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ABSTRACT: We present a theory that enables us to (i) calculate the effective surface charge of
colloidal particles and (ii) efficiently obtain titration curves for different salt concentrations. The
theory accounts for the shift of pH of solution due to the presence of 1:1 electrolyte. It also accounts
self-consistently for the electrostatic potential produced by the deprotonated surface groups. To
examine the accuracy of the theory, we have performed extensive reactive Monte Carlo simulations,
which show excellent agreement between theory and simulations without any adjustable parameters.

■ INTRODUCTION
Colloidal particles are important for various applications in
chemistry, biology, and physics.1−5 The vast variety of
applications of colloidal systems has made modern society
very dependent on these complex systems.6−10 To stabilize
colloidal suspensions, the particles are often synthesized with
acidic or basic surface groups. In aqueous suspensions, these
groups become ionized, which leads to the formation of
electrical double layers (EDLs).11−19 The complicated physics
of EDLs is responsible for the stability of colloidal suspensions
and can lead to some very counterintuitive effects, such as
reversal of electroscopic mobility in suspensions with multi-
valent counterions or like-charge attraction between colloidal
particles with the same sign of charge.20−23 The stability of
colloidal systems is usually explored using ideas first introduced
by Derjaguin, Landau, Verwey, and Overbeek (DLVO)
theory.24−27 However, DLVO theory does not take into account
electrostatic correlations2 between ions and between ions and
sites. Such effects can become very important for suspensions
containing multivalent counterions and also in suspensions
containing large concentrations of 1:1 electrolyte. Furthermore,
the charge of colloidal particles is not constant, but is dependent
on the pH and electrolyte concentration inside the suspension.
The fluctuation of colloidal charge can lead to some very
nontrivial effects, in particular, those close to the isoelectric
point.28 The process of charging the colloidal particles is
denoted as “charge regulation” (CR) and was first elucidated by
Linderstrøm-Lang.29 The first quantitative model of CR was
proposed by Ninham and Parsegian.30 The NP approach is
based on Poisson−Boltzmann (PB) theory, which neglects the
discrete nature of colloidal surface groups and electrostatic
correlation effects.31−37 Indeed, PB theory is known to be very
accurate for suspensions with monovalent 1:1 electrolytes.
However, recent works, based on Baxter’s model of sticky
spheres to describe protonation/deprotonation equilibrium,
showed38−41 that discreteness of surface groups significantly

affects the effective charge predicted by the NP theory. The
importance of ion polarizability and of finite ion size was also
explored in ref 42.

The Baxter model of protonation also showed that there is a
change in equilibrium constant when an acidic group is moved
from bulk to the surface.38−41 Generally, the renormalization of
the equilibrium constant is due to the broken rotational and
translational symmetry at the surface, compared to the bulk.
However, the theory developed showed that both the discrete
charge effects and the renormalization of the bulk equilibrium
constant by the surface can be included within the NP
framework. However, the calculations were not entirely self-
consistent, since the discreteness effects were not taken into
account at the same level of mean-field approximation as are
implicit in the PB equation. In the present work, we correct this
omission and also account for the shift in pH produced by the
dissolved electrolyte. Both of these effects become important for
suspensions with weak acidic surface groups in suspensions with
salt.

The rest of the paper is organized as follows: in the section
entitled “Theory”, we present the fully self-consistent theory of
charge regulation. In the section entitled “Reactive Monte Carlo
Simulations”, we briefly describe the simulation method used to
compare with the predictions of the theory. In section entitled
“Transcendental Approximation”, we present a simple tran-
scendental equation that provides us with an easy way of
calculating the effective colloidal charge and titration curves in
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suspensions at large dilution. Finally, in the last section, we
present the conclusions of the present work.

■ THEORY
We study a colloidal particle of radius a, containing Z acidic
surface groups. The particle is confined inside a spherical
Wigner−Seitz (WS) cell of radius R, which is determined by the
concentration γ of colloidal suspension (γ = (3/4)πR3). The
suspension is in contact with a reservoir of salt and acid at
bakhshandehconcentrations cs and ca, respectively. For reader’s
convenience, in Table 1, we present a list of symbols that appear
in the rest of the paper.

