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ABSTRACT: We present a theory which allows us to calculate the interaction potential
between charge-regulated metal nanoparticles inside an acid-electrolyte solution. The
approach is based on the recently introduced model of charge regulation which permits us to
explicitlywithin a specific microscopic modelrelate the bulk association constant of a
weak acid to the surface association constant for the same weak acid adsorption sites. When
considering metal nanoparticles we explicitly account for the effect of the induced surface
charge in the conducting core. To explore the accuracy of the approximations, we compare
the ionic density profiles of an isolated charge-regulated metal nanoparticle with explicit
Monte Carlo simulations of the same model. Once the accuracy of the theoretical approach is
established, we proceed to calculate the interaction force between two charge-regulated metal
nanoparticles by numerically solving the Poisson−Boltzmann equation with charge
regulation boundary condition. The force is then calculated by integrating the electroosmotic
stress tensor. We find that for metal nanoparticles the charge regulation boundary condition
can be well approximated by the constant surface charge boundary condition, for which a
very accurate Derjaguin-like approximation was recently introduced. On the other hand, a constant surface potential boundary
condition often used in colloidal literature, shows a significant deviation from the charge regulation boundary condition for particles
with large charge asymmetry.

■ INTRODUCTION

Aqueous electrolyte and acid solutions are of great importance
in chemistry and biology.1−4 For strong acids and electrolytes,
the high dielectric constant of water favors the dissociation of
ionic components.5,6 The ionization process plays a crucial role
in many physicochemical phenomena, such as stability of
colloidal and nanoparticle suspensions.7,8 For example, the
surface of silicate glass acquires a negative charge when
immersed in water, which is related to the dissociation of
silanol groups.9 This and other examples of surface charging
are described by the charge regulation (CR) process which
controls the exchange between dissociable acidic or basic
functional groups with their conjugate electrolyte.10−21 As the
result, the behavior of these systems can change dramatically as
a function of solution pH.22 A particularly important example
of charge regulation occurs in metal nanoparticles. Gold
nanoparticles are often synthesized using citrate as a stabilizing
agent and their surface charge is a strong function of pH. The
plasmon resonance of these particles has been exploited in
sensors and optical devices.23−25 They have also found use in
catalysis.26−31 Because of their compatibility with the immune
system, gold nanoparticles are now being used extensively in
medical applications.32−35

The CR was first introduced by Linderstrøm-Lang,11 and
some years later Kirkwood and Shumaker explored the effects
of CR on intermolecular interactions between proteins.36 In

recent years, many studies have been conducted on proteins
using CR.37−47 In 1971 Ninham and Parsegian (NP)48

quantitatively implemented CR for planar nonpolar surfaces
by combining the local chemical equilibrium of functional
groups on the surface with the nonlinear Poisson−Boltzmann
equation.49,50 The fundamental parameter in the NP approach
is the association/dissociation equilibrium constant for acid or
base surface functional groups, which is assumed to be the
same as the bulk equilibrium constant for the same acid or
base. In the later works, the surface association constant was
treated as an adjustable parameter used to fit the experimental
data.51 The NP approach is a mean-field theory which does not
account for the discrete nature of ions and of the surface
functional groups. To understand the effects of discreteness
one needs to consider an explicit microscopic model of surface
association. Such approach was recently introduced in refs 52
and 53. The authors of these papers used the Baxter model of
sticky spheres54 to account for the chemical association. The
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fundamental conclusion of these works was to demonstrate
that the discreteness effects lead to the renormalization of the
surface association constant away from its bulk value. Within
the specific model of association, the new theory provided an
explicit mapping between the bulk and the surface equilibrium
constants. One can, therefore, accurately account for both the
electrostatic and steric discreteness effects within the NP
framework by a suitable renormalization of the bulk association
constant. In the present paper, we will explore the effects of
charge regulation on the interaction between metal nano-
particles;55 see Figure 1.

