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Abstract We investigate charge regulation of nanoparticles in concentrated suspensions, focusing on the
effect of different statistical ensembles. We find that the choice of ensemble does not affect the mean charge
of nanoparticles, but significantly alters the magnitude of its fluctuation. Specifically, we compared the
behaviors of colloidal charge fluctuations in the semi-grand canonical and canonical ensembles and identified
significant differences between the two. The choice of ensemble—whether the system is isolated or is in
contact with a reservoir of acid and salt—will, therefore, affect the Kirkwood–Shumaker fluctuation-induced
force inside concentrated suspensions. Our results emphasize the importance of selecting an appropriate
ensemble that accurately reflects the experimental conditions when studying fluctuation-induced forces
between polyelectrolytes, proteins, and colloidal particles in concentrated suspensions.

1 Introduction

It is a great pleasure to contribute this paper to the
special issue of EPJE that honors many contributions
of Philip (Fyl) Pincus in the field of Soft Matter Physics
[1–8]. Much of Fyl’s work has been focused on under-
standing complicated effects resulting from Coulomb
force in condensed matter systems. We hope that Fyl
will find the following paper of interest.

Electrostatic interactions are ubiquitous in physics,
chemistry, and biology [9–20]. They play a vital role in
the stability and function of biological molecules [21]
and the structure and dynamics of electrolyte solu-
tions. The magnitude of the force between charged
particles is heavily dependent on the dielectric con-
stant of the solvent. In fact, water is essential for
many biological processes [22–24], and its unique prop-
erties largely stem from its strong electrostatic interac-
tion with the charged solutes. Due to the high dielec-
tric constant of water [25–35], electrostatic interac-
tions between charged atoms and molecules are greatly
reduced, resulting in a favorable solvation free energy.
The high dielectric constant of water also causes the
dissociation of molecules into ions [36], resulting in
electrolyte solutions. The formation of hydrogen bonds
between water and biomolecules helps to stabilize their
structures and facilitate their interactions with other
molecules in biological cells.

In colloidal science, the charging process of colloidal
particles in an electrolyte solution is called charge reg-
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ulation [37–50]. The main reason for this phenomenon
is that macromolecules, in general, contain functional
acidic and basic groups that can become protonated
or deprotonated, depending on the ionic strength, pH,
and solute volume fraction. In equilibrium, the charge
of macromolecules will fluctuate around some mean
value. The correlated fluctuations of charge can result in
an effective attractive Kirkwood–Shumaker (KS) force
between two like-charged macromolecules close to their
isoelectric point [51,52]. A theoretical prediction was
confirmed by Timasheff et al. [53] using light-scattering
techniques. Over the past decade, there has been a
renewed interest in theoretical studies of effects of KS
force in different systems [54].

The Kirkwood–Shumaker model has been success-
fully applied in many areas of biophysics, such as
protein–protein interactions, protein aggregation, and
protein crystallization. In particular, it has been used
to explain the phenomenon of liquid–liquid phase sep-
aration in protein solutions [55]. The KS interaction is
also relevant for understanding the behavior of polyelec-
trolytes in solutions, for which the long-range Coulomb
interaction between charged macromolecules plays a
crucial role [56]. The KS model, however, has limita-
tions, particularly when applied to systems with highly
charged macromolecules or in the presence of multi-
valent ions. In such cases, other factors, such as ion
correlation effects, must be taken into account [57].
Despite these limitations, the KS model remains a valu-
able tool for understanding the long-range interactions
between macromolecules in solutions. It provides a use-
ful framework for interpreting experimental data and
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can guide the development of new theoretical models.
Since the KS force arises from correlated fluctuations of
the macromolecular charge, it is of fundamental impor-
tance to understand how much this charge fluctuates
around its mean value for different experimental condi-
tions.

Most experimental systems consist of an isolated sus-
pension at some fixed volume fraction of solute. On
the other hand, to perform simulations one often uses
a semi-grand canonical approach, in which suspension
is effectively separated from the reservoir of acid and
salt by a semipermeable membrane, which allows for
a free exchange of ions, but prevents the passage of
macromolecules [41,47,58,59]. It is intuitive that in
such open systems, macromolecular charge will fluctu-
ate more than in closed (isolated) systems. The goal of
the present paper was to quantify this difference.