The number of deprotonated surface groups Zeff is
determined by the chemothermodynamic equilibrium. The
charge of the colloidal particle can then be written asQ = −Zeffq
= −Zqξ, where q is the proton charge and ξ is the probability
that a surface group is deprotonated:

f

f f

exp( )

exp( ) exp( )
0

0 1

=
+ (1)

In this expression, f 0 is the free energy of a deprotonated state
and f1 is the free energy of a protonated state of a site.f 0 is due to
electrostatic free energy of solvation of a surface group inside an
electrolyte solution, f 0 = μsolv. The ions of electrolyte partially
screen the electric field produced by a surface group lowering its
overall electrostatic self-energy. Dividing the numerator and
denominator of eq 1 by exp(−βf 0), we can write

Z Z
1 exp( )eff =

+ (2)

where Δμ = f1 − f 0 is the difference in free energy between
protonated and deprotonated states of surface active groups. We
should note that Zeff should not be confused with the far field

effective charge often defined in studies of colloidal
systems2,43,44

Consider a reaction occurring on the colloidal surface:

FH A HA++ (3)

where A− is a surface deprotonated group and K is the
equilibrium constant of the reaction. The equilibrium constant
K is related to the weak acid dissociation constant by K = 1/Ka.
As discussed in the Introduction, the value of surface K is
generally different from the same reaction occurring in the bulk.
K accounts for the direct electrostatic interaction of proton with
an isolated surface group bound to the surface. This can only be
calculated using quantum density functional theory. At the
semiclassical level, we can denote ζ = K/ΛH+

3 �where ΛH+ is the
proton de Broglie thermal wavelength�as the internal partition
function for a HA “surface molecule”. In addition to this
interaction, when the proton is moved from the reservoir to the
colloidal surface, it will also interact with the other surface
groups. Since, these groups are reasonably far away, the quantum
effects can be neglected and the long-range interaction can be
modeled using classical electrostatics. The change in free energy
due to removal of a hydronium ion from the reservoir and
transferring it to colloidal surface, where the following reaction
then occurs:

i
k
jjjjj

y
{
zzzzz

K
q cln ln( )a

H
3 solv H

3
ex= +

+
+

(4)

The first term on the right-hand side of this expression is the free
energy of direct interaction of proton with the adsorption site,
the second term is the mean electrostatic energy of proton
interacting with all the other deprotonated acid groups and with
the ions of solution. The third term is the loss of electrostatic
solvation free energy when the site becomes protonated
(neutral). Finally, the last two terms are the free-energy change
of the reservoir when one hydronium ion is moved to the
colloidal surface. The excess chemical potential μex is an
important part of the proton activity, aH+ = caeβμd

ex

/ca°, where ca° =
1 M is the standard reference concentration. The pH of a
suspension containing electrolyte is defined as pH =
−log10[aH+]. For 1:1 electrolyte μex is very accurately accounted
for using the mean spherical (MSA)45 and Carnahan−Starling
(CS) approximations, μex = μCS + μMSA, where

d d d d
c d

1 2 ( )
8MSA

t

2

3= +
(5)

and

8 9 3
(1 )CS

2 3

3= +
(6)

where d = 4 Å is the ionic diameter, which, for simplicity, we
assume to be the same for all ions, κ is the inverse Debye length
(κ = c8 tB= ), ct = ca + cs, λB is the Bjerrum length, which is 7.2
Å in water at room temperature (λB = q2/kBTϵwλB λB, and

( )cd
t3

3

= . Substituting this into eq 2, we obtain

Z Z
Kc1 ea

eff ( )ex
sol

=
+ (7)

Electrostatic Free Energy of Solvation of Surface Site.
To calculate the electrostatic solvation free energy of an isolated

Table 1. Symbols/Variables Used in the Rest of the Paper

symbol significance

λB= 7.2 Å Bjerrum length
β 1/kBT
f 0 free energy of a deprotonated state of a site
f1 free energy of a protonated state of a site
μ chemical potential
K equilibrium constant
Λ de Broglie thermal wavelength
ci concentration of electrolyte
ai activity of electrolyte
ϕs isolated site electrostatic potential
ϕ mean-field electrostatic potential
κ Debye length
M = 1.106 Madelung constant
ϵw dielectric constant of water
a colloidal radius
γ colloidal volume fraction
R cell size
Zeff number of deprotonated groups
Ka = 1/K acid dissociation constant
q proton charge
φ(r) electrostatic potential at position r
Q colloidal charge
σ surface charge density
ξ probability of deprotonation of surface group
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group of charge qs located on the surface of a colloidal particle,
we neglect the curvature effects and treat the surface as an
infinite plane. This is very reasonable for suspensions containing
a lot of salt−for which electrostatic solvation energy is
significant−since the electrostatic curvature effects will be
screened on the scale larger than the Debye length.