■ THE DISCRETENESS EFFECT OF CHARGED
FUNCTIONAL GROUPS ON THE METAL SURFACE

Consider a metal nanoparticle of radius a and Ns acidic
charged functional groups on its surface. The nanoparticle is
placed at the center of a spherical Wigner−Seitz (WS) cell of
radius R; see Figure 2.
The system is in contact with a reservoir of strong acid at

concentration ρa = 10−pH M and of strong electrolyte at
concentration ρs. The ionization equilibrium of surface groups
is controlled by the equilibrium constant Ks:

+ ++ − VH O A HA H O3 2 (1)

The electrostatic potential ϕ inside the cell satisfies the
Poisson equation in spherical coordinates:

ϕ πσ δ π ρ ρ
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where ae = a + ri is the radius of the contact spherethe
closest distance that an ion of radius ri can reach the
nanoparticle center. ϵw is the dielectric constant of water, q is
the proton charge, and ρ± are the concentration of positive and
negative ions. For monovalent ions, electrostatic correlations
between the ions can be neglected, and the local concentration
of cations and anions is given by the Boltzmann distribution.56

eq 2 then reduces to the Poisson−Boltzmann equation,
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with the effective surface charge given by52,53

σ
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s

e s a
2 0 (4)

where β = 1/kbT and ϕ0 is the contact electrostatic potential.
Within the simple model in which both the surface adsorption
sites and the hydronium ions are described by the equal-sized
sticky spheres of radius ri, the surface equilibrium constant Ks
was shown to be related to the bulk equilibrium constant of the
same weak acid,52,53 Kbulk, as

= βμ− −K
K

2
es

bulk b d

(5)

where b = λB/2ri and λB = βq2/ϵw is the Bjerrum length, which
is 7.2 Å in water at room temperature. The term μd accounts
for the discrete nature of the surface acidic groups.
The value of μd can be obtained by considering the

interaction of an associated hydronium ion with all the surface
acid groups, as well as with its own self-image and with the
images of the acid groups inside the metal core. To calculate
μd, for simplicity, we will neglect the curvature of the particle
surface. This is a reasonable approximation as long as the
radius of the nanoparticle is much larger than the average
separation between the surface charged groups.57−60 Fur-
thermore, we will assume that the charged sites form a
triangular lattice over the particle surface, as is shown in Figure
3. In reality, the acidic functional groups are randomly
distributed over the surface; however, we find that the precise
site arrangement does not play a significant role in CR, so that
triangular lattice distribution provides a reasonable first order
approximation. Since a nanoparticle is metallic, each site crates
an image charge at the inversion point inside the metal core.
We note that the mean field potential ϕ already accounts for
the uniform−smeared−surface charge; therefore, it is necessary
to introduce a uniform neutralizing background to prevent the
double counting.52,53 The μd can then be separated into the
contribution arising from the direct interaction between the
hydronium ion and the negatively charged adsorption sites and
their neutralizing background, μs, and the contribution arising
from the interaction of the hydronium with its own image
inside the metal core, with the images of the adsorption sites
and the uniform neutralizing image background, μi.

Figure 1. Representation of the system. Two metal nanoparticles of
charge Q1 and Q2 and effective radius ae = a + ri, where a is the radius
of nanoparticle and ri is the ionic radius, are separated by the contact
surface-to-contact surface distance L, in an electrolyte-acid solution of
respective concentrations ρa and ρs. The origin of the coordinate
systems is at the mid plane between the particles. The dashed box
around the second particle corresponds to the cylindrical surface used
to calculate the interaction force between the particles using the
electroosmotic stress tensor.