2 Non-interacting systems

We start by studying an ideal system in which electro-
static interactions are turned off. The model consists
of a nanoparticle of radius a and Z (negative) active
surface sites. Each active site can adsorb one proton to
become protonated. A nanoparticle is placed at the cen-
ter of a spherical cell of radius R, such that η = a3/R3,
where η is the volume fraction of suspension. The cell
also contains non-interacting point ions: Na+, Cl− and
H+. The proton H+ can associate with an adsorption
site, resulting in a free energy gain of − ln(Keq/Λ3),
where the equilibrium constant Keq is the partition
function of a bound state. In this ideal model, the ionic
charge is used just to distinguish cations from anions
and to preserve the overall charge neutrality inside the
cell.

2.1 Canonical theory

The free energy of protons inside an isolated (canonical)
cell can be written as,

βF(n) = −n ln

(
Keq

Λ3
H+

)
+ n ln

( n

Z

)
+ (Z − n) ln

(
1 − n

Z

)

+ (Nt − n) ln

(
Λ3

H+ (Nt − n)

V

)

− (Nt − n) , (1)

where Nt is the total number of protons inside the sys-
tem, of which n are in a bound state with the surface
groups. V is the free volume of the cell, and Keq and
ΛH+ are the equilibrium constant and the de Broglie
thermal wavelength, respectively. The first term in the
expression above is the chemical energy of association
between proton and an active site. The second and third
terms are the entropic contributions of the bound pro-
tons, while the last two terms are the entropic contri-

butions of free protons. Minimizing Eq. 1 with respect
to n, we obtain the equilibrium (average) number of
protonated sites:

n∗ =
1

2

⎛
⎝ V

Keq
+ Nt + Z −

√(
V

Keq
+ Nt + Z

)2

− 4NtZ

⎞
⎠ .

(2)

It is important to stress that the number of associ-
ated protons is not fixed, but fluctuates around the
value n∗, with the average colloidal charge given by
Q∗ = −(Z − n∗)q, where q is the proton charge.
The charge fluctuation is characterized by 〈(ΔQ)2〉 =
〈Q2〉 − 〈Q〉2 = q2(〈n2〉 − 〈n〉2). The probability that n
active sites are protonated is proportional to e−βF(n).
Expanding the free energy F(n) around the equilib-
rium n∗ up to second order and using the saddle point
approximation, the fluctuation of charge in canonical
ensemble is determined to be:

σ2
t ≡ 〈(ΔQ)2〉

q2
=

n∗ (n∗ − Nt) (n∗ − Z)
NtZ − n∗2

. (3)

2.2 Semi-grand canonical theory

Titration simulations are usually performed in a semi-
grand canonical ensemble in which microions are free
to exchange with the reservoir, while nanoparticles are
confined to stay within the system [41]. In a real exper-
imental system, such setup requires a semipermeable
membrane that separates system from the reservoir of
acid and salt. Since the counterions are free to diffuse
into reservoir, their efflux will result in an electric field
across the membrane that will oppose the flow. The
concentration of ions inside the system will, in general,
be different from the concentrations in the reservoir.
When performing semi-grand canonical simulations, it
is important to keep in mind that the simulation cell is
at a different electrostatic potential than the reservoir.
This electrostatic potential difference is known as the
Donnan potential. Often, Donnan potential is implic-
itly taken into account when performing semi-grand
canonical simulations of charged system by forcing the
insertion and deletion moves to be done in cation–anion
pairs, which effectively cancels the Donnan potential.
However, the presence of the Donnan potential is often
neglected when performing constant pH titration sim-
ulations [60–62].

Neglecting the Coulomb and steric interactions
between the ions, the ideal partition function for a sys-
tem containing a nanoparticle inside a spherical cell
connected to a reservoir of acid and salt at concentra-
tions CH and Cs, respectively, can be written as:

Ξ =
∞∑

NNa,NHNCl

Z∑

n=0

Z!
n!(Z − n)!

exp

[
−β

(
−(Z − n)qφ − n ln

Keq

Λ3
− nμH

)]
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(
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where NH, NCl, and NNa are the number of particle
of specie H, Cl, and Na inside the system, respectively,
and V, μH, μNa, μCl, and Λ are the free volume, chem-
ical potential of H, Na, Cl, and the thermal de Broglie
wavelength, respectively. In general, we allow the sys-
tem to be at a different potential from the reservoir, and
this accounts for the presence of the electrostatic poten-
tial φ in the partition function. The two summations in
Eq. 4 are decoupled and can be performed separately.
The partition function for protonation of surface sites
reduces to:

Z∑

n=0

Z!
n!(Z − n)!

exp
[

− β

(
− (Z − n)qφ

−n ln
Keq

Λ3
− nμH

)]

