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Abstract

We present a theory for pore dynamics of osmotically stressed vesicles. When a liposome with

an internal concentration of solute is placed inside a solute-depleted medium, an osmotic *ow

of solvent through the lipid bilayer leads to swelling of vesicle and to increase in membrane

surface tension. This can result in membrane rupture and opening of thermal pores. Depending

on the internal concentration of solute and the size of the vesicle, pores can close rapidly or be

long lived. We 0nd that the life span of the long-lived pores scales non-trivially with the size

of the liposome. Closure of the long-lived pore is followed by a rapid *icker-like opening and

closing of short-lived pores. Our model is consistent with the observation of long-lived pores in

red blood cell ghosts.
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Opening of stable pores in cellular phospholipid membranes is an important step

for drug delivery and gene therapy. A number of methods have been explored to this

end. Electroporation [1] is the method of choice when gene delivery is performed in

vitro. It is, however, associated with a signi0cant cell mortality limiting its practical

use. Holes in cellular membranes have also been opened by intense illumination [2,3].

The mechanism leading to pore formation under these circumstances is still not fully

understood. It, however, appears to be similar to the action of laser tweezers [4], a

part of the lipid membrane is sucked into the laser trap, stretching the membrane until

rupture.
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For drug delivery the goal is to introduce a controlled amount of substance to the

speci0c disease site. The delivery system should minimize the potential side eDects by

selectively targeting the aDected region of the organism [5]. Liposomes can be made

to contain drugs or genes and can be introduced into blood stream without provoking

an immune system response. Liposomal aEnity for speci0c tissue can be increased by

varying the membrane lipidic composition or by including ligands that recognize and

bind to speci0c receptors [6]. One example of this is the drug called Doxirubicin used

in cancer chemotherapy. The liposomal encapsulation of Doxirubicin has been shown

to eEciently deliver it to tumors, while minimizing the side eDects, such as damage

to heart muscle tissue.

When liposome ruptures, its content leaks out. It is precisely the dynamics of this

rupture that is the subject of the present paper. In particular, our goal is to understand

the mechanism of pore opening and closure in the osmotically stressed vesicles. The

situation which we attempt to model is the following. Liposomes are prepared inside

a solution containing small molecules impermeable to lipid membrane at concentration

c0. They are then placed into a puri0ed aqueous solution. The imbalance in solute

concentration inside and outside the vesicles leads to osmotic *ow of solvent through

the semi-permeable lipid membrane, resulting in swelling of vesicles and stretching of

their membranes. As the tension increases, the energy barrier to pore nucleation de-

creases [7]. If there is enough solute inside the liposome, the barrier height eventually

becomes comparable to the energy of thermal *uctuations. When this happens, mem-

brane raptures and a pore opens [8]. One interesting question is what is the life span

of this pore? Speci0cally, as a pore opens it relaxes the membrane tension. However,

opening of a pore exposes the hydrophobic interior of membrane to water, leading to

pore line (edge) tension. This hydrophobic eDect induces a force which tries to re-seal

the pore. Furthermore, a hole in membrane results in eIux of both solute and solvent,

reducing the vesicle volume and surface tension. All these eDects lead to an intricate

interplay of time and length scales which control the pore closure.

We shall designate the radius of a vesicle as R and the radius of a pore as r. The

conservation of mass then leads to

4��R2 dR

dt
= jw − �r2�v ; (1)

where � is the density of water, jw is the osmotic current and v is the leak-out velocity.

The leak-out velocity [9–12] is determined by the balance between the shear stress,

proportional to �v=r, and the osmotic pressure inside the vesicle Kp,

v=
Kpr

3��
; (2)

where � is the solvent viscosity. Inside a swollen vesicle the osmotic pressure is com-

pensated by the Laplace pressure, so that

Kp=
2�

R
; (3)

where � is the tension of a stretched membrane. In this work, we shall concentrate

on vesicles with fairly large internal concentrations of solute, close to 1 M. This cor-

responds to osmotic pressures as high as 20 atm. Of course, before these extreme
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pressures can be built, the lipid membrane will rapture, leaking out some of the in-

ternal content and releasing the surface stress. At these high pressures, the thermal

undulations of membrane can be ignored, and the membrane tension is controlled by

the stretching modulus [13–15] Ks. The membrane elastic energy takes a Hooke-like

form

Es =
1
2
Ks(A− A0)

2 ; (4)

where A0 = 4�R2
0 is the equilibrium surface area of the unstretched membrane. As

the membrane is stretched beyond the elastic limit, pores are nucleated reducing the

membrane tension. The elastic energy of a membrane with a pore is

E(R; r) = 1
2
Ks[4�(R

2 − R2
0)− �r2]2 + 2��r ; (5)

where r is the pore radius and � is the pore line tension. The membrane surface tension

is,

�(R; r) =
9Es

9A
= Ks(4�(R

2 − R2
0)− �r2) : (6)

The osmotic current jw is determined by the membrane permeability P, the con-

centration diDerence of solute inside and outside the vesicle, and the Laplace pressure.