We will work in a cylindrical coordinate system, with the
colloidal surface located at z = −h, where h = d/2 = rion (see
Figure 1). Because of hardcore repulsion between ions and

colloidal surface, we see that there is an exclusion layer where no
ions are present. Within the Debye−Hückel approximation, the
electrostatic potential then satisfies

l
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z h

z
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( , ) 2
( ) ( )

0

( , ) ( , ) 0

2
s s

2
s

2
s

= + <

= > (8)

Using the azimuthal symmetry of the problem, the solution can
be written as46

Ù
z

q
k kJ k k z( , )

2
d ( ) ( , )s

s

0 0 s=
(9)

Substituting this into eqs 8, we obtain
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(10)

where p = k2 2+ . Substituting eq 10 back into eq 9, the
integral over the first term can be performed analytically,
resulting in the usual Coulomb potential produced by the charge
qs located at (ρ = 0, z = −h). Therefore, the second term gives us
the induced potential produced by the polarization of the ionic
atmosphere by the surface charge group. The electrolyte

partially screens the electric field of the charged site, resulting
in negative electrostatic solvation free energy, which can be
calculated using the Güntelberg charging process.46,47 We find48

k k

k k
k

2
e dkr

sol
B

0

2 2

2 2
2 ion= +

+ + (11)

■ ELECTROSTATIC POTENTIAL
The electrostatic potential that an adsorbed proton feels can be
separated into two contributions: the direct electrostatic
interaction with the adsorption site and the interaction with
the other sites and with the ions of electrolyte. The direct
interaction with the adsorption site is already included inside the
Δμ term, through the equilibrium association constant K. The
interaction with the other sites and with the ions of electrolyte,
φ, can be separated into two contributions by adding and
subtracting a uniform neutralizing background, φ = ϕ0 + ϕdisc,
where ϕ0 is the potential produced by the subtracted
neutralizing background together with the ions of electrolyte.
This potential is very close to the mean surface potential
produced by a uniformly charged sphere, of charge density σ =
−Zeffq/4πa2, inside an electrolyte solution. The potential ϕdisc is
then, the electrostatic potential produced at the position of
adsorption site i by the other deprotonated sites and by their
neutralizing background.

We will assume that the sites on the surface of colloidal
particle have hexagonal order. Strictly speaking, one cannot tile a
spherical surface with hexagons, so defects must be present. The
defects, however, modify the electrostatic energy only slightly.49

The optimum distribution of charges on a spherical surface, such
that it minimizes the electrostatic Coulomb energy, is a well-
studied Thomson ordering problem.50−53 The electrostatic
energy of Z point sites of charge −q, arranged with
pseudohexagonal Thomson order on a surface of a sphere
with a uniform neutralizing background, is very well
approximated by49

E
Mq Z

a2 w
dis

2 3/2

(12)

whereM = 1.106 is the Madelung constant of a planar hexagonal
lattice of charges on a neutralizing background. If n of the surface
sites are protonated, the mean charge of each surface site is q(1
− n/Z). In equilibrium protons can hop between the sites, so
that at the mean-field level of approximation the energy of a
Thomson sphere with n neutralized sites is

( )
E n

MZ q

a
( )

1

2

n
Z

w
disc

3/2 2 2

=
(13)

Note that at the mean-field level of approximation, we neglect
the correlations between the condensed protons so that their
charge is effectively smeared uniformly between the adsorption
sites. This is precisely the same level of approximation that is
implicit in the Poisson−Boltzmann equation, which also
neglects the electrostatic correlations.2

The ϕdisc is the change in energy when an additional site
becomes protonated (Δn = 1),

( )E
n

M Z

a
MZ

a Z

1b
n
Z

w

b

w
disc

disc eff= =
(14)