=
(
eβqφ + eln

Keq
Λ3 +μH

)Z

, (5)

while the partition function for free ions is:

∞∑

NH,NNa,NCl=0

1
NCl!

1
NH!

1
NNa!

(
CNaV e−βqφ

)NNa

(
CClV eβqφ
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, (6)

where we have used βμi = ln
(
CiΛ3

)
for ideal chemical

potential inside the reservoir.
The net charge inside the cell is:

〈Qnet〉 = − 1
β

d ln Ξ
dφ

= − eβφZq

CHKeq + eβφ

+q
(
CH + CNa − CCle2βφ

)
V e−βφ. (7)

The first term on the right-hand side of this equation
is the charge of colloidal particle and the last term is
the ionic charge inside the cell. In the thermodynamic
limit, the cell must be charge neutral, which means
that 〈Qnet〉 = 0. This condition determines the Donnan
potential φd. The charge of a nanoparticle at equilib-
rium in a semi-grand canonical system will then be:

〈Q〉 = − eβφdZq

CHKeq + eβφd
. (8)

Fig. 1 The comparison of σ2 between canonical and semi-
grand canonical ensemble, Eqs. 3 and 9, for non-interacting
systems. The number of adsorption sites on colloidal particle
is 600, and the salt concentration is 1 M. For canonical case,
the number of proton inside the cell is changed and for the
semi-grand canonical the concentration of acid inside the
reservoir

The fluctuation in the net charge inside the sys-
tem can be obtained from the second derivative of the
partition function with respect to φ. These fluctua-
tions decouple into those due to fluctuation of colloidal
charge and of free ions in the bulk. The fluctuation in
the charge of the nanoparticle is calculated to be:

σ2
t ≡ 〈(ΔQ)2〉

q2
= − 1

q2β

d〈Q〉
dφd

=
CHKeqZeβqφd

(eβqφd + CHKeq)
2 .

(9)

In Fig. 1, we present a comparison of the colloidal
charge fluctuations in the canonical and the semi-grand
canonical systems, obtained using Eqs. 3 and 9. To vary
〈Q〉 in the canonical ensemble, we changed the concen-
tration H inside the cell, while in the semi-grand canon-
ical case concentration HCl inside the reservoir was
changed. When the colloidal particle is fully protonated
or deprotonated the two ensembles agree, in the inter-
mediate regime colloidal charge fluctuations are much
stronger in the semi-grand canonical ensemble than in
the canonical ensemble.

To quantitatively compare the two ensembles, in the
canonical system we now put exactly the same number
of protons and ions into the cell as the averages obtained
in the semi-grand canonical system (compare the the-
ory results presented in Table 1 (semi-grand canoni-
cal ensemble) and Table 3 (canonical ensemble)). We
observe that while the colloidal charges agree perfectly
between the two ensembles, the fluctuations are very
different. To go beyond the ideal models requires Monte
Carlo simulations methods. Below, we briefly present
the semi-grand canonical [41,58], and canonical simu-
lations methods that can be used to explore charge reg-
ulation and fluctuations in the two ensembles [61,63].
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3 Titration algorithms

When performing canonical simulations, the system can
only exchange heat with the surrounding environment,
while the number of protons and other ions is con-
served inside the simulations cell. On the other hand,
in semi-grand canonical simulations, the ions and pro-
tons can be exchanged with the reservoir, and the aver-
age concentrations of ions inside the simulation cell
are determined by the thermodynamic equilibrium—
equivalence of electrochemical potentials in the system
and the reservoir. Furthermore, as was discussed previ-
ously, the simulation cell is at a different electrostatic
potential from the reservoir. The potential difference
between the cell and the reservoir is the Donnan poten-
tial. In systems with finite volume fractions of nanopar-
ticles, proteins, or polyelectrolytes, this potential differ-
ence cannot be ignored and must be taken into account
when performing simulations.

