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a b s t r a c t

Systems with long-range (LR) forces, for which the interaction potential decays with the
interparticle distance with an exponent smaller than the dimensionality of the embedding
space, remain an outstanding challenge to statistical physics. The internal energy of such
systems lacks extensivity and additivity. Although the extensivity can be restored by
scaling the interaction potential with the number of particles, the non-additivity still
remains. Lack of additivity leads to inequivalence of statistical ensembles. Before relaxing
to thermodynamic equilibrium, isolated systems with LR forces become trapped in out-
of-equilibrium quasi-stationary states (qSSs), the lifetime of which diverges with the
number of particles. Therefore, in the thermodynamic limit LR systems will not relax to
equilibrium. The qSSs are attained through the process of collisionless relaxation. Density
oscillations lead to particle–wave interactions and excitation of parametric resonances. The
resonant particles escape from the main cluster to form a tenuous halo. Simultaneously,
this cools down the core of the distribution and dampens out the oscillations. When all the
oscillations die out the ergodicity is broken and a qSS is born. In this report, we will review
a theory which allows us to quantitatively predict the particle distribution in the qSS. The
theory is applied to various LR interacting systems, ranging fromplasmas to self-gravitating
clusters and kinetic spin models.
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1. Introduction

A long time ago Einstein expressed his belief that thermodynamics is ‘‘the only physical theory of universal content
concerning which I am convinced that, within the framework of applicability of its basic concepts, it will never be
overthrown’’ [1]. One can, however, wonder about the extent of the ‘‘applicability’’ to which Einstein was referring. For
example, can thermodynamics in any form be applied to study non-neutral plasmas or galaxies in which ‘‘particles’’ interact
by long-range (LR) forces?

The difficulty of studying systems with LR interactions was already well appreciated by Gibbs, who noted the
inapplicability of statistical mechanics when interparticle potentials decay with exponents smaller than the dimensionality
of the embedding space [2,3]. For such systems energy is not extensive and traditional thermodynamics fails. One way to
correct the lack of extensivity is to scale the interaction energy with the inverse of the number of particles. This is the so-
called Kac prescription designed to restore extensivity to the free energy [4–6]. The problem, however, remains — although
the energy is now extensive, it is still non-additive. On the other hand, it is a fundamental postulate of thermodynamics
that entropy and energy must be additive over the subsystems — that is, the interfacial contributions should be negligibly
small. For systems with short-range forces this condition is clearly satisfied — in the thermodynamic limit the interfacial
energy is much smaller than the energy of the bulk. This, however, is not true for systems with LR forces for which the
interfacial region cannot be clearly defined [7] — every particle interacts with every other particle of the system, so that no
clear separation into bulk and interface exists.

One can still hope that although the additivity of energy breaks down, it might still be possible to use equilibrium
statistical mechanics to describe stationary states of systems with LR interactions. Very quickly, however, one runs into
difficulties. For example, depending on the ensemble used, one finds that a system can remain either in one phase or undergo
a phase transition [8]. One also finds that in the microcanonical ensemble such systems can have negative specific heat
[9–14], contrary to the laws of usual thermodynamics.
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There is, however, an even more profound problem with applying classical statistical mechanics to systems with LR
forces. The underlying assumption of Boltzmann–Gibbs (BG) statistics is the existence of ergodicity and mixing [15]. For a
closed system of particles (in a microcanonical ensemble) the initial distribution should uniformly spread over the available
phase space, so that in equilibrium all microstates corresponding to a given thermodynamic macrostate should be equally
probable. Although there is no general proof of ergodicity and mixing, in practice it has been found to apply to most
nonintegrable systemswith short-range forces. There is, however, no indication that ergodicity andmixing exist for systems
with LR interactions [7,16–19]. In fact, one should expect precisely the opposite. Kac renormalization of the interaction
potential kills off the correlations between particles. Within the kinetic theory, it is precisely these correlations (collisions)
that drive a system to thermodynamic equilibrium. In the absence of correlations, the dynamical evolution of the one-
particle distribution function f (r, p, t) is governed by the collisionless Boltzmann (Vlasov) equation [20,21]. Starting from
an arbitrary initial condition, a solution of this equation does not evolve to a stationary state — the spatiotemporal evolution
continues ad infinitum on smaller and smaller length scales. It is only in a coarse-grained sense that we can say that the
system has reached an ‘‘equilibrium’’ — a finite resolution imposed on us by an experiment or a computer simulation will
not allow us to see the full fine-grained evolution of the distribution function. The coarse-grained stationary state will, in
general, be very different from the normal thermodynamic equilibrium. Unlike the state of thermodynamic equilibrium, it
will explicitly dependon the initial distribution of particle positions and velocities [22]. In particular, the velocity distribution
in the stationary state (SS) will not have the characteristic Maxwell–Boltzmann form [23–25]. Indeed, observations and
simulations of both gravitational clusters [26–40] and confined non-neutral plasmas [23,41–52], indicate the presence of
such nonequilibrium stationary states.

