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A simple model is presented to calculate the potential of mean force between a polyion and a
multivalent counterion inside a polyelectrolyte solution. We find that under certain conditions
the electrostatic interactions can lead to a strong attraction between the polyions and the
multivalent counterions, favouring formation of overcharged polyion–counterion complexes.
It is found that small concentrations of salt enhance the overcharging while an excessive
amount of salt hinders the charge reversal. The kinetic limitations to overcharging are also
examined.

1. Introduction

It is our pleasure to contribute this paper to the special
issue of Molecular Physics dedicated to celebrate
Ben Widom’s outstanding contributions to Physical
Chemistry and Statistical Mechanics. Ben’s work is
characterized by a profound physical insight, combined
with an ability to abstract the most complex physical
phenomena into a simple model. From scaling and
criticality [1] to microemulsions [2] and the hydrophobic
effect [3], Ben’s sagacity has opened new frontiers of
Physical Chemistry. While it is impossible to compete
with Ben’s intuition, one can at least try to follow his
example. In this paper we will, therefore, study a simple
model of interaction between a polyion and multivalent
counterions inside a polyelectrolyte solution.
Thermodynamic systems in which long range

Coulomb interactions play the dominant role pose an
outstanding challenge to Physical Chemistry [4]. Even
such basic questions as the possible existence of a
liquid–gas phase separation in a restricted primitive
model has been positively settled only quite recently [4].
Even so, the order of this transition still remains a
source of an outstanding debate [5]. For strongly
asymmetric electrolytes such as aqueous colloidal
suspensions, even the existence of a liquid–liquid phase
separation continues to be controversial [6–11].
When aqueous colloidal suspensions or polyelectro-

lyte solutions contain multivalent counterions other
curious phenomena appear. For example, it is found
that for sufficiently small separations two like-charged

polyions can attract one another [12–19]. If an external
electric field is applied to such a suspension the
electrophoretic mobility of colloidal particles is often
found to be reversed, so that the particles move in the
direction opposite to the one expected based purely on
their chemical charge [4, 20–23]. Both of these phenom-
ena are a consequence of strong electrostatic coupling
between the polyions and the counterions.

The counterions inside the suspension can be divided
into two categories: those which are associated
(condensed) with the colloidal particle and those which
are free. The condensed counterions contribute to the
effective, renormalized, charge of the polyion–counterion
complex, while the free counterions and coions result
in screening of the electrostatic interactions inside
the suspension [4]. In this paper we will explore the
potential of mean force between a rodlike polyion with
n associated counterions and a counterion located at a
transverse distance d from the polyion centre, figure 1.

2. The model

Consider a rodlike polyion of Z (even) monomers, each
carrying a charge �q, inside an aqueous suspension
containing multivalent counterions and salt. The mono-
mers are located uniformly with separation b along the
rod. Strong electrostatic coupling between the polyion
and the counterions results in a condensation of n
�-valent counterions onto the polyion. The condensed
counterions are free to hop between the monomers of
the polyion [15]. If a monomer has an associated
counterion, its charge is renormalized to ð�� 1Þq.
The free, uncondensed, counterions and coions screen*Corresponding author. Email: levin@if.ufrgs.br
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the electrostatic interactions, changing the potential
between the two charges q1 and q2 from the Coulomb to
the Debye–Hückel [24] form

VðrÞ ¼
1

�

q1q2 exp ð��rÞ

r
, ð1Þ

where � is the dielectric constant of the solvent and
� is the inverse Debye length. The question that we
would like to address in this paper is what is the
potential of the mean force between the polyion–
counterion complex containing n condensed �-ions and
an additional �-valent counterion located transversely
at distance d from the polyion centre, see figure 1.
To proceed, we assign to each monomer i a lattice–gas

variable �i, such that �i is equal to 1 if a counterion is
condensed onto site i and 0 otherwise. For a given
configuration f�g, the interaction Hamiltonian between
the complex and a counterion located at a transverse
distance d from its centre is

