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Abstract

In this paper I will briefly review some curious, and often counterintuitive, results found
when the electrostatics and the many-body physics are brought together. The discussion is
purely classical, with examples drawn from areas of physics, chemistry, and biology.
© 2005 Elsevier B.V. All rights reserved.
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1. The Thomson problem

A 100 years ago J.J. Thomson proposed an electrostatics problem which, in spite
of its apparent simplicity, has not been solved up to now. After the discovery of
electron, Thomson wanted to elucidate the structure of the periodic table. He
conjectured that the position of a chemical element inside the periodic table depends
on its electronic structure. Since proton still had to be discovered, to keep his atom
neutral, Thomson postulated existence of a uniform neutralizing background. This
model became known as the “plumb pudding” atom. The question was then how are
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the electrons distributed inside the atom. Specifically, what is the electronic structure
of the ground state? Hundred years later this seemingly straight forward
electrostatics problem still remains unsolved.

In the absence of a uniform background, the Thomson atom becomes a
conductor and all the charges are expelled to the surface. The classical argument
for the charge expulsion relies on the fact that the electric field inside the conductor
must be zero, otherwise a current would be present. The Gauss’ law then insures
absence of any charge in its interior. But is this kind of macroscopic argument
directly applicable to the microscopic distribution of charges? For example,
suppose that there are only three electrons inside the sphere. Clearly, the ground
state will be an equilateral triangle with electrons located on the surface the
sphere. There is, however, another equilibrium state in which all three electrons are
located co-linearly with the diameter of the sphere — two electrons on the surface
and one at the center of the sphere. This charge distribution, however, is unstable
and a small perturbation to the position of one of the electron can result in the
expulsion of the central particle to the surface. Nevertheless, a stationary state,
in which charge is present in the interior of the conductor is possible, at least in the
ideal case.

The fact that there is no stable equilibrium configuration with electrons inside the
sphere is a direct consequence of the Earnshaw’s theorem [1]. The argument is
very simple. Suppose that there are n electrons inside the sphere. Clearly, for
small n the electrostatic repulsion will drive all of the charges to the surface.
Now, suppose that we try to add an additional electron to the sphere. For its
position to be stable, a generic perturbation should result in a restoring force. But
Gauss law requires that the integral of the electric field over any closed surface in the
interior of the sphere be zero (since there is no charge inside). Therefore, if there are
some stable directions (positive contribution to the integral), they must be
compensated by the unstable ones (negative contribution to the integral), and the
electrostatic energy will not be minimum unless all the charges are at the surface.
Thus, in the absence of a neutralizing background, the Thomson problem simplifies
to finding the positions of the electrons on the surface of the sphere. Surprisingly,
even this “surface Thomson problem” remains unsolved 100 years after its original
formulation.

It is curious to ask what would happen to the charge distribution if instead
of the Coulomb form, the electrostatic repulsion would follow a more general
1/r" law [2]. Would all charges still go to the surface or can some of them find a
stable equilibrium in the interior of the sphere? Earnshaw’s theorem does not apply
in this case, and a different approach must be used. Too see if there is a stable
position in the interior of the sphere, we compare the electrostatic energy of the
configuration in which all the electrons are at the surface E,(n), with a configuration
in which n — 1 particles are on the surface and one charge is at the center of the
sphere [2],

200
AE,(n) = Ey(n— 1)+ % — E,n) . (1)
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Clearly if AE,(n) is positive, the surface occupation is energetically favored, on the
other hand if AE,(n)<0 there is a stable equilibrium position at the center of the
sphere.

Unfortunately, since the surface Thomson problem does not have an explicit
solution, we do not precisely know the form of E,(n). Nevertheless, a simple
argument based on the theory of the one component plasma (OCP), allows
us to accurately estimate the electrostatic energy. We find that an analytical
expression [2—4]
¢ 27, ﬂnlﬂ/z
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gives a perfect fit to the ground state electrostatic energy of the surface Thomson
problem as compared to the numerical minimization procedure [2], see Fig. 1.
In Fig. 2, we plot AE,(n), for various values of 7.

