the discus-
sion and conclusions will be presented in Section IV.

II Reactive canonical method

Consider a polyelectrolyte or a colloidal particle with mono-
mers that can undergo a protonation deprotonation reaction:

HA$H++ A� (3)

with acid dissociation constant Ka.
In a canonical reactive MC simulation there are two types of

movements: the bulk movements in which positions of ions are
randomly changed with the acceptance probabilities given by
the usual Metropolis algorithm; and reaction protonation/
deprotonation moves, see Fig. 1. To construct an MC algorithm
for the reaction moves, we first observe that the acid dissocia-
tion constant is the inverse of the two body partition function
for the formations of a HA molecule. Thus, when a proton is
transferred from the bulk to the surface, where it will react with
a surface group A�, there are two changes that occur in the
system: change of electrostatic energy DE and change in the
chemical energy kBT ln(Ka/c~). The probabilities for the old (o)
and new (n) configurations during a protonation move are
proportional to:

Po � VNH

NH!
e�bENH ;

Pn � VNH�1

NH � 1ð Þ!e
�bENH�1�ln

Ka
c� ;

(4)

where NH is the number of free hydronium ions inside the
simulation cell, and V is the volume of the cell. For a deproto-
nation move, we have

Po � VNH

NH!
e�bENH ;

Pn � VNHþ1

NH þ 1ð Þ!e
�bENHþ1þln

Ka

c� :

(5)
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Using the usual detailed balance argument, the acceptance
probabilities for the deprotonation and protonation moves
can now be written as:

Pd ¼ min 1;
VKa

NH þ 1
e�bDE

� �
;

Pp ¼ min 1;
NH

VKa
e�bDE

� �
:

(6)

If during the deprotonation move the new coordinate falls
into the interior of a colloidal particle, the DE is counted as
infinite, and the move is rejected. The change in electrostatic
energy during each move is calculated using Ewald summation
with tin foil boundary conditions. The Coulomb energy of a
periodically replicated charged system is:

E ¼ 1

2

X
ij

0
X
n

qiqj erfcðkejri � rj � LnjÞ
Ewjri � rj � Lnj

þ
X
ka0

2p expð�k2=4keÞ
EwVk2

ðAðkÞ2 þ BðkÞ2Þ �
X
i

qi
2ke

Ew
ffiffiffi
p
p ;

(7)

where

AðkÞ ¼
P
i

qi cos k � rið Þ;

BðkÞ ¼
P
i

qi sin k � rið Þ; (8)

n = (n1,n2,n3) are integers, and k ¼ 2p
L
n1;

2p
L
n2;

2p
L
n3

� �
are the

reciprocal lattice vectors for the cubic simulation box of side
length L and volume V = L3. The prime on the sum indicates
that the i = j term is excluded from the summation when n = 0.
The electrostatic energy is invariant with respect to the damp-
ing parameter ke, which we set to ke = 5/L, where L is the side
length of the cubic simulation cell. With this choice of ke, the
sum over n can be replaced by the simple periodic boundary
condition for the short range (erfc term) contribution to the
electrostatic energy.

III Surface Widom method

To perform the simulations we use a cubic simulation box of
side length L that contains either colloidal particles, poly-
electrolyte, or protein molecules in a completely deprotonated
state. In the present discussion we will use a primitive model,
which treats water as a uniform dielectric continuum of Bjer-
rum length lB = q2/kBTew = 7.2 Å, where q is the proton charge
and ew is the dielectric constant of water. There is, however, no
difficulty to modify the algorithm to account for the explicit
water or to combine it with a molecular dynamics simulation.
The simulation cell also contains fully dissociated salt and acid
ions – H3O+, Cl�, and Na+. We start the simulation with the
number of H3O+ equal to the number of negatively charged
polyelectrolyte monomers. We then run the reactive canonical
MC algorithm described above to obtain the equilibrium
number of protonated groups and the number of free hydronium
ions, see Fig. 2. Note that in a canonical simulation we do not
have direct access to the pH, which will be determined by the
activity of hydronium ions in equilibrium. This can only be
obtained using a separate Widom-like particle insertion simula-
tion that will allow us to probe the electrochemical potential of
hydronium ions after the equilibrium has been established. To
change the pH inside the system, we can add a base such as
NaOH. Since the spontaneous hydrolysis of water is so weak,
addition of 1 base molecule will result in the formation of one
water molecule, and an appearance of a Na+ ion inside the
simulation box. The net effect is, therefore, a replacement 1H+