3.1 Semi-grand canonical Monte Carlo method

In semi-grand canonical Monte Carlo (sGCMC) simu-
lations, we need to perform protonation/deprotonation
moves as well as insertion/deletion moves into/from the
cell. Since the simulation cell is at a different electro-
static potential than the reservoir, upon entering the
cell an ion acquires an additional electrostatic energy
qiφD, where φD is the Donnan potential. Taking this
into account the usual grand canonical acceptance prob-
abilities for addition and removal of ions are modified
to:

φadd = min
[
1,

V ci

Ni + 1
e−β(ΔU−μex+qiϕD)

]
,

φrem = min
[
1,

Ni

V ci
e−β(ΔU+μex−qiϕD)

]
. (10)

For reaction moves, proton can enter from the reservoir
and react with an adsorption site resulting in its pro-
tonation. Alternatively, a protonated site can become
deprotonated, with the proton moving to reservoir.
Again, when a proton moves into or out of the system,
the Donnan potential must be taken into account. The
acceptance probabilities for protonation and deproto-
nation moves can then be written as:

φp = min
[
1, e−β(ΔU+ΔFp+qϕD)

]
,

φd = min
[
1, e−β(ΔU+ΔFd−qϕD)

]
, (11)

where βΔFp = − ln(Keq/Λ3
H) − μH is the chemical

free energy change due to removal of proton from the
reservoir and its reaction with an isolated adsorption
group. The chemical potential of a proton in the reser-
voir is βμH = ln(cHΛ3

H) + βμex, where μex is the
excess chemical potential of ions in the reservoir. The
deprotonation energy is then ΔFd = −ΔFp. Since the

Donnan potential is not known a priori, it is conve-
nient to perform insertion/deletion moves using cation–
anion pairs [41,58]. This way the Donnan potential
cancels from the acceptance probabilities. Similarly,
a protonation/deprotonation move can be combined
with an insertion/deletion of an anion into the cell.
The acceptance probabilities for such pair protona-
tion/deprotonation moves become:

φ̄p = min
[
1,

cHKeqV cCl

(NCl + 1)
e−β(ΔU−2μex)

]
,

φ̄d = min
[
1,

NCl

cHKeqV cCl-
e−β(ΔU+2μex)

]
, (12)

where NCl is the number of anions inside the cell, V is
the free volume, and ΔU is the difference of energy for
the pair move. For simplicity, here we consider that all
ions are monovalent and are hard spheres of the same
radius, so that μex is the same for all the ions.

The algorithm described above can be applied to
any system in which reactions take place. We start by
studying an ideal non-interacting system described in
Sect. 2.2. In Table 1, we compare the results of simula-
tions with the theory for a nanoparticle of radius 80 Å
with Z = 600 surface active groups, inside a simulation
cell of radius R = 150Å. The equilibrium constant for
sites is taken to be Keq = 1216092 Å3. The reservoir
contains acid at concentration CH and salt at concen-
tration Cs = 10 mM. The mean charge of a nanoparti-
cle and its fluctuation, calculated using both theory and
simulations, are presented in Table 1. We see that while
the effective charges display perfect agreement between
theory and simulations, the fluctuations show signifi-
cant deviations. The reason for this is that the pair
insertion moves restrict the charge fluctuations inside
the cell. Indeed, if we perform simulations using indi-
vidual insertions (Eq. (11)) with the Donnan potential
fixed at the value predicted by the theory, we obtain
exactly the same numbers of ions inside the simulation
cell and the same colloidal charge as found using the
pair insertion algorithm (Eq. (12)). Thus, as expected,
the Donnan potential leads to an overall charge neutral-
ity on average. Furthermore, individual insertion algo-
rithm with Donnan potential results in colloidal charge
fluctuations very similar to the ones predicted by the
theory (see Table 2). Clearly, restricting the insertion
moves to keep the system charge neutral at each Monte
Carlo step strongly affects the fluctuations of colloidal
charge. With these insights, we are now ready to explore
isolated canonical systems.

3.2 Canonical reactive Monte Carlo method

When performing a canonical simulation, the number
of protons and ions inside the simulation cell is fixed.
However, the protons can either be in a bound state or
free (see Fig. 2). The average number of bound protons
will determine the equilibrium charge of nanoparticles.

In a protonation move, a proton that is initially in
the bulk moves to the adsorption site. The probability
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Table 1 Nanoparticle charge Q and its fluctuation σ2

obtained from simulations (s) and theory (t) for differ-
ent concentrations of acid in the reservoir CH (semi-grand
canonical ensemble). The concentration of salt in the reser-
voir is fixed at Cs = 10 mM. The average number of ions of
each type present inside the simulation cell after equilibra-
tion is also provided

CH[M] Qs/q Qt/q σ2
s σ2

t NH NNa NCl
qσ
Qs

10−3 −195.4 −195.7 88.3 131.8 424 203 28 −0.04
10−4 −417.9 −418.7 98.9 126.4 185 426 12 −0.02