H ¼
1

D

XZ
i¼1

�q2ð�i�� 1Þ

r2i þ d 2
� �1=2 exp �� r2i þ d 2

� �1=2h i

þ
1

2D

XZ
i, i0¼1, i6¼i0

q2ð�i�� 1Þð�i0�� 1Þ

bji� i0j
exp ð��bji� i0jÞ,

ð2Þ

where

ri ¼
2i� 1� Z

2
b:

It is convenient to define the reduced distance between
the polyion and the counterion x ¼ d=b, the reduced
inverse Debye length k ¼ �b, and the Manning
parameter [25, 26] as � ¼ q2=�kBTb. In terms of these
adimensional variables the reduced Hamiltonian,
H � �H=�, becomes

H ¼
XZ
i¼1

ð�i�� 1Þ

"
2�

½ð2i� 1� ZÞ2 þ 4x2�1=2

� exp �k ð2i� 1� ZÞ2 þ 4x2
� �1=2� �

þ
1

2

XZ
i0¼1, i6¼i0

�i0�� 1

ji� i0j
exp ð�kji� i0jÞ

#
: ð3Þ

The partition function is a trace over all possible
distributions of n condensed counterions among the
Z polyion sites. There is a total of

Nc ¼
Z!

ðZ� nÞ!n!

such configurations. The partition function is then

Q ¼
X
f�g

0
exp ½��H �,

where the sum is over the Nc configurations f�g which
obey the constraint

PZ
i¼1 �i ¼ n, denoted by the prime.

It is convenient to order the terms in the Hamiltonian
by the distances between the pair of interacting
charges. This results in

H ¼
XZ=2
i¼1

2�½ð�i þ �Z�iþ1Þ�� 2�

�
exp �k ð2i� 1� ZÞ2 þ 4x2

� �1=2� �
�
ð2i� 1� ZÞ2 þ 4x2

�1=2
2
4

3
5

þ
XZ�1
j¼1

XZ�j
i¼1

ð�i�� 1Þð�iþj�� 1Þ
exp ð�kjÞ

j
:

If we now define the Boltzmann factors

xj ¼ exp
�� exp �k ð2j� 1� ZÞ2 þ 4x2

� �1=2� �
ð2j� 1� ZÞ2 þ 4x2
� �1=2

2
4

3
5

and

yj ¼ exp
�� exp ð�kjÞ

j

� �
,

b

d

y

x

Figure 1. Rodlike polyion with Z¼ 6 monomers separated
by a distance b and a counterion located at x¼ d.
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the contribution of each configuration to the partition
function will be a product of these factors raised to
exponents which are polynomials in �, that is

Q ¼
XNc

i¼1

YZ=2
j¼1

x
vi, j
j

YZ�1
j¼1

y
ui, j
j : ð4Þ

The polynomials, vi, j ¼ �ai, j�þ bi, j�
2 and ui, j ¼ ci, j�

di, j�þ ei, j�
2, have integer non-negative coefficients. The

advantage of the simple model constructed above is that
for not too large values of Z and n the partition function
can be evaluated exactly with the help of a computer.
The potential of the mean force (measured in units

of q2=�b) between a polyion–counterion complex and an
�-ion located at x is

�ð�, k,�, xÞ ¼ �
1

�
ln

QðxÞ

Qð1Þ
: ð5Þ

The potential is normalized so that �ð1Þ ¼ 0.
The computer code which generates the partition

function for given values of Z and n determines the set
of integer coefficients of the polynomials defined
following equation (4). Each set of polynomial coeffi-
cients may correspond to more than one internal
configuration of the polyion, so that the degeneracy
must also be taken into account. All the data is stored
on the computer and used to perform a floating point
calculation of the free energy.

