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This work analyzes the dynamics of inhomogeneous, magnetically focused high-intensity beams of
charged particles. While for homogeneous beams the whole system oscillates with a single
frequency, any inhomogeneity leads to propagating transverse density waves which eventually result
in a singular density build up, causing wave breaking and jet formation. The theory presented in this
paper allows us to analytically calculate the time at which the wave breaking takes place. It also
gives a good estimate of the time necessary for the beam to relax into the final stationary state
consisting of a cold core surrounded by a halo of highly energetic particles. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2802072�

It is well known that magnetically focused beams of
charged particles can relax from nonstationary into stationary
flows with the associated particle evaporation.1 This is the
case for homogeneous beams with initially mismatched en-
velopes flowing along the magnetic symmetry axis of the
focusing system. Gluckstern2 showed that initial oscillations
of mismatched beams induce formation of large scale reso-
nant islands3,4 beyond the beam border; beam particles are
captured by the resonant islands resulting in emittance
growth and relaxation. A closely related question concerns
the mechanism of beam relaxation and the associated emit-
tance growth when the beam is not homogeneous. On gen-
eral grounds of energy conservation one again concludes that
beam relaxation takes place as the coherent fluctuations of
beam inhomogeneities are converted into microscopic ki-
netic and field energy.1,5–7 However, unlike in the former
case for which the specific resonant mechanism is well un-
derstood, for inhomogeneous systems a more detailed de-
scription of the processes involved must still be explored.
This is the goal of the present letter.

The interest surrounding a better understanding of the
dynamics of inhomogeneous beams is due to the fact that
one can hardly design experimental devices capable of gen-
erating fully matched beams at the entrance of a transport
system.8 While the azimuthal symmetry with respect to the
beam axis is feasible in the case of focusing solenoidal mag-
netic fields, envelope matching—to avoid the radial
oscillations—is significantly harder to achieve, while a per-
fect homogeneity is practically impossible.

Given all these facts, the purpose of the present work is
to investigate the mechanisms leading to the decay of density
inhomogeneities as the system relaxes into its final stationary
state. We find that the relaxation comes about as a conse-
quence of breaking of density waves followed by ejection of
fast particle jets. Jets are formed by particles moving in-
phase with the macroscopic density fluctuations. They draw
their energy from the propagating wave fronts and convert it

into microscopic kinetic energy. This process is very similar
to the breaking of gravitational surface waves. The jet can
then be compared to a broken crest of a gravitational wave
surfing down the wave front. We stress that the wave break-
ing mechanism analyzed in this letter is very different from
the Gluckstern resonances which were found to be the driv-
ing force behind the emittance growth in transversely oscil-
lating homogeneous particle beams. For strongly inhomoge-
neous beams, we find that it is the wave breaking and jet
production which are the primary mechanisms responsible
for the beam relaxation.

We consider solenoidal focusing of space-charge domi-
nated beams propagating along the transport axis, defined as
the z axis, of our reference frame. The beam is initially cold
with vanishing emittance, and is azimuthally symmetric
around the z axis. Since the number of constituent particles is
very large, the beam dynamics is governed by the azimuthal
equation and collective effects are dominant. Prior to the
appearance of density singularities, the original Vlasov for-
malism can be simplified to a cold fluid description for
which Lagrangian coordinates are particularly appropriate. In
these coordinates, the transverse radial position r of a beam
element is governed by9–12

r� = − �r +
Q�r0�

r
. �1�

The prime indicates the derivative with respect to the longi-
tudinal z coordinate which for convenience we shall also
refer to as “time,” and angular momentum in the Larmor
frame is taken to be zero for each particle. The focusing
factor is ���qB /2�m�c2�2, where B is the axial, constant,
focusing magnetic field; Q�r0�=KN�r0� /Nt, is the measure of
the charge contained between the origin at r=0 and the ini-
tial position r�z=0�=r0, Nt is the total number of beam par-
ticles per unit axial length, N�r0� is the number of particles
up to r0, and K=Ntq

2 /�3m�2c2 is the beam perveance. q and
m denote the beam particle charge and mass, respectively;
�= �1−�2�−1/2 is the relativistic factor where �=vz /c and vz

is the constant axial beam velocity and c is the speed of light.
Note that r0 is in fact the Lagrange coordinate of the fluid

a�Electronic mail: rizzato@if.ufrgs.br
b�Electronic mail: pakter@if.ufrgs.br
c�Electronic mail: levin@if.ufrgs