Figure 2. Representation of a metal nanoparticle with Baxter sticky
sphere, negatively charged adsorption sites, randomly distributed on
its surface.
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μ μ μ= +d s i (6)

The average contact surface area per functional group is
γ π= a N4 /e s

2 . Since the unit cell of a triangular lattice has area

γ = l3
2

2, where l is the lattice spacing, the separation between

the surface groups is found to be

π=l
a

N
2

3
2e

s
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(7)

The lattice vectors for the planar, z = 0, triangular lattice of
adsorption sites are

= ̂ = ̂ + ̂l l la ax and
1
2

x
3

2
y1 2 (8)

Consider a hydronium ion of charge q in contact with the
site of charge −q at Cartesian coordinates (x = 0, y = 0, z = 0).
The image of this site inside the metal has charge q, and is
located at (0, 0, −2ri). The Coulomb energy of interaction
between the condensed hydronium ion located at (2ri, 0, 0)
and all the functional groups, as well as their uniform
neutralizing background is
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On the other hand, the Coulomb interaction energy of the
hydronium ion with its own image and the images of all the
acid groups, as well as their neutralizing background is
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The integral terms in eqs 9 and 10 are due to the interaction
of hydronium with the respective neutralizing backgrounds of
sites and image sites. The last term in eq 10 is due to the self-
interaction of the hydronium with its own image. The eqs 9
and 10 converge very slowly. In the Appendix, we present two
efficient methods to perform these calculations.

■ MONTE CARLO SIMULATIONS

In order to test the accuracy of the present theory, we compare
the ionic density profiles predicted by eq 3 with the results of
Monte Carlo (MC) simulations. A spherical metal nanoparticle
of radius a and Ns sticky adsorption sites of charge −q and
radius ri, randomly distributed on its surface, is placed at the
center of a spherical Wigner−Seitz cell of radius R. We
consider a primitive model of electrolyte in which all ions have
radius ri, same as of the adsorption sites, and charge ±q. The
system is in contact with a reservoir of strong acid and salt at
respective concentrations, ρa and ρs. The metal nature of
nanoparticle is taken into account using the Green function,
which accounts for the image charge.61 The image charge of
each ion is located at the corresponding inversion point inside
the nanoparticle core. The association between the hydronium
ions and the functional groups is taken into account using the
Baxter sticky potential,52,53 uBa. The electrostatic potential at
position r produced by a source located at position r′ can be
evaluated using the Green function of a conducting
sphere:61−65

π π π
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The first term is the result of the direct Coulomb interaction
between an ion at position r and another ion at position r′.
The second term is due to the interaction of the ion at position
r with the image of the ion at r′, which is placed at the
inversion point inside the metal core and has charge −qa/r′.
The last term is due to the interaction of the ion at r with the
countercharge +qa/r′, placed at the center of the metal sphere
to keep the overall charge neutrality. One can show that this
construction leads to a vanishing electric field inside the metal
core and makes the particle equipotential.62 The total energy
of the system can now be written as

∑ ∑ ∑ ∑= + ̅ +
=
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= +
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1
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Here the G̅ r r( , )j j is the self-interaction of an ion with its
image inside the metal core and with the countercharge. It is
calculated using eq 11 without the direct Coulomb term. The
first sum in eq 12 runs over all the charged species inside the
system, including the surface sites. The second sum runs over
all the ions inside the WS cell, and the last sum is for the sticky
interaction between surface sites and hydronium ions. The
simulations are performed using the grand canonical Monte
Carlo algorithm with 3 × 106 MC steps for equilibration and
105 steps for production. The ionic density profiles obtained
from the theory and from the MC simulations are presented in
Figures 4a and 5a. As can be seen, there is an excellent
agreement between the simulations and the theory. For
comparison we have also presented the density profiles
obtained using the original NP approach in which the bulk
association constant Kbulk is used directly in the eq 4, instead of
the renormalized surface equilibrium constant Ks, given by eq
5. As can be seen in Figures 4b and 5b, the deviations between
the original NP theory and the simulations are quite significant.