Figure 1. Schematic representation of an isolated adsorption site on
colloidal surface, with exclusion zone due to hard core repulsion of ions
from the surface.
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The concentration of ions inside a WS cell is determined by the
equivalence of electrochemical potentials in the reservoir and in
the WS cell:

q c cr r r( ) ln ( ) ( ) ln( )i i i
ex res ex+ [ ] + = + (15)

where φ(r) is the electrostatic potential at position r and ci is
concentration of ion of type i. We will suppose that the excess
contribution to the chemical potential in the reservoir and inside
the WS are approximately the same and will cancel out.
Furthermore, the discreteness effects of the surface groups decay
very rapidly away from colloidal surface, so that they can be
replaced by a uniform surface charge density, so that φ(r) = ϕ(r)
for r > a + rion. Combining this with eq 15, we arrive at the usual
Poisson−Boltzmann (PB) equation:

r
q

c c r( )
8

( ) sinh ( )
w

a s
2 = + [ ]

(16)

Since the hardcore repulsion will prevent the presence of ions
within a < r < a + rion, in this region, the electrostatic potential
will satisfy the Laplace equation. To check the validity of our
“smearing” approximation in which the discrete surface charge is
replaced by a uniform surface charge density σ = −Zeffq/4πa2 in
order to calculate the ionic distribution, we perform a grand
canonical Monte Carlo (GCMC) to obtain the ionic density
profiles inside the WS cell for a colloidal particle with Zeff = 600
charged sites. We then compare this profiles to the ones
calculated using eq 16 (see Figure 2).

We see a very good agreement between ionic density profiles
calculated using GCMC simulations and PB equation. As can be
observed, the discreteness effects are not important away from
colloidal surface. The lack of correlational effects on ionic
distribution can be partially attributed to the cancellation of the
correlational contribution to the electrochemical potential
between the reservoir and the system, as discussed following
Eq. 15. We can now identify the value of ϕ(a) with ϕ0.

In the calculation above, we have arbitrarily fixed the effective
charge; in reality, it must be determined self-consistently using
eqs 7 and 16. To solve these equations, we proceed iteratively.
We first guess the mean-field potential ϕ(a) = ϕ0. For this guess,
we solve eq 7 to numerically determine the colloidal charge. The

Gauss law then provides us with the electric field, or equivalently
ϕ′(a) = Zeffq/ϵwa2. Using ϕ(a) and ϕ′(a) as initial conditions,
we then integrate the PB equation (eq 16), using the Runge−
Kutta fourth-order algorithm. If the electric field at the cell
boundary r = R, or equivalently ϕ′(R), is not zero, as is required
by the overall charge neutrality of the system, we adjust our
initial guess for ϕ0. In practice, finding the correct surface
potential ϕ0 is facilitated by combining the algorithm described
above with the Newton−Raphson root finding subroutine.

■ REACTIVE MONTE CARLO SIMULATIONS
There are different simulation methods available to calculate the
effective charge in CR systems. To the best of our knowledge,
the first Monte Carlo simulation method for titration was
introduced by Nishio54 in 1994. The subsequent research
extended this early work to account for the over all charge
neutrality inside the simulation cell and for the presence of
explicit hydronium ions.55−61 Here, we will use a reactiveMonte
Carlo (rMC) simulation method,62 which is particularly easy to
implement for the present colloidal system. Just like in the
theory described above, the colloidal particle is located at the
center of a Wigner−Seitz (WS) cell, which is in contact with an
infinite reservoir of salt and strong acid. TheWS cell radius is R =
120 Å (unless specified differently) and the colloidal radius is 80
Å. The intrinsic pKa = −log10Ka = log10K of a functional group on
the colloidal surface is taken to be 5.4, similar to that of
carboxylic acids. The functional groups are treated as point sites
located on the colloidal surface. The reservoir contains strong
acid, HCl, and strong electrolyte NaCl, which are assumed to be
fully dissociated. A proton associates with water molecule
forming a hydronium ion. Again to be consistent with the theory
above, we will treat all ions as having the same radius rion = 2 Å.
Water is treated implicitly, with the Bjerrum length set to λB =
7.2 Å. The interaction energy between all particles includes the
normal Coulomb potential and a hardcore repulsion between
ions, colloidal particle, and WS cell boundary.