- 1Na+. We can then rerun the simulation to obtain the new

Fig. 1 The canonical reactive MC moves. Left panels show the ‘‘old’’ and
right panels the ‘‘new’’ configuration: (a) shows a protonation move – a
proton from the bulk adsorbs to the site. (b) Shows a deprotonation
move – a proton desorbs from the surface and forms a hydronium in
the bulk. The red spheres are hydronium ions and blue spheres are coins.
Salt ions are not shown.

Fig. 2 A colloidal particle inside the simulation cell. The blue sites are
protonated. The gray spheres are the hydronium ions. The arrows indicate
protonation/deprotonation moves.
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protonation state. Repeating this process until all hydroniums
are replaced by Na+, we can cover the full pH range.

The crucial part of a canonical titration MC is the calculation
of pH after the system has equilibrated. The standard Widom
particle insertion method is usually not very practical, since to
calculate the pH we need the whole electrochemical potential
inside the simulation cell, and not just its excess part. At
moderate to high pH, the interior of the simulation cell might
not have any free hydronium ions at all, preventing us from
accurately calculating the electrochemical potential and the
activity of hydronium ions. On the other hand, since the con-
densed protons are in equilibrium with the hydronium ions in
the bulk and, therefore, have exactly the same electrochemical
potential, we can use them to accurately calculate the pH inside
the system. There is, however, an additional complication when
working with infinitely replicated Coulomb systems. The Ewald
summation effectively leads to a macroscopic crystal composed
of replicated microscopic simulation cells. In general, a simula-
tion cell will have a net electric dipole moment M ¼

P
i qiri and a

finite second moment of the charge density tensor. From the
electrostatics it is well known that such uniform polarization is
analogous to the surface charge density M�n/V, where n repre-
sents the unit normal to the boundary of the macroscopic
spherical crystal, see Fig. 3. This effective surface charge will lead
to an electric field in the interior of the crystal. Similarly the fact
that in general the simulation cell has a non-zero moment of the
charge density tensor results in a dipolar layer at the surface of
the macroscopic crystal44 – so the interior of the crystal has a
different mean electrostatic potential compared to the exterior.40

This potential difference is known as the Bethe potential and for
a charge neutral system is given by:

fB ¼ �
2p

3ewV

X
i

qiri
2: (9)

The derivation of this result within the Ewald formalism is
provided in Appendix A. When the macroscopic crystal is
‘‘wrapped’’ in tin foil, the induced image charge will kill
off the surface contribution to the electrostatic potential.
In general, it is known that for liquid state systems, calculations
based on Ewald summation with tin foil boundary conditions
tend to be more accurate than the ones based on ‘‘vacuum’’
boundary conditions. However, in order to implement the
Widom particle insertion method the system must be
‘‘unwrapped’’ from the tin foil, so that a proton can be brought
from outside into the simulation cell. As the proton enters the
crystal it will experience a jump in the electrostatic potential
given by q fB. Note that the Bethe potential is not constant – it
depends on the instantaneous positions of all the charges
inside the simulation cells.