A simple phenomenological expression for the osmotic current of water into the vesicle

can be written as

jw = P(4�R2 − �r2)

[

c −
2�

103kBTNAR

]

; (7)

where kB is the Boltzmann constant and NA is the Avogadro number. If the diDerence

of molar (M) solute concentration c, inside and outside the vesicle is not very large, the

integrity of membrane will not be compromised, and a stationary state with jw=0 will

be achieved. Under these conditions the osmotic pressure is completely compensated by

the Laplace pressure, resulting in zero net *ux of solvent. For suEciently large internal

concentration c0, a stationary state will not be achieved before membrane ruptures. It

is precisely in this regime that we expect to see some interesting physics.

The growth of a pore is controlled by the rate at which the elastic energy is dissipated

by the membrane viscosity �m [16],

�ml
dr

dt
= �(R; r)r − � ; (8)

where l is the membrane width. Since the membrane is impermeable to solute particles

the internal solute concentration is modi0ed only through the osmotic in*ux of solvent

and the eIux of solute through the open pore, after membrane has ruptured. The

continuity equation expressing this is

4�

3
R3 dc

dt
=−4�R2c

dR

dt
− �r2cv ; (9)

where we have assumed that solute is uniformly distributed inside the vesicle.

We are now in position to study the evolutionary dynamics of an osmotically stressed

vesicle. The characteristic values of the parameters appearing in the above equations
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Fig. 1. Energy KE(R; r) necessary to open a pore of radius r in a liposome with R0 = 100 nm. The curves

are, from top down, R=R0 = 1:0, R=R0 = 1:0008, R=R0 = 1:001, and R=R0 = 1:0012.

are: 4�R2
0Ks = 0:2 J=m2, l = 3:5 nm, � = 10−12 J=m, �m = 100 Pa, �w = 10−3 Pa and

P = 1:8× 10−4 kg=m2 s M.

The energy necessary to open a pore or radius r is KE(R; r) = E(R; r) − E(R; 0).

The form of KE(R; r) as a function of pore size is plotted in Fig. 1 for various values

of R. As the osmotic *ow of solvent stretches the membrane, a minimum in KE(R; r)

for r �= 0 indicates energetic favorability of pore formation. However, to reach this

minimum a suEciently large thermal *uctuation is necessary to overcome the energy

barrier. The probability of such a *uctuation occurring is proportional to the Boltzmann

factor

P(r) ∼ e−�KE(R;r∗) ; (10)

where � = 1=kBT and r∗ is the critical pore size. Pores with r ¡ r∗ will shrink and

close while pores with r¿ r∗ will grow. The waiting time for appearance of a ther-

mal *uctuation with enough energy to open a pore of radius r∗ is very long, unless

KE(R; r∗) ≈ kBT .

In the limit of large surface tensions the critical pore size is r∗ ≈ �=� and the barrier

height is

�KEb ≈
��2

�kBT
: (11)

We note that when membrane tension reaches �c = 10−3 J=m2, the barrier height is

approximately kBT . This value of �c is in agreement with the tensions found to be

necessary to rupture a mechanically stretched membrane [17,18]. The minimum solute

concentration necessary for a pore to open is

cmin
0 ≈

2�c

103kBTNAR0

(12)

which for a vesicle of 100 nm is approximately 10 mM.
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Fig. 2. Radius of a pore as a function of time for vesicles of R0 = 200 (topmost), 220 and 240 nm

(bottommost), for initial concentration c0 = 0:5 M. Note that for vesicle with R0 = 200 nm the pores are

short-lived, while for larger vesicles, long-lived pore opens 0rst.

The dynamics then proceeds as follows: Eqs. (1),(8), and (9) are solved numerically,

using Euler’s method with a stepsize of  t=0:1 �s, to 0nd the evolution of R(t), r(t),

and c(t). When the surface tension becomes such that, KEb ≈ kBT , a pore of size r∗

opens, see Fig. 2, and the internal content of the liposome begins to leak-out. This

process reduces the volume of the vesicle and decreases the membrane tension, until

the pore closes. Once this happens, the osmotic swelling of the liposome re-starts. As

the energy barrier to pore nucleation drops down to kBT a new pore is opened, etc.