The simulation consists of standard grand canonical Monte
Carlo (GCMC) insertion/deletion moves, as well as proto-
nation and deprotonation moves. The insertion/deletions and
protonation/deprotonation moves must always involve a
cation−anion pair to preserve the charge neutrality inside the
simulation cell. The excess chemical potential μex inside the
reservoir can be calculated using a separate simulation. This can
be done using Widom insertion method in a canonical MC with
a fixed concentration of acid and salt in a cubic simulation cell
with periodic boundary conditions, or using a reverse GCMC
strategy in which the value of μex in GCMC is adjusted until the
target concentration inside the simulation cell is reached.62,63 In
order to accurately calculate the excess chemical potential for a
specific concentration of acid and salt inside an infinite reservoir,
it is important to use Ewald summation to treat all the
electrostatic interactions between ions.

The acceptance of titration move is given by acc → min (1,
ϕp/d), where p refers to protonation and d to deprotonation:62

c KVc
N

E

N
c KVc

E

( 1)
exp ( )

exp ( )

p
H Cl

Cl
ele H

ex
Cl
ex

d
Cl

H Cl
ele H

ex
Cl
ex

=
+

[ ]

= [ + + ]

+
+

+
+

(17)

where NCl−, V, ΔEele are the number of Cl− ions, accessible
volume of the WS cell, and change in electrostatic energy inside

Figure 2. Comparison of ionic density profiles obtained using
simulation (symbols) and PB equation for a colloidal particle of radius
80 Å and 600 point charged site randomly distributed on its surface,
inside an electrolyte solution of 300 mM.
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the cell upon a trial move, respectively. It is important to note
that titration move is always combined with insertion or deletion
of Cl− to preserve the charge neutrality of the system. See the
schematic in Figure 3. The μH+

ex and μCl−
ex are the excess chemical

potentials of hydronium and of Cl− in the reservoir. In the
present model, with all ions of the same size, μH+

ex = μCl−
ex = μNa+

ex .
The same value of Ka = 1/K = 3.95 × 10−6 M, corresponding to
carboxylic acid, is used in simulations and in the theory, so that
there are no adjustable parameters.

We start by studying the dependence of titration curves on the
distribution of surface charge groups. Two possibilities are
explored: (1) a random distribution of sites and (2) annealed
distribution in which sites are first allowed to arrange on the
surface of a sphere, to minimize their repulsive Coulomb energy.
This results in Thomson, pseudohexagonal, ordering of sites on
colloidal surface. The Thomson configuration of reactive sites is
then frozen and rMC is performed. We recall that pH =

−log10aH+, where aH+ = ce H
3H = °+

+ , so that pH can be written
as pH= −log10[H+/c°] − 0.434294 βμH+

ex . In Figure 4, we see that

there is some dependence of titration curves on the distribution
of adsorption sites. To be consistent with the theoretical model,
and to avoid calculating averages over disorder, in the rest of this
paper, we will use a Thomson site distribution.

We now apply the theory developed above to calculate the
ionic density profiles around colloidal particle of radius 80 Å
with Z = 600 carboxyl surface groups, inside suspension
containing 300 mM of 1:1 electrolyte for various pH values, see
Figure 5. The density of sites on colloidal surface is the same as
that found in experimental systems.64

We see good agreement between the simulations and the
theory. The deviations appear for small pH values, when most of
surface groups are protonated and small number of deproto-
nated groups can not be accurately described by the continuum
mean-field theory developed here. Nevertheless, even under
these extreme conditions, the agreement between theory and
simulations is quite reasonable.