Figure 3. Representation of a triangular lattice with their lattice
vectors.
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■ FORCE BETWEEN TWO METAL NANOPARTICLES
Consider the system represented in Figure 1: two metal
nanoparticles with Ns1 and Ns2 acid functional groups and
effective radius ae, separated by the contact surface-to-contact
surface distance L, inside an electrolyte-acid solution. The
concentration of strong acid in the reservoir is ρa = 10−pH and
of the 1:1 salt is ρs. To calculate the interaction force between
the two nanoparticles, we numerically solve the Poisson−
Boltzmann equation in cylindrical coordinates (ϱ, z), using the
over-relaxation method.66 Since the metal core of each
nanoparticle is an equipotential volume, we apply the following
boundary conditions: ϕ(∞, z) = ϕ(ϱ, ± ∞) = 0, ∂ϕ(ϱ, z)/
∂ϱ|ϱ=0 = 0, ϕ ϕ| =S 11

, and ϕ ϕ| =S 22
, where ϕ1 and ϕ2 are the

electrostatic potentials inside the nanoparticles 1 and 2,
respectively. Our algorithm then performs a search for the
potentials ϕ1 and ϕ2, such that the effective charge of each
nanoparticle satisfies the CR boundary condition:

∫π ρ
=

ϵ
· =

+ β ϕ−Q
N
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E S
4

d
(1 e )eff

i w
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s
i

s a
q

( )
( )

i (13)

where i = 1, 2, and the electric field, E = −∇ϕ(ϱ, z), is
calculated on the contact surface S of each nanoparticle. The
electroosmotic stress tensor is given by

δ
π

δΠ = − ϱ +
ϵ

ϱ ϱ − ϱ
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

p z E z E z E z( , )
4

( , ) ( , )
1
2

( , )ij ij
w

i j ij
2

(14)

where the kinetic pressure is βp(ϱ, z) = (ρa + ρs)[e
−βqϕ(ϱ,z) +

eβqϕ(ϱ,z)] = 2(ρa + ρs) cosh[βqϕ(ϱ, z)]. The electroosmotic
force in z direction felt by the nanoparticles is obtained by

∫ Π= ̂· · ̂F Az n d
(15)

where the integration is performed over the surface of a
cylinder enclosing one of the particles, see Figure 1,
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where the positive sign of the force signifies a repulsion.

■ RESULTS
We first study interaction between metal nanoparticles with the
same number of surface functional groups inside an acid/salt
solution, see Figure 6. We explore three different boundary

conditions: CR boundary condition, eq 13; fixed electrostatic
potential boundary conditionin which each particle’s
electrostatic potential is kept the same as when the two
particles are at infinite separation; and a fixed charge boundary
condition, when the total charge on each particle is kept the
same as when the particles are at infinite separation. For
identical particles, we observe no significant effect of the
boundary condition on the interaction force, Figure 6a. The
insensitivity happens due to a very small variation of the
surface electrostatic potential with the particle separation,
Figure 6b. This justifies the constant electrostatic potential
boundary condition often used in the colloidal literature.
In Figure 7a, we show the interaction force between particles

with different number of surface adsorption sites. The other
parameters are the same as in the previous case. We note the

Figure 4. Ionic density profiles around a spherical metal nanoparticle
with Ns = 100 surface acid groups and radius a = 48 Å. The radii of
ions and of surface adsorption sites are ri = 2 Å. Comparison between
MC simulations (symbols) and the CR theory (lines). The reservoir
has pH = 1.95 and no salt. (a) Using Ks in PB. (b) Using Kbulk in PB.

Figure 5. Ionic density profiles around spherical metal nanoparticle
with Ns = 100 surface acid groups and radius a = 48 Å. The radii of
ions and adsorption sites are ri = 2 Å. Comparison between MC
simulations (symbols) and CR theory (lines). The reservoir has pH =
1.92 and salt concentration 9.5 mM. (a) Using Ks in PB. (b) Using
Kbulk in PB.