To make the discussion more concrete, consider a colloidal
particle with Z active surface groups placed at the center of a
cubic simulation cell, see Fig. 2. The cell also contains some
number of H3O+, Cl�, and Na+ ions and is overall charge
neutral. We now run the reactive MC simulation to calculate
how many of the Z surface groups will become protonated. After
the system has relaxed to equilibrium, we find that on average
N of the surface sites are protonated. The canonical partition
function of a colloidal particle with N protonated sites can be
written as:

QðNÞ ¼ 1

N!
Tr e�b ENþNkbT ln

Ka
c�
� �� �� �

; (10)

where the Tr refers to the trace over all the microstates of both
ions and protons inside the system. The electrochemical
potential of a proton is the difference in free energy of two
systems: one in which the colloidal particle has N protonated
sites and the other N + 1 protonated sites,

bmH ¼ � ln
QðN þ 1Þ
QðNÞ : (11)

We can rewrite this as

e�bmH ¼ c�Z

Ka N þ 1ð Þ e�bðDEþqfBÞ
D E

0
; (12)

where DE is the difference in electrostatic energy between
systems with N and N + 1 protonated groups, and fB is the
Bethe potential that the virtual proton gains after entering into
the Ewald ‘‘crystal’’. Since the Ewald sum periodically replicates
the whole simulation cell, it will also replicate the virtual
proton. A periodic charge non-neutral system will have an
infinite energy. To avoid this, together with the virtual proton, in
the calculation of E, we also introduce a uniform neutralizing
background, which regularizes the electrostatic energy calculation,
see Appendix A. The average in eqn (12) is calculated using the
ensemble average of the unperturbed (without virtual proton)
system. We notice that the left hand side of eqn (12) is c~/aH+.

Fig. 3 Spherically replicated simulation cell, forming a macroscopic crys-
tal. Each cell has a net electric dipole moment and a non-zero second
moment of the charge density tensor. This results in a dipole layer and
surface charge at the crystal boundary, producing an electrostatic
potential in the crystal’s interior.
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Taking the decadic logarithm of the two sides of this equation, we
finally obtain

pH ¼ � log10
N þ 1

Z

� �
þ pKa þ log10 e�bðDEþqfBÞ

D E
0

	 

; (13)

where the subscript 0 on h� � �i0 indicates that the sampling for the
averages and the system evolution between the virtual proton
insertion events are performed using the energy of the unper-
turbed system.

The surface Widom insertion method brings a virtual proton
from infinity into contact with a randomly selected colloidal
active site; if the site is empty (has charge �q), it ‘‘reacts’’
with the virtual proton and its charge changes to 0 and the
difference in electrostatic energy between the protonated state
and the original deprotonated state, DE, is calculated using
eqn (13). The average in eqn (A8) is obtained using 5000
uncorrelated insertion events. If the site is already protonated,
the virtual proton will overlap with the real proton, resulting in
infinite DE. The virtual protonation process does not affect the
actual state of the site and is used just to probe the chemical
potential.

To validate the new approach, we used it to calculate the
titration isotherms of 11% volume fraction suspension of
nanoparticles of radius 60 Å with Z = 600 surface sites. For
simplicity, we placed only one nanoparticle into the simulation
cell, however, there is no conceptual difficulty in putting as
many particles as is desired into the simulation cell. The
simulation was performed inside a cubic cell, which in addition
to the nanoparticle also contained 600 hydronium ions and
four Na+ and Cl� ions, corresponding to the concentration of
1 mM of salt. To calculate the titration isotherm, we ran the
reactive MC simulation with the acceptance probabilities for
protonation/deprotonation moves given by eqn (6). After equili-
bration, the number of protonated sites was determined. To
make sure the system was well equilibrated, we used 1 million
particle moves. To check equilibrium we also monitored
the energy of the system. After equilibration, we performed
insertions of a virtual proton to calculate the pH using the
surface Widom insertion method, eqn (13). Virtual insertions
were performed at an interval of 10 000 particle moves, to make
sure the events were uncorrelated. We then replaced one of the
initial 600 hydroniums by Na+ and repeated the calculation –
resulting in a slightly more negatively charged nanoparticle and
a slightly higher pH. We repeated this procedure until almost
all the hydronium ions were replaced by Na+, resulting in a
nanoparticle with no protonated surface groups. We can sum-
marize the sequence of calculations as follows:

1. Randomly distribute fully deprotonated colloidal parti-
cles, protons, and other ions inside the simulation cell.

2. Perform canonical moves and protonation/deprotonation
moves using eqn (6) to reach the equilibrium.

3. Attempt a surface protonation by a virtual proton.
4. Calculate the energy difference between protonated and

deprotonated states and record the value of e�b(DE+q fB).
5. Perform 104 canonical and protonation/deprotonation

particle moves to fully discorrelate the system.

6. Repeat step 2.
7. After 5000 virtual proton insertion attempts, calculate

he�b(DE+q fB)i0 and pH using eqn (13).
8. Randomly replace one of the protons by Na+ and go to step

5. It is possible to replace more than one proton by sodium
ions, depending on how smooth the titration curve is desired.

9. When there are no protons left in the system, the
simulation stops.

The titration isotherm calculated using this procedure is
presented in Fig. 4. As a benchmark to check the accuracy of the
new canonical titration method, we compared our results with
the ones calculated using rGCMCD simulation.40 We see a perfect
agreement between the two methods. We have then repeated the
calculation for a system with 50 mM of salt. Again the agreement
between the two simulation methods is excellent, see Fig. 5.

IV Conclusions

We have introduced a new Monte Carlo approach to calculate
the titration isotherms in a canonical ensemble. Unlike con-
ventional constant pH (cpH) simulation methods, which inher-
ently operate in the grand canonical ensemble and assess the
protonation state of molecules solely with respect to the pH
within the reservoir, our canonical titration method works

Fig. 4 Canonical titration of a suspension of 11% volume fraction (circles),
containing nanoparticles of radius 60 Å with Z = 600 surface groups and 1
mM salt. The solid green curve is the benchmark calculated using the
rGCMCD simulation method of ref. 40.

Fig. 5 Canonical titration of a suspension of 11% volume fraction (circles)
containing nanoparticles of radius 60 Å with Z = 600 surface groups and
50 mM salt. The solid green curve is the benchmark calculated using the
rGCMCD simulation method of ref. 40
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directly with the isolated system. The simulation method
employs a reactive Monte Carlo algorithm to determine the
protonation state of macromolecules in relation to the total
number of protons present within the canonical simulation
cell. To compute the pH of a fully equilibrated system, we have
developed a new surface insertion Widom algorithm, which
effectively circumvents the challenges associated with the bulk
Widom particle insertion, particularly for extremely low hydronium
ion concentrations. To accurately account for the long-range Cou-
lomb forces, we have adopted the Ewald summation method,
highlighting the significance of the Bethe potential in the precise
calculations of pH of canonical systems. Although the present
simulation method was developed within the framework of the
primitive model, in which water is treated as a dielectric continuum,
there is no conceptual difficulty of extending it to more realistic
atomistic simulations. In this respect, the canonical approach is
much easier to implement than the alternative grand canonical
methods, which require a simultaneous insertion of an anion
together with a protonation move, in order to preserve the overall
charge neutrality.40 Clearly in a dense system with atomistic water,
most of the insertion attempts will be rejected. On the other hand,
one can easily combine the present canonical approach with a
molecular dynamics (MD) simulation – so that the evolution of the
system is performed using standard MD algorithms with a suitable
thermostat – combined with titration moves in which one of the
hydronium ions is transformed into a water molecule, with a proton
transferred to one of the polyelectrolyte sites. The acceptance
probability for such a protonation move will be given by eqn (6),
and similarly for a deprotonation move. The pH calculation intro-
duced in this paper can also be combined with standard MD
algorithms, so that the sampling needed to perform the average
in eqn (13) can be performed using an MD simulation. The
implementation of the present approach to an atomistic system
will be the subject of future work.
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Appendix
Appendix A Electrostatic potential