3. Results and discussion

In figure 2 the potential of the mean force between
various complexes and an �-ion is plotted. The
complexes are composed of a polyion of charge �10q
and n associated divalent counterions. Notice that for
n¼ 5 (neutral complex) the potential is a monotonically
increasing function of x, so that the sixth counterion
is always attracted to the complex. For an overcharged
complex with n¼ 6 condensed counterions, the potential
of the mean force develops a barrier. At large distances
the seventh counterion is repelled from the complex,
while at short distances it is attracted to it. The
minimum of the free energy, however, is reached when
the seventh counterion is located at x¼ 0. The potential
of the mean force, therefore, favours counterion
condensation. The size of the barrier increases with n
and the minimum at x¼ 0 becomes metastable for n¼ 8.
For n¼ 9 the potential is a monotonically decreasing
function of x, and the tenth counterion is always
repelled from the complex.We next study the dependence

of the depth of the potential well and the height of the
barrier on the parameters of the model.

In figure 2, we saw that when the complex is
overcharged n > Z=�, the potential can have two
minima, one located at x ¼ 1 and another at x¼ 0.
Which one of the two minima is the global one is
determined by the sign of �ð0Þ. Figures 3 and 4 show
the behaviour of �ð0Þ as a function of � and k. When
�ð0Þ < 0 the position at x¼ 0 is the absolute minimum,
while when �ð0Þ > 0, x¼ 0 is at most metastable. We
should note, however, that the present discussion is not
sufficient to define the absolute number of condensed
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Figure 2. Potential of the mean force as a function of x for
Z¼ 10, �¼ 1, k¼ 0 and �¼ 2. In upward order, the curves
correspond to n ¼ 5, 6, 7, 8, 9 condensed counterions.
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Figure 3. The potential of the mean force at x¼ 0 as a
function of � for some values of k. The curves are for Z¼ 10,
n¼ 4 and �¼ 3.
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counterions. For a counterion to be condensed the
depth of the potential well must be sufficiently large,
compared to the thermal energy kBT, to prevent its
rapid escape from the polyion surface. At the level of
the present discussion this criterion is arbitrary. Thus,
in this paper we will not consider the absolute number of
condensed counterions but only the conditions which
favour or disfavour the counterions’ condensation.
From figures 3 and 4, we see that for a polyion of
Z¼ 10 and n¼ 4 condensed trivalent counterions, the
minimum at x¼ 0 is the global one for the parameters
plotted. The approach of an additional fifth counterion
to this already overcharged complex is, therefore,
energetically favourable.
The depth of the global minimum j�ð0Þj is a

monotonically increasing function of the Manning
parameter, see figure 3. The dependence on the salt
concentration, however, is not monotonic. From figure 4
we see that small concentrations of salt favour counter-
ion condensation, i.e. �ð0Þ becomes more negative for
small k. Larger concentrations of salt, however, have a
destabilizing effect on the counterion condensation. This
is even clearer for complexes composed of a polyion
with Z¼ 10 and n¼ 5 condensed trivalent counterions.
Figure 5 shows that the position of the free energy
minimum is a non-trivial function of salt concentration.
Depending on the Manning parameter � and the
concentration of salt k, association of an additional,
sixth, counterion can be either favoured or disfavoured.
On the other hand, for Z¼ 10, n¼ 6 and �¼ 3, �ð0Þ is
always positive so that a complex with n¼ 7 condensed
counterions can be at most metastable.
We next explore the dependence of the barrier height