■ TRANSCENDENTAL APPROXIMATION
Solution of differential eq 16 with charge regulation boundary
condition is numerically involved. Often, one does not need the
full ionic distribution, but only the effective colloidal charge at
very low volume fractions. In this case, the calculation can be
significantly simplified by letting the radius of WS become very
large, R → ∞. Under these conditions the mean electrostatic
potential at contact, ϕc, at distance rion from colloidal surface of a
uniformly charged particle can be related with the effective
charge by8

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjj
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Z
a r

a r
2 ( )

sinh
2

2
( )

tanh
4

eff
ion

2

B

c

ion

c

= + +
+

(18)

The first term on the right-hand side is the usual relationship
between the surface charge density and surface potential for a
planar PB equation, while the second term is the leading
curvature correction.8 Within the ion free layer, a < r < a + rion,
the mean electrostatic potential is then

Figure 3. Schematic representation of reactive MC moves. Red, blue,
and green spheres are H3O+, Cl−, and Na+, respectively. The pair H3O+

and Cl− enters the cell from reservoir, H+ can go to the colloidal surface
and react with a site, while Cl− moves into the bulk with rMC
probabilities given by eq 17). Alternatively, H3O+ can also move to the
bulk. Similarly a pair Na+ and Cl− can move between the cell and the
reservoir. All the bulk moves are performed with standard GCMC
probabilities. All moves are done in pairs to preserve the charge
neutrality inside the simulation cell.

Figure 4. Comparison of titration curves for Thomson and random
distributions of surface charge groups.
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The electrostatic potential on the surface of colloidal particles
with a uniform surface charge density σ is then

a
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Substituting eqs 18, 20, and 14 into the charge regulation
equation,

Z Z
Kc1 e

eff
a

( )0 disc
ex

sol
=

+ + (21)

we obtain a self-consistent equation for the contact potential ϕc,
from which the effective charge can be calculated directly using
eq 18. This procedure is much simpler than solving the spherical
PB equation with charge regulation boundary conditions. On
the other hand, it does not allow us to study the dependence of
the effective charge on colloidal concentration or calculate the
ionic density profiles. For large WS cells, however, we see an
excellent agreement between the colloidal charges calculated
using the transcendental approximation and the full theory, see
the colloidal charges calculated for a particle of radius 80 Å with
surface groups with intrinsic pKa= 5.4 in a suspension containing
300mM of 1:1 electrolyte at different pHs, presented in Table 2.

As is demonstrated in Table 2, there is very good agreement
between σ obtained using the numerical solution of spherical PB
with CR boundary condition and the one calculated using the
approximation in eq 18. We can now use the approximation
from eq 18 to efficiently calculate the titration curves of colloidal
particles in suspensions of low volume fractions. We start with a
colloidal particle with − Zq = −59.6 mC/m2 in suspensions with
either 10 mM or 300 mM of 1:1 electrolyte (see Figure 6).

Figure 5.Comparison of ionic density profile for pH 4 and 6 of a colloidal particle with 600 active sites withKa = 1/K = 3.95 × 10−6 M and radius 80 Å,
the concentration of 1:1 salt is 300 mM. Symbols are simulation results and solid curve is the theory.

Table 2. Comparison of the Surface ChargeDensityObtained
Using Numerical Solution of the Spherical Nonlinear PB
Equation with CR Boundary Condition inside a WS Cell of R
= 140 Å with the Transcendental Approximation Method

Surface Charge Density (mC/m2)

pH full theory transcendental approximation

4 −6.84 −6.80
5 −33.151 −32.592
6 −80.777 −79.119
7 −112.68 −111.9
8 −118.7 −118.68

Figure 6. Titration curve for colloidal particle with −Zq = −59.6 mC/
m2. The theoretical curves are calculated using transcendental
approximation equations. Solid curve is for suspension containing
300 mM salt and the dashed curve is for 10 mM salt solution. The
symbols are simulation results.
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We see an excellent agreement between theory and
simulations, without any adjustable parameters. We next study
more highly charged particle with −Zq = −119.4 mC/m2; see
Figure 7.

Here, once again, theory and simulations show good
agreement. The agreement persists even for higher salt
concentrations, as can be seen in Figure 8 showing the titration
curves for salt concentration of 500 mM and 10 mM of particles
with −Zq = −71.6 mC/m2.

To ensure that the good agreement observed between
simulations and theory is not due to the specific value of Ka,
we next study colloidal particle with stronger acidic surface
groups of Ka = 8.1 × 10−5 M, pKa 4.09. Furthermore, to clearly
see the effect of discreteness of surface charge groups and of
electrostatic correlations on CR, in addition to the present
theory, we also present the “conventional” titration curves in
which these effects are neglected,54,65 i.e., μex = ϕdis = μsol = 0. As
can be seen from Figure 9, the present theory once again agrees

very well with the simulations, while the conventional titration
curves show strong deviations.