Table 2 Colloidal charge and its fluctuations obtained
using individual insertion algorithm (o) with the Donnan
potential fixed at the value predicted by the theory (t).
Compare the fluctuations obtained using the individual
insertions algorithm σ2

o , with the ones obtained using the
pair insertion method σ2

s presented in Table 1. All other
parameters are the same as in Table 1

CH[M] Qo/q Qt/q σ2
t σ2

o

10−3 −196.1 −195.7 131.8 135.4
10−4 −418.8 −418.7 126.4 131.0

Fig. 2 a Protonation and b deprotonation moves in canon-
ical ensemble: (i) initial state, (f) final state

Table 3 Colloidal charge and its fluctuations for an ideal
system calculated using canonical simulations (s) compared
with the predictions of theory (t) (Eqs. (2) and (3)). The
number of ions and protons inside the simulation cell is
exactly the same as are the averages found using sGCMC
simulations (see Table 1)

NH NNa NCl Qs/q Qt/q σ2
s σ2

t
qσ
Qs

424 203 28 −195.4 −195.5 17.4 17.6 −0.02
185 426 12 −418.6 −418.6 4.2 4.1 −0.004

for initial and final configuration is then proportional
to:

Πi ∼ V N

Λ3NN !
e−βUN ,

Πf ∼ V N−1

Λ3(N−1) (N − 1)!
e−βUN−1+ln Keq/Λ3

, (13)

where N is the number of free protons and UN is the
total electrostatic energy of the system. Similarly, for
deprotonation move

Πi ∼ V N

Λ3NN !
e−βUN ,

Πf ∼ V N+1

Λ3(N+1) (N + 1)!
e−βUN+1−ln Keq/Λ3

. (14)

Using the usual detailed balance argument, the accep-
tance probabilities for deprotonation and protonation
moves can now be written as:

Pd = min
[
1,

V

Keq (NH+ + 1)
e−βΔU

]
,

Pp = min
[
1,

KeqNH+

V
e−βΔU

]
. (15)

We can now check the consistency of the two simu-
lation methods for a non-interacting system. We first
run the semi-grand canonical simulation to determine
the number of ions, free protons, and the nanoparticle
charge inside the simulation cell for a given concentra-
tion of acid and salt in the reservoir. We can then isolate
the system (canonical ensemble), removing it from con-
tact with the reservoir and strip all the associated pro-
tons and put them into the bulk of the simulation cell,
so that all sites are again deprotonated. We then run
canonical reactive Monte Carlo algorithm (Eq. (15)) to
determine the equilibrium number of protonated sites
and the equilibrium colloidal charge. The data are pre-
sented in Table 3. While the charge of the nanoparti-
cle calculated using canonical simulation is in perfect
agreement with the results of the semi-grand canoni-
cal algorithm, the fluctuation in the charge in a closed
system is significantly lower than what is observed in
an open system. Furthermore, we see that for a canon-
ical ideal system, both the nanoparticle charge and its
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fluctuation are in excellent agreement with the predic-
tions of the theory. With the insights gained from study-
ing non-interacting ideal systems, we are now ready to
explore charge fluctuations in non-ideal systems, with
ions of finite size interacting through Coulomb poten-
tial.

4 Systems with Coulomb interactions

We now consider a nanoparticle of radius of 80 Å with
Z = 600 active negative point sites distributed uni-
formly on its surface [40], inside a spherical cell of radius
R = 150 Å. The intrinsic pKa of surface groups is set
to pKa ≡ − log10[Ka/c�] = 5.4, where c� = 1 M is the
standard reference concentration. Recall that acid dis-
sociation constant is Ka = 1/Keq. All ions are modeled
as hard spheres of radius r = 2 Å, with point charge
at the center. Water is treated as a uniform medium of
dielectric constant ε = 78. The electrostatic energy now
includes Coulomb ion–ion, ion–site, and site–site inter-
actions. Again, we first run the sGCMC simulations
to determine the average number of ions, the number
of free protons, the mean charge of the nanoparticle,
and its fluctuation σ2, for a given concentration of acid
and salt in the reservoir (Table 4). It is interesting to
compare the results obtained using the sGCMC simu-
lations with the recently developed theory that allows
us to accurately predict the effective colloidal charge in
concentrated suspensions [40].