It is, therefore, clear that in the thermodynamic limit, traditional methods of equilibrium statistical mechanics cannot be
applied to systems with LR forces. A new theory is needed. The goal of the present Report is to show how such theory can be
constructed. Using the properties of Vlasov dynamics and the theory of parametric resonances,wewill derive coarse-grained
distribution functions for the nonequilibrium stationary states of systemswith LR interactions, without explicitly solving the
collisionless Boltzmann equation. Comparing the theory with the explicit N-body simulations, wewill show that it is able to
quantitatively predict both position and velocity distribution functions of self-gravitating clusters [38,39,53], magnetically
confined plasmas [23,24], and of kinetic spin models [25,54,55], without any adjustable parameters. We will focus on a
statistical theory of nonequilibrium quasi-stationary states; only briefly shall we address the thermodynamic equilibrium,
which has already been thoroughly covered by Campa et al. in Ref. [7].

The Report is organized as follows: in Section 1we beginwith an introduction to the principal properties of systemswith
LR interactions, followed by a review of the Vlasov dynamics. Sections 2–4 present results for self-gravitating clusters in one,
two, and three dimensions, respectively. In Section 5 we address the nonequilibrium properties of magnetically confined
plasmas, and in Sections 6 and 7 we discuss two different kinetic spin models. Section 8 concludes the Report, reviewing
the theories and the results obtained so far and outlining the perspectives for future research.

2. Systems with long range forces

Among the physical systems, a significant fraction involves those whose particles interact by long-range potentials of the
form ψ(r) ∼ 1/rα , where α < d and d is the dimensionality of the embedding space. Examples of such systems include
galaxies and globular clusters [56–64], two-dimensional and geophysical flows and vortexmodels [18,65–70], quantum spin
models [71], dipolar excitons [72], cold atom models [73], colloids at interfaces [74–77] as well as magnetically confined
plasmas [23,78–80]. In order to predict the behavior of systems with short-range forces we can rely on thermodynamics
and statistical mechanics both of which, however, fail for systems with LR interactions.

Thermodynamics requires extensivity and additivity [81], neither of which is valid for LR systems [7]. A system of N
particles confined inside a volume V is said to be extensive if, when the number of particles and the volume are scaled by
λ, the internal energy U(λN, λV ) of the system scales as λU(N, V ). It is easy to see that systems with short-range forces are
extensive. If the interaction potential is short-range, each particle will interact only with the particles which are within the
range γ of the interaction potential. Suppose that a system is homogeneous, the number of particles within the distance γ
of a given particle will then be proportional to Nγ d/V and the internal energy must have the form of U(N, V ) = Nf (N/V ),
where f (x) is a function that depends on the microscopic interactions between the particles. This form of internal energy
is clearly extensive. In fact, it is not necessary for the interaction potential to be strictly short-range – bounded by γ –
algebraically decaying potentials will lead to extensive thermodynamics as long as they decay sufficiently rapidly, i.e. if
α > d [82]. We shall call all such systems ‘‘finite range’’.