From Fig. 2 it can be seen that for y<1, AE,(n) is always positive and the
minimum of the electrostatic energy corresponds to all the particles residing on the
surface of the sphere. The interior is unstable for any value of n. On the other hand
for y>1 there exists a critical number of charges n.(y), above which the position at
the center of the sphere becomes absolutely stable, i.e., the global minimum of the
electrostatic energy. Furthermore, even for some smaller number of charges than
n.(y), the center of the sphere will already be a metastable minimum, which means
that any infinitesimal perturbation will result in a restoring force, even though the
global minimum of the electrostatic energy will still be when all the charges are
located at the surface. Curiously, the Coulomb case y = | is precisely at the border
between these two regimes.
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Fig. 1. Energy E,(n) for y = 1.4 as a function of the number of particles n, compared with the simulation
data (points). The Madelung constant M, ~ 1.78 gives a perfect fit to the data points over the whole range
on n.
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Fig. 2. The difference in energy AE, (n) between the configurations in which one particle is at the center of
a sphere with n — 1 particles at the surface, and the configuration in which all n charges are on the surface.
The values of y range from 1 for the topmost curve, to 1.4 for the bottommost curve, in intervals of 0.1.
The topmost curve y = 1 is a monotonically increasing function of n, while for y>1 the curves after
reaching a maximum decline.

2. Dynamical instability of the Thomson problem

If the electrons are in motion, their interaction is no longer purely Coulombic. To
order v?/c?, the dynamics is governed by the Darwin Lagrangian [5-7]

1 1 1 4q:4;
L= 7+ — v — = —
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where v; is the velocity of electron #, and ¢ is the speed of light. The velocity-
dependent correction to the Coulomb law arises from the electromagnetic coupling

between the moving particles. The Darwin Lagrangian [3] does not contain explicit
time dependence, so that the Hamiltonian

H=Y p-vi—L @
with

b=~ )
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is a constant of motion. Performing the Legendre transform we find
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[v; - v + (v; - #y)(v; - Fy)] (6)

The ground state for n electrons on the surface of the sphere of radius a is then
determined by the minimization of Eq. (4). Naively, one expects that the ground
state is such that v; = 0 for all 7, and the electrons arrange themselves in a Wigner
crystal with some topological defects. As discussed in the previous section this,
indeed, what happens for a purely Coulombic interaction, since in that case the
velocity dependent contribution to the Hamiltonian (kinetic energy) is always non-
negative, and any particle motion results in an increase of the total energy. The
Darwin Hamiltonian, however, is much more complex and our intuition fails.
Specifically, we find [8] that for any sphere of radius a, there exists a critical number
of electrons n, such that for n>n.(a) a lattice arrangement is not the minimum of the
electrodynamic energy [4]. Instead for n>n.(a), the electrons in the ground state are
found to undergo a coherent motion. We conclude that for sufficiently high-surface
charge concentrations, the Wigner lattice is dynamically unstable. A small
perturbation can completely change the nature of the ground state. Fortunately,
the surface charge concentration at which the Wigner lattice looses stability is many
orders of magnitude larger than is normally encountered in the problems of
chemistry and biology.

3. Charge reversal

One of the first thing that is learned in a course on electrostatics is that the force
produced by the electric field on a charged particle is

F = QE. (M

Therefore, a positively charged particle is expected to move in the direction of the
applied field, while a negatively charged particle, will move in the direction opposite
to the field. There is, however, a curious behavior that is observed in colloidal
suspensions containing multivalent counterions. Under certain conditions, the
electrophoretic mobility of colloidal particles can become reversed [9-15]. What can
account for this surprising turn of events?