PHYSICS OF PLASMAS 14, 110701 �2007�

1070-664X/2007/14�11�/110701/4/$23.00 © 2007 American Institute of Physics14, 110701-1

Downloaded 07 Nov 2007 to 143.54.109.110. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2802072
http://dx.doi.org/10.1063/1.2802072


element13 which means that as long as the fluid description
remains valid, the amount of charge seen by the fluid ele-
ment inside the region 0�r�r�z� remains unaltered at
Q�r0�, independent of time z. This is of fundamental impor-
tance since from the Gauss law this is the charge that exerts
the force on the fluid element. In this letter we will consider
the beams starting from a static initial condition, r��0�=0.
The formal solution to the fluid dynamics Eq. �1� is
r=r�z ,r0�. This can be calculated explicitly using the
Lindstedt-Poincaré perturbation theory. For small amplitude
fluctuations around the stable equilibrium req�r0�=�Q�r0� /�
we obtain

r�r0,z� = req�1 + A/req cos��z� + �1/3��A/req�2

� �2 + cos��z��sin2��z/2� + O��A/req�3�� , �2�

where A�r0�=r0−req is the amplitude of oscillations, ��r0�
=�0+��A2 / �6�2req

2 � is the renormalized r0-dependent
frequency, and �0=�2� is the unperturbed frequency. We
stress that as long as the fluid picture applies, all the infor-
mation about the temporal evolution of the beam is contained
in Eq. �2�. For example, the time evolution of the beam den-
sity can be obtained as follows. For a beam of initial cross-
sectional density n0�r�, the amount of charge �Q between
two concentric circles of radii r0 and r0+�r0 ��r0 small� is
�Q=2	r0�r0�K /Nt�n0�r0�. Since this charge is conserved,
�Q=2	r�r�K /Nt�n�r�=2	r��r /�r0��K /Nt�n�r��r0, the trans-
verse beam density at any future time z is, therefore,

n�r� = 	n0�r0��r0/r���r/�r0�−1	r0=r0�r,z�. �3�

For a given position r and an axial coordinate z, the initial
position r0 of a beam element can be uniquely determined as
the inverse function r0=r0�r ,z� of Eq. �2�. This ceases to be
the case if �r /�r0→0 and r0�r ,z� becomes multivalued. If
this happens, the density will diverge and the fluid picture
will break down. All these features, if present, would be
indicative of a wave breaking phenomenon. Needless to say
that presence of wave breaking in charged particle beams
would be of considerable interest and practical importance.
Breaking might be responsible for conversion of energy from
macroscopic fluid modes into microscopic kinetic activity.

We start our analysis by considering the compressibility
factor �r /�r0, which can be obtained exactly by numerically
integrating two nearby trajectories of Eq. �1� or approxi-
mately by differentiating Eq. �2�. To be specific we write the
initial cross-sectional beam density at z=0 in a general para-
bolic form n0�r0�=
h+�
i�r0�, where the inhomogeneity pa-
rameter 0���1, 
h�Nt / �	rb

2�, and 
i�r0��
h�2r0
2 /rb

2−1�,
rb is the beam radius. Note that the integral of the inhomo-
geneous contribution 
i�r0� is zero. To suppress the effects
arising from the pure envelope oscillations—Gluckstern
resonances—we fix rb=�K /�, so that the beam radius is un-
altered for as long as the fluid picture, Eq. �1�, remains valid.
We have also performed calculations for rms matched beams
and find that they behave qualitatively the same way. Figure
1 shows the typical time evolution of the compressibility
�r /�r0 obtained both numerically using Eq. �1� and analyti-
cally using Eq. �2�. Since the amplitudes of oscillations of all
fluid elements about the points of their equilibria are small,

	A /req	�1, even for large values of �, the agreement be-
tween the numerical and the perturbative solution is found to
be very good, see Fig. 1. The compressibility factor exhibits
a fast oscillatory motion accompanied by a slow secular
growth. This means that given enough time, the compress-
ibility will always become zero for any finite value of �,
resulting in a density divergence.