Figure 6. (a) Force between two nanoparticles of radius a = 48 Å as a
function of surface to surface separation L inside an acid solution at
pH = 5 and salt concentration of 20 mM. The number of negatively

charged sites on the two nanoparticle are = =N N 200s s
(1) (2) ,

respectively. The asymptotic electrostatic potentials of the two
particles are ϕ ϕ= = −∞ ∞ k T q4.45 /1 2

B , and the asymptotic charges are

= = −Q Q q165eff eff
1 2 . We present force calculated using 3 different

boundary conditions: charge regulation boundary condition; fixed
electrostatic potential boundary condition, in which the each particle
electrostatic potential is kept the same as when the two particles are at
infinite separation; and a fixed charge boundary condition, when the
total charge on each particle is kept the same as when the particles are
at infinite separation. (b) Electrostatic potentials ϕ1(L) and ϕ2(L) of
nanoparticles with charge regulation, as a function of surface-to-
surface separation.
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appearance of like-charge attraction between the two metal
nanoparticles at small separations. Such like-charge attraction
was previously predicted for charge asymmetric metal
nanoparticles based on the constant surface charge boundary
condition.55 Indeed, we note almost a perfect agreement
between CR boundary condition and a constant charge
boundary condition, showing that the total charge on the
metal nanoparticle surface does not vary significantly with the
separation between the nanoparticles. On the other hand, the
distribution of this charge over the surface of the metal core
changes as the particles approach one another, affecting the
electrostatic surface potential, see Figure 7b. While the surface
charge is uniformly distributed on the two particles when they
are far apart, at close separation, the charge on the weaker
charged particle redistributes in such as to induce a positive
charge in the part of the metal core facing the other particle.
This leads to a like-charge attraction between the two metal
nanoparticles, even though both are overall negatively charged.
We also see that for asymmetrically charged particles the
constant electrostatic potential boundary condition over-
estimates the attraction between the two metal nanoparticles
at short separations, see Figure 7b, while the CR and constant
charge boundary conditions remain in agreement.

■ CONCLUSIONS
We have presented a theoretical method for calculating the
force between two charge regulating metal nanoparticles inside
an electrolyte−acid solution. Comparison between theory and
simulations shows the importance of using the correct surface
equilibrium constant when studying charge regulation of metal

nanoparticles. The bulk equilibrium constant must be
renormalized to properly account for the discrete charge and
steric effects at the particle surface.
Depending on the asymmetry in the number of acid

functional groups on the two particles, it is possible to obtain
either repulsion or attraction between the two like-charged
nanoparticles. Our approach also shows that for metal
nanoparticles it is always possible to replace the charge
regulation boundary condition by a constant charge boundary
condition. On the other hand, the often used constant
potential boundary works well for symmetric particles, but it
deviates significantly from the CR boundary condition for
charge asymmetric particles, in particular in low salt electrolyte
solutions.
Our calculations are based on the mean-field Poisson−

Boltzmann equation; therefore, we are not able to observe the
Kirkwood−Shumaker attraction,36 which appears close to the
isoelectric point of the nanoparticles. This attraction results
from the correlations between the associated hydronium ions
on the two particle surfaces. To explore this effect requires
going beyond the mean-field theory. This will be the subject of
future work. Finally, the simulation results presented in the
paper were obtained only for the individual particles inside a
spherical WS cell. To calculate the force between two charge
regulated metal nanoparticles using MC simulations is
significantly more difficult, since it requires taking into account
an infinite number of image charges. On the other hand, it is
quite straightforward to obtain the interaction potential for
nonpolar particles using MC simulations,67 while the solution
of PB equation for such particles is much more involved. In
future work, we will explore the difference in the interaction
potential between polar and nonpolar nanoparticle. We will
also attempt to develop numerical methods which will allow us
to calculate the force between metal nanoparticles using MC
simulations.