To understand the mechanism of charge reversal, we consider a simple model of a
sphere with a uniform surface charge —Zg in contact with an electrolyte reservoir
containing £¢ ions at chemical potential p. For simplicity we restrict our attention to
T = 0, so that the entropic effects can be ignored [16]. We would like to know how
many ions will be transfered from the reservoir to the surface of the sphere once the
equilibrium is established. Specifically, can the process of charge transfer result in a
charge reversal of the sphere?
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The amount of charge transfered is determined by the minimum of the grand
potential function [16]

Q(n) = F(n) — un, (®)

where F(n) is the electrostatic energy of the colloid with n counterions on its surface.
The value of F(n) can be determined simply by adding to the energy E(n) of Eq. (2)
contributions arising from the colloidal self energy and from the interaction of n
counterions with the colloidal charge,

Z2q2 anZ
Flm) = Qea

Eq. (8) then simplifies to

(Z _ n)2q2 Y q2n3/2
2ea " ea

+ E(N). ©)

Q(n) =

—un. (10)

The parameter 6 = n — Z quantifies the extent of charge transfer. If 6 >0 the sphere
is overcharged while if 6 <0 it stays undercharged. Minimizing Eq. (10) we find that
an overcharged state is possible only if

PG 1
= (3M1q2> ' ( )
If the ionic energy of a sodium chloride crystal is used as a measure of the
characteristic chemical potential of the charge reservoir at zero temperature [16], we
find that for a sphere of colloidal dimensions a ~ 1000 A, and ions of d ~ 1 A, the
critical charge for occurrence of overcharging is Z4 ~ 10°, which is extremely large,
corresponding to one elementary charge every 10 A . In real colloidal suspensions, of
course, the overcharging is possible with much weaker charged particles. At finite
temperature, entropic effects are quite important and strongly influence the amount
of counterion condensation [15].

4. Like-charge attraction

Like-charges repel and the unlike ones attract. This dictum is so famous that
attempts even have been made to extend it to human relations. Yet, when the
electrostatics is combined with the many body physics, the dictum looses its validity.
Thus, it is found that under certain circumstances like-charged colloids inside a
colloidal suspension can attract one another. The effect is still not fully understood
and there is an ongoing debate about the precise mechanism causing the attraction.

One particularly important example of like-charge attraction in biological systems
is the DNA condensation [15]. In aqueous solution DNA is ionized due to
dissociation of its phosphate groups. This ionization results in one of the highest
charge densities found in nature, one electronic charge every 1.7 A. In spite of this
huge charge concentration, over a meter DNA is packed into a nucleus of few
micrometers. This efficient compaction is accomplished with the help of cationic
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proteins. The bacteriophages (viruses that infect bacteria) also use multivalent
cations to package their DNA. Thus, the 777 bacteriophage head is 10™* times
smaller than the unpacked form of its DNA [17]. Furthermore, it is found that if the
multivalent polyamines, known to exist in the host bacteria, are added to an in vitro
solution containing DNA, the chains condense forming toroids very similar in size
and shape to the ones found in vivo [18,19]. To produce condensation, multivalent
counterions must somehow induce attraction between the different parts of the DNA
[20-23].

In eukaryotic cells, the cytosol is traversed by a complex network of
microfilaments which are made of a protein called F-actin [24,25]. In spite of its
high negative-charge density F-actin, in the presence of multivalent counterions,
agglomerates forming a network of bundles [26]. Addition of monovalent salt
screens the electrostatic interactions and re-dissolves the bundles [27]. What is the
action of multivalent counterions which induces attraction between the like-charged
macromolecules [28—43]? To understand this we can study a very simple model [33].

Consider two parallel polyions separated by a distance d inside a dilute solution
containing o-valent ions [33]. The polyions will be idealized as rigid lines of charge of
length L = Zb. Each line has Z monomers of charge —g spaced uniformly along the
chain. The solvent is a uniform medium of dielectric constant ¢. As in the case of
spherical colloids, a strong electrostatic coupling between the polyions and the
microions results in the polyion charge renormalization. The precise amount of
counterion condensation depends on a number of factor such as the polyion charge
density, the valence of the counterions, the presence of salt, etc.