To further explore the significance of the diverging den-
sity, we have performed fully self-consistent N-particle simu-
lations. For a system in which particles interact by an infinite
range unscreened Coulomb potential, the time of collision
diverges and the mean-field Vlasov description becomes
exact.14 Thus, in order to simulate the Nt→ limit—in
which the thermalization time due to binary collisions is
infinite—each particle can be taken to interact only with the
mean-field produced by all the other particles. Taking advan-
tage of the azimuthal beam symmetry and the Gauss law, a
particle located at a position r experiences a field generated
by the particles within a circle of radius r.9,15 We stress that
in the Nt→ limit this is exact at any finite time scale.
Within the simulation, the trajectory of each particle is,
therefore, also governed by Eq. �1�—unlike the fluid ele-
ments, however, particles are allowed to bypass one another.
This method avoids the thermalization effects associated
with the binary collisions and significantly speeds up the
simulations. It allows us to accurately simulate the collective
effects dominant for all time scales when Nt→ even with a
relatively small number of particles, Nt
10000.

In Fig. 2 we display the particle phase-space �r ,v�r��
for �=0.6. The first panel �a� shows the initial distribution at
z=0—all particles are still. In panel �b�, after various propa-
gating wave cycles, the system is about to build up an infi-
nite density; velocity is still a single valued function of the
space coordinate but a singularity �cusp� is forming. The
third panel �c� shows the system at a time slightly larger than
the first wave breaking time. Velocity ceases to be a single
valued function of the space coordinate, while some of the

FIG. 1. Time evolution of the compressibility factor �r /�r0 for �=0.6 and
r0=0.4rb. �r /�r0=0 indicates singular density. Symbols represent the com-
pressibility obtained from the numerical solution of Eq. �1�, whereas the
solid line is derived using the perturbative solution, Eq. �2�. z is measured in
units of �−1/2. Position r0=0.4rb is chosen because this is the approximate
Lagrange coordinate at which density is first found to diverge for �=0.6.
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particles go through the wave others do not. This latter class
of particles is accelerated by the wave front and forms a thin
azimuthally symmetric jet or finger seen in the figure. High
energy jet particles can reach far outside the beam core and
may be very detrimental to the beam transport. The process
shown in panel �c� repeats itself many times, see panel �d�, as
the system evolves toward a final stationary state and the
previously unoccupied extensions of the phase-space are
gradually filled with particles whose velocities are consider-
ably larger than velocities in the beam core. After some time
a stationary state is reached in which the beam separates into
a cold dense core and a hot and extended halo of ejected
particles, panel �e�. Time evolution of the emittance10

��2��r2��v2�− �rv�2, where � � denotes an average over par-
ticles, is shown in the last panel �f�. At the wave breaking
emittance suffers a sharp rise, followed by a rapid relaxation
to the final stationary state in which large amplitude fluctua-
tions subside. We note that beam relaxation is closely con-
nected to phase-space filamentation. Phase-space filamenta-
tion takes place after particles are ejected from the beam core
by surfing on the charge density waves. Once outside the

core, particles experience the time dependent nonlinear
forces and undergo all the complicated mixing dynamics
with subsequent filamentation. This leads to final irreversible
emittance growth. The directed emittance growth seen prior
to relaxation is reversible. Since the beam radius rb is
matched—envelope oscillations are small—the contribution
of the Gluckstern resonant mechanism to the emittance
growth and beam relaxation is, at most, marginal. The domi-
nant mechanism is the singular build up of density followed
by the wave breaking and jet production. The time of the first
wave breaking depicted in panel �c� of Fig. 2 agrees well
with the time when the compressibility factor �r /�r0 ob-
tained from the Lagrange fluid equations goes to zero, Fig. 1.
Our next goal is then to precisely calculate the instant at
which the wave breaking takes place.

We first note that for an inhomogeneous density profile,
each fluid element oscillates with a different frequency—
rigid oscillations are possible only when the density profile
across the beam cross section is homogeneous. Thus, nearby
fluid elements will oscillate around their points of equilibria,
slowly moving out-of-phase. This motion results in trans-
verse density waves propagating across the beam. At some
point, however, two nearby fluid elements will overlap one
another leading to a singular build up of density. When this
happens the fluid picture will lose its validity and will have
to be replaced by the full kinetic description given in terms
of the Vlasov equation. The wave breaking occurs when the
separation between any two fluid elements vanishes,
r�r0+�r0 ,z�−r�r0 ,z�→0, for some value of r0. This is pre-
cisely equivalent to our condition for the appearance of a
singular density, �r /�r0→0. Considering only the term linear
in amplitude of Eq. �2�, we see that �r=�req+cos��z��A
−Az sin��z���. Neglecting the purely oscillatory term, as
compared to the secular one, the time of breaking is found
to be