�ðxmÞ, where xm is the position of the maximum of

the potential of the mean force, see figure 2, on the
parameters of the model. In figure 6, �ðxmÞ is depicted as
a function of the Manning parameter � for a polyion of
size Z¼ 10 with n¼ 4 associated counterions. We see
that the barrier height diminishes with the increase of �
and the amount of salt inside the suspension. To explore
the dependence of the barrier height on the size of the
polyion Z, in figure 7 we plot �ðxmÞ as a function of Z
for complexes composed of a polyion and n* condensed
trivalent counterions, such that �n*(0)¼ 0. While in the
absence of salt the barrier height shows a signifi-
cant dependence on the polyion size, at finite salt
concentration this dependence weakens and �ðxmÞ seems
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Figure 6. The barrier height �ðxmÞ as a function of � for
some values of k. The curves are for Z¼ 10, n¼ 4 and �¼ 3.
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Figure 4. �ð0Þ as a function of k for some values of �.
The curves are for Z¼ 10, n¼ 4 and �¼ 3.
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Figure 5. �ð0Þ as a function of k for some values of �.
The curves are for Z¼ 10, n¼ 5 and �¼ 3.
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to saturate when the polyion size is significantly larger
than the Debye length. For large Z and small concentra-
tion of electrolyte, however, the kinetic barrier can
be many kBT, providing a significant limitation to
overcharging [27].
Charge reversal is a consequence of strong positional

correlations between the counterions. These correlations
are induced by the electrostatic repulsion between the
particles. Thus, we expect that both the barrier height
and the relative depth of the absolute minimum will

be strongly dependent on the counterion valence. In
figures 8 and 9 we show the dependence of the barrier
height and the depth of the potential well on the valence
of the counterions. Although all the overcharged
complexes depicted in figures 8 and 9 have the same
net charge 4q, the depth of the potential well and the
height of the kinetic barrier depend on �. As expected,
larger counterion charge leads to stronger positional
correlations and favours the counterion condensation
and the charge reversal (�ð0Þ becomes more negative
with increasing �). The barrier height, however, once
again shows a non-trivial dependence on the salt
concentration. For small amounts of salt and large Z,
increased counterion valence leads to larger kinetic
barriers.

4. Conclusions

We have studied the potential of the mean force between
a polyion and an �-valent counterion inside a polyelec-
trolyte solution containing multivalent counterions and
a monovalent salt. The model is sufficiently simple that
the partition function can be calculated exactly. It is
found that for an overcharged polyion the potential of
the mean force can have two minima, one located at
x¼ 0 and another x ¼ 1. Which one of the minima is
the global one depends on the charge density of the
polyion and the amount of salt inside the suspension.
When the global minimum is at x¼ 0, a counterion from
the bulk finds it energetically favourable to approach the
polyion surface. To reach x¼ 0, however, the counterion
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Figure 8. The barrier for complexes composed of Z¼ 20
and n condensed counterions, such that n� ¼ 24, as a function
of the counterion valence �.
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Figure 9. �ð0Þ for complexes composed of Z¼ 20 and n
condensed counterions, such that n� ¼ 24, as a function of the
counterion valence �.
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Figure 7. The barrier for polyions with �¼ 1 and n*
condensed trivalent counterions, such that �n� ð0Þ ¼ 0, as a
function of Z.
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must overcome a free energy barrier. For small salt
concentrations, this barrier can be sufficiently large to
provide a kinetic limitation to the extent of charge
reversal. Furthermore, even if the counterion reaches
x¼ 0, whether or not it will become condensed will
depend on the depth of the potential well. Counterion
condensation will occur only if �ðxmÞ � �ð0Þ � 1=�.
Otherwise, the thermal fluctuations will lead to a fast
escape of the counterion from the x¼ 0 minimum.
For suspensions containing rodlike polyelectrolytes

and the multivalent counterions, micro-phase separation
is observed under certain conditions [28, 29]. The
polyions aggregate forming bundles with a well-defined
cross-sectional area. It has been argued that bundle
formation is an activated process and the size of the
bundles is kinetically controlled [30–32]. It should then
be quite interesting to explore the dependence of the
barrier height on the concentration of monovalent
electrolyte using a theory similar to the one presented
above.
To conclude, the extent of the charge reversal is

strongly dependent on the amount of monovalent salt
present in the suspension. Small concentrations of salt
will enhance the overcharging while an excessive amount
of salt will hinder the charge reversal. Furthermore, even
if the minimum of the free energy corresponds to an
overcharged state, we find that depending on the
polyion charge density and the amount of salt in the
suspension, there can be significant kinetic limitations
to the overcharging.
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