Here, we briefly review the derivation of the electrostatic
potential and energy in a periodically replicated system of cubic
cells, with an excess charge Qt ¼

P
i

qi, requiring the presence

of a uniform neutralizing background.40 The electrostatic
potential within the simulation cell is:

fðrÞ ¼
X1
k¼0

XN
j¼1

4pqj
EwV jkj2

exp �jkj
2

4ke2
þ ik � ðr� rjÞ

� �

þ
XN
j¼1

X
n

qj
erfcðkejr� rj � LnjÞ

Ewjr� rj � Lnj þ 1

V

X1
k¼0

~fbðkÞ exp½ik � r�;

(A1)

where

~fbðkÞ ¼ �
4pQt

EwV

Ð
Ve
�ik:rd3r

k2
; (A2)

is the Fourier transform of the background potential. The
singular part of the background potential is fb,s as ~fb(k) �
~fb,sdk0, where we have defined the Kronecker delta for the zero
mode, dk0. Performing the limit k - 0, we obtain40

~fb;s ¼ �
4pQt

Ewk2
þ pQtL

2

6Ew
: (A3)

If one expands the first term of eqn (A1) around k = 0. The
singular terms are:

4p
VEwk2

X
j¼1

qj�
p

EwVke2
X
j¼1

qj þ
4p
VEw

X
j¼1

qj
ik � ðr� rjÞ
jkj2

� 2p
VEw

X
j¼1

qj
½k � ðr� rjÞ�2
jkj2 ;

(A4)

which can be shown40 to lead to electrostatic potential within
the simulation cell:

jðrÞ ¼
X1
ka0

XN
j¼1

4pqj
EwVjkj2

exp �jkj
2

4ke2
þ ik � ðr� rjÞ

� �

þ
XN
j¼1

X
n

qj
erfcðkejr� rj �LnjÞ

Ewjr� rj �Lnj � pQt

EwVke2
þ 4p
3EwV

r �M þfB;

(A5)

where the Bethe potential is

fB ¼ �
2p

3EwV

X
i

qiri
2 þ pQt

6EwL
: (A6)

The electrostatic energy can be calculate from

E ¼ 1

2

ð
rqðrÞjðrÞd3r ¼ 1

2

X
i

qi lim
r!ri

jðrÞ � qi

Ewjr� rij

� �

� Qt

2V
lim
k!0

~jðkÞ;

(A7)

which leads to40

E ¼ 1

2

X
ij

0
X
n

qiqj erfcðkejri � rj � LnjÞ
Ewjri � rj � Lnj

þ
X
ka0

2p expð�k2=4keÞ
EwVk2

ðAðkÞ2 þ BðkÞ2Þ

�
X
i

qi
2ke

Ew
ffiffiffi
p
p � pQt

2

2EwVke2
þ 2p
3ewV

M2:

(A8)

In our simulations, the periodically replicated system has
tin-foil boundary conditions, so that the M dependent contri-
bution to the total energy vanishes. For neutral systems Qt = 0.
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8 J. López-Garcı́a, M. Aranda-Rascón and J. Horno, J. Colloid

Interface Sci., 2007, 316, 196–201.
9 R. O. James and G. A. Parks, Surface and colloid science,

Springer, 1982, pp. 119–216.
10 P. Attard, Curr. Opin. Colloid Interface Sci., 2001, 6, 366–371.
11 S. L. Carnie, D. Y. Chan and J. S. Gunning, Langmuir, 1994,

10, 2993–3009.
12 M. Hermansson, Colloids Surf., B, 1999, 14, 105–119.
13 B. W. Ninham, Adv. Colloid Interface Sci., 1999, 83, 1–17.
14 E. J. W. Verwey, J. Phys. Colloid Chem., 1947, 51, 631–636.
15 A. Bakhshandeh, Chem. Phys., 2018, 513, 195–200.
16 R. Lunkad, F. L. Barroso da Silva and P. Košovan, J. Am.
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