zwb 
 min
r0

 1

2�Q

�Q/�r0

A��/�r0
 . �4�

As expected, the breaking will always occur whenever
�� /�r0�0. This is the case for all inhomogeneous particle
beams. Unlike other systems in which one must have strong
enough electric fields,16 here any sort of inhomogeneity leads
to the wave breaking—one just has to wait sufficiently long.
As soon as the wave breaking takes place, particles with the
same velocity as the density wave will be captured by the
wave and surf down its front gaining kinetic energy �Fig. 2�.
Since at the wave breaking position r0 /rb�1, minimization
in Eq. �4� can be performed perturbatively in this parameter,
yielding

zwb = � 3

2�
�1/2 �3�4�1 − � + � − 1�

��3 − ��2��1 − � + � − 1�
, �5�

where ���1+2�1−�−��1/2.
For small values of � the first wave breaking will happen

after a long transitory period; zwb
81�2/�3 as �→0. The
subsequent breaks, however, occur on a much shorter time
scale �1/�0, as can be seen from Fig. 1. Therefore, zwb

should also give us a good estimate of the relaxation time for

FIG. 2. Time evolution in the phase-space �r ,v� for �=0.6. r is measured in
units of �K /��1/2, v in units of K1/2, and z in units of �−1/2. Panel �a� initial
condition at z=0; panel �b� after many wave cycles, but just before wave
breaking; panel �c� just after wave breaking, an azimuthal jet is expanding
over the phase-space; panel �d� while the first jet moves in the phase space
new jets are being ejected; panel �e� a phase portrait of a relaxed state; panel
�f� emittance growth leading to a final relaxation. Note that emittance satu-
rates soon after the wave breaking �wb�.
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the entire dynamics. In Fig. 3 we compare the wave breaking
time obtained using the N particle dynamics simulation de-
scribed above with zwb given by Eq. �5�. The figure reveals
an amazingly good agreement between the two results. In the
same plot we also show the relaxation time—defined as the
time when the emittance first reaches its plateau value, see
Fig. 2�f�. As expected, for smaller values of � the time of
relaxation follows closely the wave breaking time. This is
because the phase mixing and the jet production occur on a
much shorter time scale, �1/�0, than zwb. For larger values
of � the two time scales, however, become comparable. This
results in a deviation between the two data sets—circles and
crosses—observed in Fig. 3.

To summarize, we have investigated the dynamics of
space-charge dominated beams10 with inhomogeneous den-
sity profiles. Using Lagrangian coordinates, we were able to
derive a very accurate analytical expression Eq. �2� which
describes very well the dynamics of beam particles, up to the
wave breaking time. The fluid picture loses its validity when
the propagating wave fronts result in a singular build up of
density. At this point the crest of the propagating wave will
break off producing an azimuthally symmetric jet of particles
accelerated by the wave front. This process will repeat itself
many times leading to a final stationary state in which the
beam separates into a cold core surrounded by a halo of
highly energetic particles. The theory presented in this paper
allows us to precisely calculate the time at which the wave
breaking will take place. It also gives a very good estimate
for the time of relaxation to the final stationary state. Unlike
other systems in which the wave breaking occurs only when
thresholds on driving fields are exceeded,16 inhomogeneous

beams are found to be always unstable17 and the wave break-
ing is unavoidable.

Wave breaking is not the only mechanism which leads to
the relaxation of initially nonstationary intense particle
beams. It is well known that oscillations of mismatched en-
velopes can be damped by the Gluckstern resonances. How-
ever, in practice, inhomogeneities are much harder to sup-
press than the envelope mismatches.8 In these cases the wave
breaking described in the present letter will be the dominant
mechanism by which a system reaches its final stationary
state.

The theory presented here describes beams with vanish-
ing initial emittances. One example of this are the crystalline
beams for which the initial emittance is suppressed by a se-
ries of dissipative cooling procedures.18 We expect, however,
that the theory will remain valid also for beams of initial
finite emittances as long as the thermal length is small,
vthzwb=�thzwb/2rb�A��rb, where vth=��v2� is the charac-
teristic thermal velocity, A is the characteristic amplitude of
particle oscillations, and the value of the wave breaking time
is given in Fig. 3. Since in general zwb�1/�0 and ��1, the
condition requires that the thermal velocity be smaller than
the macroscopic velocity �0A,19 and that the beam be space
charge dominated ��K /��.
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