We next solve the full nonlinear PB equation with our CR
boundary conditions to calculate the ionic density profiles
around this colloidal particles at pH 6 and 10 mM NaCl. The
theory once again shows good agreement with the simulations
(see Figure 10). On the other hand, when the discreteness and
solvation energies are neglected, one sees strong deviations in
ionic density profiles.

In a recent paper,59 authors argued that pH − pKa is a
“universal” parameter, namely that one will obtain an identical
number of protonated groups for systems with different pH and
pKa, as long as pH − pKa = constant. Our theory shows that this
is not the case, even in the absence of salt. To demonstrate this,
we study colloidal particles of radius 103.3 Å with Z = 600
surface groups, inside a WS cell of radius 140 Å. The
concentration of salt in the reservoir is set to zero. First, we fix
the intrinsic pKa of surface groups to pKa = 2.5 and acidity to pH
1, so that pH − pKa= −1.5. In this case, our theory predicts that
colloidal surface charge density will be −3.2 mC/m2. We then

Figure 7. Comparison of titration curve obtained from simulation and
theory. The number of acid groups is such that − Zq = −119.4 mC/m2.
The solid and dashed line are for the salt concentrations 300 mM and
10 mM, respectively. The symbols represent simulation data points.

Figure 8. Titration of a colloidal particle with −Zq = −71.59 mC/m2.
The solid and dashed line are for the salt concentrations 500 mM and
10 mM, respectively. The symbols represent simulation data and curves
represent the theoretical values.

Figure 9. Titration of a colloidal particle of surface charge density
−71.6 mC/m2 with surface groups of intrinsic pKa = 4.09. The symbols
represent simulation data points. The curves correspond to the results
of the present theory and to “conventional” titration, in which the
discreteness and the correlational effects are neglected.

Figure 10. Ionic density profiles around a colloidal particle predicted by
the present theory and by the conventional titration model in which
discreteness and correlational effects are neglected.
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change the intrinsic pKa of surface groups to pKa = 7.5 and pH 6,
so that, again, pH − pKa = −1.5. For this system, the theory
predicts a surface charge density of −0.035mC/m2. Clearly both
are different, even though both systems have pH − pKa= −1.5.
To confirm the predictions of the theory, we ran rMC
simulations. The simulations yield surface charge densities of
−2.9 mC/m2 and −0.1 mC/m2, for the two cases, respectively,
in agreement with theory predictions. Clearly pH − pKa is not a
“universal” parameter, contrary to the claims made in ref 59.

Finally, we note that, within the present theory, the classical
Henderson−Hasselbalch (HH) equation�much used in
biochemistry and analytical chemistry to relate the value of
pKa with the pH when half the surface groups are protonated,
pH1/2�is modified to pKa = pH1/2 + βqφHH log10(e), where e is
the Euler number and φHH = ϕ0 + ϕdis − μsol is the electrostatic
potential at the center of an adsorption site minus the
electrostatic solvation free energy of a deprotonated site.

■ CONCLUSION
We have presented a theory that enables us to accurately
calculate the surface charge of colloidal particles with uniformly
distributed weak acid surface groups in solutions of various pH
values and 1:1 electrolyte concentrations. The theory accounts
for the shift of solution pH due to the presence of electrolyte. It
also accounts self-consistently for the electrostatic potential
produced by the discrete deprotonated surface groups. To
examine the accuracy of the theory we have performed extensive
rMC simulations, which show excellent agreement between
theory and simulations for all system parameters explored in the
present paper. We have also used the theory developed in the
present paper to demonstrate that, contrary to recent
suggestions,59 pH − pKa is not a universal parameter. The
theoretical approach to account for discreteness and solvation
effects introduced in the present paper can also be included
within the MUltiSIte Complexation (MUSIC) model of
Hiemstra et al.66 used to study metal oxide surfaces; this will
be the topic of future work.

Finally, it is well-known that multivalent ions, such as Ca2+,
interact strongly with carboxylate. In the future work we will
attempt to extend the present theory to suspensions containing
CaCl2 salt. In that case, however, presence of multivalent ions
will lead to electrostatic correlations even in the bulk electrolyte.
This may require going beyond the PB equation and using
classical density functional theory instead.
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