The effective charge (number of deprotonated groups)
predicted by the theory is [40]:

Qt = − Zq

1 + Keqcae−β(qφ0−φdisc−μex−μsol)
, (16)

where μsol is the electrostatic solvation free energy of a
charged site:

βμsol =
λB

2

∫ ∞

0

k − √
κ2 + k2

k +
√

κ2 + k2
e−2kriondk, (17)

and φ0 is the mean-field electrostatic potential at
the surface determined from the solution on nonlinear
Poisson–Boltzmann equation. φdisc is the correction due
to the discreteness of surface groups:

βφdisc = − λbMQt

qaεw

√
Z

, (18)

where M is the Madelung constant for hexagonal crys-
tal state of the one component plasma [40]. The excess
chemical potential of ions in the reservoir μex can be
approximated as the sum of the mean spherical approx-
imation (MSA) chemical potential and the Carnahan–
Starling expression for the excluded volume contribu-

Table 4 Colloidal charge and its fluctuations for interact-
ing system: theory (t) and simulations (s). The table also
presents the average number of ions and free protons inside
the cell. The same numbers are used to perform canonical
simulations, the results of which are presented in Table 5

CH [M] Qs/q σ2
s NH

+ NNa
+ NCl

− Qt/q σ2
t

qσ
Qs

10−5 −66.7 29.0 533 112 45 −65.4 58.2 −0.08
10−5.5 −106.6 39.4 493 145 39 −102.9 85.1 −0.05
10−6 −160.6 52.4 439 195 34 −152.9 113.8 −0.04

tion [64–72], which are:

βμMSA =
λB

(√
1 + 2κd − κd − 1

)

d2κ
,

βμCS =
8η − 9η2 + 3η3

(1 − η)3
, (19)

where η = πd3

3 ct, d is the ionic diameter, ct = cs +
ca is the total concentration of salt and acid, λB =
q2/εwkBT is the Bjerrum length, and κ =

√
8πλBct is

the inverse Debye length.
At the same level of approximation, the fluctuation

of surface charge can be written as:

σ2
t =

Z Keqcae(−β[φ0−φdisc−μex−μsol])

(
1 + Keqcae(−β[φ0−φdisc−μex−μsol])

)2 . (20)

Comparison of theory with the sGCMC results is
shown in Table 4. We see that the theory again agrees
well with the colloidal charge calculated in simulations,
but the fluctuations in the nanoparticle charge differ
significantly from the predictions of the theory. This is
similar to what was found in the ideal case when com-
paring theory with sGCMC simulations that used pair
insertions. The pair insertion algorithm restricts charge
fluctuations inside the simulation cell, affecting also the
fluctuations of nanoparticle charge. Furthermore, unlike
the ideal system, equation (20) is only approximately
correct, since it does not account for the electrostatic
correlations. Charge fluctuations are more sensitive to
the correlations than the average colloidal charge.

We next run the canonical reactive Monte Carlo algo-
rithm (Eq. (15)). The simulation cell contains the same
number of ions and protons as was obtained using
sGCMC simulations previously. After the simulation
reaches equilibrium, we see that the average charge
of a nanoparticle calculated using canonical simulation
is in perfect agreement with the results of the semi-
grand canonical algorithm. On the other hand, canon-
ical fluctuations of the nanoparticle charge are almost
four orders of magnitude lower than what was found for
an open system (see Table 5).
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Table 5 Q and its fluctuations in the canonical ensembles
for an interacting system. Note that the fluctuations are four
orders of magnitude smaller than observed in the sGCMC
case for exactly the same parameters (compare with Table
4)

NH
+ NNa

+ NCl
− Qs/q σ2 qσ

Qs

533 112 45 −67.11 0.11 −4 × 10−3

493 145 39 −106.04 0.04 −1 × 10−3

439 195 34 −161.01 0.01 −6 × 10−4

5 Conclusions

In this paper, we investigated charge regulation in iso-
lated (canonical) and open (semi-grand canonical) sys-
tems. An open system can exchange heat, ions, and
protons with an external reservoir, while a closed sys-
tem can only exchange heat. In both cases, equivalence
of ensembles extends to the prediction of the effec-
tive charge of nanoparticles—both ensembles predict
exactly the same charge. On the other hand, the fluctu-
ations of colloidal charge are very different, with canon-
ical fluctuations four orders of magnitude smaller than
the semi-grand canonical ones. Since the Kirkwood–
Shumaker force depends on charge fluctuations, its
manifestation should be very different in the two ensem-
bles, in particular for concentrated suspensions. At infi-
nite dilution (suspensions of low volume fractions of col-
loidal particles), we expect the difference between the
two ensembles to vanish. In the future work, we will
use the simulation methods discussed in this paper to
explicitly calculate Kirkwood–Shumaker force between
nanoparticles in different ensembles.
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