The process stops when the internal solute concentration reaches cmin0 and a stationary

state with jw = 0 is established.

For small vesicles, pores open and close very quickly with the characteristic time

#f ∼10−2 s, resulting in a periodic *ickering. For liposomes with R0 ¿Rc
0(c0) a long-

lived pore appears, see Fig. 3. The critical size of a liposome Rc
0(c0), necessary for

nucleating a long-lived pore depends on the internal solute concentration. Larger the

initial solute concentration c0, smaller will be the size of the vesicle which supports a

long-lived pore. The long life span of these pores is the result of a “wash-out” eDect

in which the osmotic *ux is almost completely compensated by the leak-out rate of

solute through the pore. When solute concentration inside the vesicle drops below the

critical value, cc(R0), the long-lived pore closes. This value is insensitive to the initial

solute concentration c0, but depends strongly on the vesicle size R0. The life span of

a long-lived pore # scales with the vesicle size R0,

# ∼ R&
0 (13)

with & ≈ 2:3− 2:4, see Fig. 3. After the long-lived pore has closed, it is followed by

a sequence of short-lived pores with the characteristic life span #f.

We have checked that the pore dynamics is not sensitive to the speci0c mechanism

of pore opening. In particular, even if the pores are opened stochastically, with the
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Fig. 3. Life span of the 0rst-open pore as a function of vesicle size R0 for c0 =0:5 M. Note the appearance

of the critical vesicle size Rc
0(c0) which can sustain long-lived pores.

probability given by the Boltzmann distribution, the rate of leakage and the life span

of the long-lived pores is aDected very little.

Up to now we have not taken into account the diDusive eIux of solute through the

open pores. The diDusive current through a pore of size r is approximately

jD ∼ �r2c
D

R0

: (14)

This leads to the decline of internal solute concentration governed by the conservation

equation,

4�

3
R3
0

dc

dt
=−jD ; (15)

the solution of which is

c(t) = c0e
−t=#e ; (16)

where the eDusion time #e is

#e =
4R4

0

3r2D
: (17)

Using D ≈ 10−9 m2=s, appropriate for small organic molecules such as sucrose, and

r = r∗ ≈ �=�c ≈ 1 nm, we see that for liposomes with R0 = 50 nm, the time for

eDusion is #e ≈ 10−2 s. This is comparable to the *icker time #f. Therefore, for small

vesicles eDusion is an important mechanism for the loss of solute. On the other hand,

for liposomes with R0 = 100 nm and above, eDusion is only marginally relevant.

Long-lived pores have been observed in red blood cell ghosts [19,20], their size

dependent on the ionic strength of the surrounding medium [21]. No theory, up to

date, was able to account for these long-lived pores. Holes were predicted to either

grow inde0nitely, which would result in ghost vesiculation, or to close completely [22].
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Fig. 4. A sequence of bursts in hydra aggregates. Picture one shows an aggregate with a diDuse cloud of

expelled cells from the previous explosions, while picture two shows a cellular aggregate in the process of

bursting. Arrow indicates the site of the burst.

Our model provides a dynamical mechanism for pore stabilization, consistent with the

experimental observations. However, for the speci0c case of red blood cell ghosts the

ratio �=Ks has to be adjusted to account for the large radius r=R0 observed in these

experiments [19,20].

In aqueous solutions the phospholipid membranes acquire a net negative charge. At

physiological concentrations, 154 mM of NaCl, the Debye length, however, is quite

short, less then 1 nm and the electrostatic interactions are strongly screened [23]. We,

therefore, do not expect that electrostatics will signi0cantly modify the basic conclu-

sions of our theory, beyond the renormalization of membrane line [22] and surface

tension. However, further, investigations in this direction are necessary and will be the

subject of future work.

Finally, it is curious to note a strong similarity between the rupture of osmotically

stressed liposomes and bursting of Hydra cells aggregates [24]. Hydra and marine

sponges can generate functional organisms from random cell aggregates purely through

the intercellular interaction. This morphogenesis is characterized by the cavity formation

followed by swelling and violent bursting, which expels the internal *uid and dead cells,

see Fig. 4.

Unlike the liposomes, cellular aggregates are too massive for temperature to be of any

relevance. Instead the cellular Brownian motion is driven by the metabolic *uctuations

of the cytoskeleton [25]. We can, therefore, expect that a theory similar to the one

presented above for the liposomes, might also apply to osmotically driven bursting of

cellular aggregates.

The authors are grateful to Ms. V.A. Grieneisen for kindly providing the photos of

bursts in hydra aggregates, Fig. 4. This work was supported in part by the Brazilian

agencies CNPq and FAPERGS.
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