■ APPENDIX

Derivation of μs
We neglect the curvature of the particle surface and consider a
planar triangular lattice of adsorption sites of radius ri located
at z = 0. The image of the lattice is located at z = −2ri, inside
the metal core. The triangular lattice can be decomposed into
two simple rectangular sublattices, shifted with respect to one
another by 1/2 lattice spacing, in both x and y directions,

68,69 as
is shown in Figure 8. We split μs into μs1

and μs2
, where the

indices 1 and 2 refer to the sublattices 1 and 2, respectively.
The lattice vectors for the sublattice are

= ̂ = Δ ̂l la ax and y1 2 1 (17)

where Δ = 31 . There Δ1 and σ are related as follows:

Figure 7. (a) Force between two nanoparticles of radius a = 48 Å as a
function of surface to surface separation L. The pH = 5 while the salt

concentration is 20 mM. The first particle has =N 200s
(1) negative

surface functional groups and the second one has =N 30s
(2) . The

asymptotic−infinite separation between the particlesvalues of the
surface potential and effective surface charge are ϕ = −∞ k T q4.45 /1

B

and ϕ = −∞ k T q1.25 /2
B and for = −Q q165eff

(1) and = −Q q29eff
(2) . We

present force calculated using three different boundary conditions:
charge regulation boundary condition; fixed electrostatic potential
boundary condition, in which the each particle electrostatic potential
is kept the same as when the two particles are at infinite separation;
and a fixed charge boundary condition, when the total charge on each
particle is kept the same as when the particles are at infinite
separation. Note a very good agreement between CR boundary
condition and the constant charge boundary condition, while the
constant potential boundary condition significantly overestimates the
like-charge attraction between the two nanoparticles at short
separations. (b) Electrostatic surface potentials ϕ1(L) and ϕ2(L) of
nanoparticles for CR boundary conditions, as a function of surface-to-
surface separation. Note a strong variation of the electrostatic
potentials at short distances, invalidating the often used constant
potential boundary condition for calculating the interaction potential
between the charge asymmetric nanoparticles.

Figure 8. Triangular lattice as the sum of two square lattices.
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σ =
| × |

=
Δla a

1 1

1 2
2

1 (18)

The position of the hydronium which is in contact with the
central site of the first sublattice located at (0, 0, 0), is assumed
to be (2ri, 0, 0). The electrostatic interaction of hydronium
with the adsorption sites of the first sublattice and with their
neutralizing background is

∫∑βμ
λ

λ σ= −
− + Δ

+
( )l

n m
S

r
1

d
1

s
B

n m r
l

B

R

, 2 2

1
2 2 0i

1

(19)

where R is the cutoff distance imposed on both the sum and
the integral. Using the Gamma function representation we can
write70

∫π
= >

∞
−

z
t
t

z
1 1 d

e for 0zt

0 (20)

and eq 19 can be written as68,69,71
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The interaction with the background can be written as

∫ ∫
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Taking the limit R → ∞ in the above expression yields

∫π λ
Δ

∞

l
t

t t
dB

1 0 (23)

and the expression for μs1
becomes
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Splitting the integral into intervals t = 0 to t = π and t = π to
t = ∞ and changing variables π2/t → u in the second interval,
we obtain
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Using the Poisson sum rule,72
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in first term of eq 25 we obtain
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The (n = 0, m = 0) term of first sum above cancels with the
background term, resulting in
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where the prime above the summation indicates the exclusion
of (n = 0, m = 0) term. Performing the integration we obtain,
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Both sums converge very fast. A similar procedure can be
used to calculate μs2

after noting that second sublattice is

shifted with respect to the first sublattice by l/2 and Δ1l/2 in x
and y directions, respectively. We obtain
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(30)

Derivation of μi
To calculate the interaction energy between the ion and the
images, μi, we can use a procedure similar to the one described
above. However, the expressions become somewhat more
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involved. Therefore, here we provide an alternative approach
which also leads to a rapidly converging expression for the
value of μi. Consider a triangular array of image sites located at
z = 0. For convenience of calculations, we have shifted the
plane of image sites from z = −2ri to z = 0, so that the
adsorbed hydronium ion is now at the coordinate (2ri, 0, 2ri).
The electrostatic potential produced by these sites satisfies the
Poisson equation