Extensivity is important for the existence of a nontrivial thermodynamic limit and the equivalence of different statistical
ensembles. A thermodynamic system in contact with a thermal reservoir at temperature T – canonical ensemble – must be
at the minimum of its Helmholtz free energy F(N, V ) = U(N, V )− TS(N, V ), where S(N, V ) is the entropy. The celebrated
Boltzmann formula S = kB lnW relates the thermodynamics with dynamics by associating W , the number of microstates
available to the system through its dynamics, to the concept of entropy of classical thermodynamics. The phase space volume
of a confined Hamiltonian system, which is proportional to W , grows exponentially with the number of particles so that
S ∼ N , irrespective of the range of interactions. Therefore, both the internal energy and entropy of a finite range system
scale linearly with the number of particles in the system, allowing for a nontrivial thermodynamic equilibrium.
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LR systems, however, are intrinsically different. The infinite range of the interaction potential results in an internal energy
that scales superlinearly with the number of particles in the system, U ∼ N2. Therefore if such a system is put in contact
with a thermal bath, for large N the Helmholtz free energy will be dominated by the internal energy. The equilibrium state
will then correspond to the minimum of the internal energy U . The entropy will be irrelevant, unless the temperature of the
reservoir is unrealistically large and scales with the number of particles in the system, T ∼ N .

In practice, most LR systems are isolated from the environment. This is the case for galaxies and magnetically confined
plasmas. Gravity in three dimensions is particularly challenging because of the evaporation of particles [26,83,84]; however,
one and two dimensional gravitational systems and magnetically confined plasmas can be studied straightforwardly using
molecular dynamics simulations (MD). Unlike systems with short-range forces – which must be confined to a box in order
to have a nontrivial thermodynamics – one and two dimensional gravitational systems are self-confining and can exist in
an infinite volume, V → ∞. Once again, however, one runs into a difficulty with the long-range nature of the interaction
potential. The superextensive interaction energy leads to strong forces and velocities which rapidly exceed that of the speed
of light. To avoid this problem and to obtain a well defined thermodynamic limit it is necessary to rescale the gravitational
coupling constant by a factor 1/N . This is the so-called Kac prescription [4]. For a gravitational system of N particles in an
infinite volume, the Kac prescription is equivalent to the requirement that the mass of each particle m → 0, while mN
remains finite,mN = M . One can show that this leads to a well defined thermodynamic limit as N → ∞.

Although the rescaled gravity and plasmas are extensive, they remain nonadditive. For a d-dimensional system of
particles interacting by a finite-range potential, the interfacial energy scales with the number of particles as N

d−1
d , while

the bulk energy grows as N . Thus, the total energy of a finite-range system in the thermodynamic limit is equivalent to
the sum of the energies of its macroscopic subsystems. This is not true for LR systems. As the interaction range grows, the
concept of interface loses its meaning. One can no longer consider a total system as a sum of smaller subsystems, since the
LR nature of the potential leads to a nontrivial interaction between all the subsystems. The lack of additivity can result
in a negative specific heat for an isolated LR system [7,9,10,12]. On the other hand, if a LR system is in contact with a
thermal bath, its specific heat must be positive. Contrary to what happens with finite-range systems the predictions of
microcanonical and canonical ensemblesmay, therefore, be inequivalent for systemswith LR interactions [85–88]. Similarly,
the canonical and the grand-canonical ensembles may also become inequivalent [89]. Besides inequivalence of ensembles,
it has also been debated that negative specific heat may result in yet another abnormality: the violation of the zeroth law of
thermodynamics [90–93].