Suppose that there are n associated counterions which are free to move along the
length of the polyion. The main effect of counterion condensation is the local
renormalization of the monomeric charge from —¢q to (—1 + a)g. Lets define the
occupation variables g, with i = 1,2,...,Z and j = 1,2, in such a way that ¢;; = 1,
if a counterion is condensed at ith monomer of the jth polyion, and ¢;; = 0 otherwise.

The interaction energy between the two polyions is then

1 & & A —aoy)(l —ooyy)
_ Ly g a0z a1 Zaoy) (12
2 £ r(ij: i)
where the sum is restricted to (i,j)#(/,j) and
Hiji i) = byl = 1P+ (1= 302 (13)

is the distance between the monomers located at (i, /) and (i',/'), J;7 is the Kronecker
delta, and x = d/b. The partition function is

Q=) exp(—pH). (14)
{oy}
The force between the two polyions is

1 0lnQ
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This model is so simple that for polyions with not too high values of Z, the partition
function can be solved explicitly [33]. For larger Z’s the model can be simulated. In
Fig. 3 we present the force as a function of separation for two polyions with Z = 20
and n condensed divalent counterions. We see that in spite of the net like-charge, the
two polyion-counterion complexes can attract each other at sufficiently small
separations. Furthermore, we find that a critical number n, = Z/20 of condensed o-
ions is necessary for the attraction to appear. For monovalent counterions the
interaction is always repulsive [33].

The calculations above were presented for a very idealized model of interacting
lines of charge. It is quite simple to modify the theory to account for finite polyion
diameter. This modification, however, does not significantly affect the predictions of
the theory. Attraction appears at small separations between the polyion surfaces—
about 7 A—after the critical number of a-ions is condensed onto the polyions [44].
We find that for macromolecules of finite diameter, less counterions are needed to
induce attraction than for the two lines of equivalent charge density [44].
Furthermore, the charge—charge correlations along the polyion are of very short
range [44,45], showing absence of any long-range order between the condensed
counterions, contrary to the earlier speculations [29,30,34].

While the simple model presented above seems to account quite well for the like-
charge attraction encountered in many biological systems, it is not sufficient to
explain some of the recent experiments on attraction between confined colloidal
particles. In the absence of confinement, the interaction potential between two
spherical colloidal particles is found to be repulsive and completely consistent with
the traditional DLVO theory [46]. However, a surprising result appears when a

Fig. 3. Force versus distance between polyions for Z = 20, « = 2, & = ¢?/ekpTh = 2.283 (corresponding
to polymethacrylate) and n = 5, ..., 10 (from top to bottom) in the Monte Carlo simulation [33]. Positive
force signifies repulsion between the complexes, while the negative force implies existence of attraction.
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highly deionized suspension is confined between two glass plates [46-49]. For small
separation between the plates, the pair potential develops a strong attractive
component. The attraction is quite long ranged, comparable in its extent to the
diameter of a colloidal particle, which can be as large as 1000 A. Note that this is
very different from the correlation induced attraction whose range is on the order of
10A. The mechanism for this long range force between the confined colloidal
particles remains a mystery. A few different theories have been proposed [50] but
none has proven sufficient to fully account for all the experimental results [51].

5. Conclusions

In this brief review I have presented some surprising, and often counterintuitive,
results which appear when the electrostatics and the many-body physics come in
contact. Some of these can be understood using quite simple models, others still
remain a mystery. This is particularly the case for the long-range attraction between
the confined like-charged colloids.

Relativistic corrections to the Coulomb law are found to lead to very profound
modification of the ground state structure of charged systems. In the case of the
surface Thomson problem, we find that for sufficiently large surface charge
concentration, the ground state is no longer a Wigner lattice but is composed of
electrons undergoing a coherent motion. Statistical mechanics of charged systems
still has a number of surprises in store for us.
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