∑ α
π

δ δ∇ = −
ϵ

− −G
q

z n mr a a( )
4

( ) ( )
w n m

2

,
1 2

(31)

where α = ̂ + ̂x yx y , and a1 and a2 are given by eq 8. The
source term of the Poisson equation can be rewritten using the
Fourier representation of the periodic delta function53
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where γ = l3
2

2 is the unit cell area of the triangular lattice,

while the reciprocal lattice vectors are
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The Green function can be written as73,74
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Using eq 34 in eq 31, we obtain
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where k is given by
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Integrating eq 35 once over z, and taking the limit z → 0
from both sides, we obtain
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The diverging (n = 0, m = 0) term is canceled if a
neutralizing background is introduced in the source term of the
Poisson eq 31. For the hydronium located at (2ri, 0, 2ri), the
interaction energy with the images of the adsorption sites is
qG(2ri, 0, 2ri). The expression for μi can now be written in
terms of a rapidly converging sum
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where prime over the sum signifies that the (n = 0, m = 0) term
is excluded from the summation. The last term of eq 39 is due
to the interaction of a hydronium ion with its own image.
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(68) Šamaj, L.; Trizac, E. Ground state of classical bilayer Wigner
crystals. EPL (Europhysics Letters) 2012, 98, 36004.
(69) Šamaj, L.; Trizac, E. Critical phenomena and phase sequence in
a classical bilayer Wigner crystal at zero temperature. Phys. Rev. B:
Condens. Matter Mater. Phys. 2012, 85, 205131.
(70) Arfken, G. B.; Weber, H. J. Mathematical methods for physicists;
American Association of Physics Teachers: 1999.
(71) de Leeuw, S. W.; Perram, J. W.; Smith, E. R.; Rowlinson, J. S.
Simulation of electrostatic systems in periodic boundary conditions. I.
Lattice sums and dielectric constants. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 1980, 373, 27−56.
(72) Gasquet, C.; Witomski, P. Fourier analysis and applications:
filtering, numerical computation, wavelets; Springer Science & Business
Media: 2013; Vol. 30.
(73) Malossi, R. M.; Girotto, M.; dos Santos, A. P.; Levin, Y.
Simulations of electrolyte between charged metal surfaces. J. Chem.
Phys. 2020, 153, 044121.
(74) dos Santos, A. P.; Girotto, M.; Levin, Y. Simulations of
Coulomb systems confined by polarizable surfaces using periodic
Green functions. J. Chem. Phys. 2017, 147, 184105.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c09446
J. Phys. Chem. B 2020, 124, 11762−11770

11770

https://dx.doi.org/10.1039/C8SM00399H
https://dx.doi.org/10.1039/C8SM00399H
https://dx.doi.org/10.1063/1.3615940
https://dx.doi.org/10.1063/1.3615940
https://dx.doi.org/10.1063/1.3615940
https://dx.doi.org/10.1103/PhysRevLett.107.107801
https://dx.doi.org/10.1103/PhysRevLett.107.107801
https://dx.doi.org/10.1016/j.chemphys.2018.08.006
https://dx.doi.org/10.1016/j.chemphys.2018.08.006
https://dx.doi.org/10.1063/1.4718367
https://dx.doi.org/10.1063/1.4718367
https://dx.doi.org/10.1063/1.4718367
https://dx.doi.org/10.1209/0295-5075/98/36004
https://dx.doi.org/10.1209/0295-5075/98/36004
https://dx.doi.org/10.1103/PhysRevB.85.205131
https://dx.doi.org/10.1103/PhysRevB.85.205131
https://dx.doi.org/10.1098/rspa.1980.0135
https://dx.doi.org/10.1098/rspa.1980.0135
https://dx.doi.org/10.1063/5.0012073
https://dx.doi.org/10.1063/1.4997420
https://dx.doi.org/10.1063/1.4997420
https://dx.doi.org/10.1063/1.4997420
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c09446?ref=pdf