Another difficultywith the statistical treatment of LR systems is the lack of ergodicity. The ergodic hypothesis allows us to
replace the time averages by the ensemble averages [94]. Consider a 2dN dimensional phase space ofN interacting particles.
Each point X in this phase space represents a possible configuration (microstate) of the system. For a given thermodynamic
macrostate there is a huge number of possible microstates. This allows us to define a statistical ensemble of microstates
with a probability density ρ(X, t). The dynamics of ρ(X, t) is governed by the Liouville equation. For equilibrium statistical
mechanics to work, the initial probability density should uniformly spread over the energy surface — producing a, so-called,
mixing flow [15].

The fundamental problem of ergodic theory is to understand under what conditions a nonstationary phase space density
will converge to a stationary one [95,96]. Note that for a time reversible systemone cannot have a ‘‘fine-grained’’ equilibrium,
a thermodynamic equilibrium exists only in a coarse-grained sense. On a fine-grained scale, the dynamical evolution of the
probability density will never stop, so that if at some point during the dynamical evolution the velocities of all the particles
are reversed, the system will diverge from the equilibrium. Although ergodicity and mixing have been verified for many
different systems with finite-range forces, both seem to fail for systems with LR interactions [16,17,19,97].

The relaxation to a stationary state (SS) of systems with LR interactions is fundamentally different from the relaxation
to equilibrium of systems with short-range forces. For the latter, the relaxation is collisional and the reduced probability
densities are governed by the BBGKY (Born, Bogoliubov, Green, Kirkwood, Yvon) hierarchy of equations [98]. At the leading
order of this hierarchy is the Boltzmann equation Df /Dt = (∂ f /∂t)col, where Df /Dt ≡ ∂ f /∂t + (p/m) · ∇r f + F · ∇pf
is the convective derivative of f (r, p, t) and F = ṗ. This equation describes the evolution of the one-particle distribution
function f (r, p, t) [99]. The right hand side of the Boltzmann equation is the collision term that drives the system toward
thermodynamic equilibrium [99]. The distribution functions in thermodynamic equilibrium do not depend on the initial
condition, but only on the global conserved quantities, and are described by the Boltzmann–Gibbs statistical mechanics
[100].

The situation is very different for systems with LR forces. In the thermodynamic limit N → ∞ the dynamics of these
systems is completely dominated by the mean-field and the collisions (correlations) are negligible. To see why this is so,
let us consider, for example, a one dimensional gravitational system of particles of mass m, interacting by ϕ(x) = Gm2

|x|,
where G is the gravitational constant. As was discussed above, to have a well defined thermodynamic limit we need to
require that m → 0, while the total mass of the system remains fixed, mN = M . Although the interaction between any
two particles is vanishingly small, the infinite range of the potential results in a finite total force acting on each particle. To
quantify the discreteness (correlations) effects [101] we can define a plasma parameter – corresponding to the ratio of the
characteristic two-body interaction energy and the average kinetic energy – Γ ≡ 2Gm2a/m⟨v2⟩, where ⟨v2⟩ is the average
particle velocity and a is a characteristic separation between the particles. Γ measures the degree to which the dynamics of
a system is dominated by the correlations— ifΓ > 1 the correlations (collisions) are important and ifΓ < 1 the dynamics is
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governed purely by the mean-field. Starting from an initial particle distribution, a one dimensional gravitational cluster will
relax to a stationary state,with a characteristic velocity ⟨v2⟩ ∼ O(1). It will be shown in the following sections that the extent
of the mass distribution is controlled by the parametric resonances, so that starting from an initial particle distribution with
a compact support, the final distribution will be restricted to a finite ‘‘volume’’ or radius rh, so that a ∼ rh/N . We then come
to the conclusion that Γ ∼ 1/N2, in the thermodynamic limit the correlations vanish and the dynamics of a LR system is
determined purely by the mean-field.

The argument above suggests that for LR systems the (collisional) right-hand side of the Boltzmann equation should
vanish and the one-particle distribution function should satisfy the collisionless Boltzmann equation Df /Dt = 0. This
equation is also known as the Vlasov equation [20]. While the stationary solution to the Boltzmann equation is the
Maxwell–Boltzmann distribution, the Vlasov equation has an infinite number of stationary states, depending on the
initial particle distribution. The one-particle distribution function evolves on ever-decreasing length scales. Eventually, the
dynamical scale becomes so small that the evolution of f (r, p, t) can no longer be observed at any resolution available to
us. It is only in this coarse-grained sense that a LR system achieves a stationary state (SS).

For a finite number of particles, the correlations – although very small – remain finite. The cumulative effect of weak
correlations will drive a LR system from a quasi-stationary state (qSS) toward the true thermodynamic equilibrium. The
relaxation time t×, however, is very slow, diverging with the number of particles as Nγ [53,102,103]. The value of the
exponent γ depends on each system [39], but is usually γ ≥ 1. We expect that t× ∼ 1/Γ , so that for 1D gravity t× ∼ N2.
For 2D gravitational clusters the interaction potential is logarithmic, so that the crossover time should scale as t× ∼ N/ lnN .
In the following sections we will see if these simple estimates of the relaxation time agree with the results of N-body
simulations.

Although interesting theoretically, the strong divergence of t× precludes the equilibrium state from ever being reached
by most physically relevant systems, such as galaxies and plasmas. To achieve equilibrium these systems would require a
span of time longer than the age of the universe [61,64,104].

3. Vlasov dynamics

In the thermodynamic limit N → ∞, the correlations between the particles of a LR system vanish and the dynamics of
the one-particle distribution function f (q, p, t) is governed exactly [20] by the Vlasov equation,

∂

∂t
+ p ·

∂

∂q
−
∂ψ

∂q
·
∂

∂p


f (q, p, t) = 0. (1)

The one-particle distribution function evolves in the phase space as the density of an incompressible fluid — its local
value remains constant along the flow. The ψ(q) represents the potential felt by a ‘‘fluid element’’ located at (q, p). It can
be shown that the Vlasov dynamics has an infinite number of conserved quantities called Casimir invariants [105,106]. Any
local functional of the distribution function is a Casimir invariant,

C[f ] =


g(f )dqdp. (2)

In particular, the fine-grained Boltzmann entropy

S(f ) = −


f (q, p, t) ln f (q, p, t)dqdp (3)

is a Casimir invariant and is conserved by the Vlasov flow. The entropy can increase only in a coarse-grained sense [107]. To
see this let us define a coarse-grained distribution function

f̄ (q, p, t) =
1

(∆p∆q)d


∆p,∆q

f (q′, p′, t)dq′dp′. (4)

Consider the evolution of the coarse-grained entropy

∆S̄ = S̄(t1)− S(t0) =

 
s(f̄ , t1)− s(f , t0)


dqdp, (5)

where we have defined the Boltzmann entropy density s(f , t) = −f (q, p, t) ln f (q, p, t). We have also supposed that at
t = t0 the exact particle distribution is known. Since the fine-grained entropy is conserved, we can rewrite Eq. (5) as

∆S̄ =

 
s(f̄ , t1)− s(f , t1)


dqdp. (6)

To perform the coarse-graining, we divide the macrocells of volume (∆p∆q)d into K microcells, with the local value of the
distribution function inside the microcell i given by fi. Now, consider the variation of the coarse-grained entropy inside the
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Fig. 1. Evolution of particle distribution in the phase space of the Hamiltonian mean field (HMF) model.

macrocell j,

∆S̄j = (∆p∆q)d
K
i

s


K
l
fl

K

− s(fi)

 = (∆p∆q)d

Ks


K
i
fi

K

−

K
i

s(fi)

 . (7)

Since the entropy density s(x) is a concave function it must satisfy Jensen’s inequality

1
K

K
i

s(fi) ≤ s


K
i
fi

K

 , (8)

from which we conclude that the coarse-grained entropy of the system should increase with time,∆S̄ ≥ 0. The Boltzmann
entropy will be maximum in equilibrium; this, however, does not mean that the equilibrium can always be reached. As we
shall see, in the thermodynamic limit, systems with LR interactions can become trapped in a non-ergodic stationary state.

If the initial fine-grained distribution function f0(q, p) is divided into p levels of phase space density ηj, Vlasov dynamics
will preserve the hypervolume of each level, C(ηj) =


δ[f (q, p, t) − ηj]dqdp. In this review, we will concentrate on one-

level (waterbag) initial distributions of the form

f0(q, p) = ηΘ(qm − |q|)Θ(pm − |p|), (9)

where Θ(x) is the Heaviside step function, qm and pm represent the maximum values for the generalized coordinates and
momentum, and η is the phase space density of the initial particle distribution. Starting from this initial condition, the fine-
grained distribution function f (q, p, t)will evolve in phase space through the process of filamentation, developing structure
on smaller and smaller length scales, see Fig. 1. Eventually, the length scale of the dynamical evolution will become so
small, that to an observer it will appear that the dynamics has ceased. At this stage, we may say that the coarse-grained
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Fig. 2. Schematic of phase space evolution described by the Vlasov dynamics: (a) initial and (b) final stationary state for a distribution with initial phase
space density η. In this example, ν = 9.

distribution, f̄ , has achieved a stationary state, even though the fine-grained distribution f is still evolving. For a practical
purpose of describing the results of molecular dynamics simulations –which, of course, have finite precision –we only need
to have the knowledge of f̄ (q, p).

3.1. Lynden-Bell statistics

In a seminal work, Lynden-Bell (LB) proposed a statistical approach for calculating f̄ (q, p) for the final stationary
state [108]. LB theory is similar in its construction to the usual Boltzmann statistics, but instead ofworkingwith the particles,
Lynden-Bell studied the distribution of the phase space density levels, η. It is important to keep in mind that, similar to the
usual equilibrium statistical mechanics, the LB approach requires the existence of ergodicity and mixing [7,104].

The phase space is divided into P macrocells which are in turn subdivided into νmicrocells of volume hd. As the dynamics
progresses, the distribution function spreads over the phase space, occupying more macrocells than it did initially. This
process is illustrated in Fig. 2. The volume fraction occupied by the level η inside the macrocell i is

ρ(q, p) =
ni

ν
, (10)

where ni is the number of microcells inside a macrocell i occupied by the level η. The volume fraction is related to the
distribution function by ρ(q, p) = f̄ (q, p)/η. Due to the incompressibility of Vlasov dynamics, each microcell can be
occupied by at most one level η, so that the density must satisfy

ρ(q, p) ≤ 1. (11)

LB supposed that in a stationary state the dynamics of the density levels is ergodic — η’s have an equal probability of
occupying any of the microcells. He then applied the usual Boltzmann counting to calculate the most probable distribution
of the density level over the phase space.

The total number of occupied microcells,

N =


i

ni (12)

remains constant throughout the dynamics. The number ofways inwhich theseN occupiedmicrocells can be divided among
the P macrocells is given by

N!

P
i
ni!

. (13)

Now consider a macrocell. The number of ways in which ni of its ν microcells can be occupied by a density level is

ν!

(ν − ni)!
. (14)

Note that the density levels are treated as distinguishable. Multiplying expressions (14) and (13) we obtain the total number
of possible microstates,

W (ni) =
N!

P
i
ni!


i

ν!

(ν − ni)!
. (15)



8 Y. Levin et al. / Physics Reports 535 (2014) 1–60

The coarse-grained entropy of the system is defined as Slb ≡ −kB lnW (ni)where kB is the Boltzmann constant. In the limit
in which the variations of ρ(q, p) between the macrocells are infinitesimal, the entropy can be written as

Slb = −kB


dqdp
hd

{ρ(q, p) ln[ρ(q, p)] + [1 − ρ(q, p)] ln[1 − ρ(q, p)]}. (16)

Similar to the usual thermodynamic equilibrium, LB proposed that the SS of a LR system corresponds to themost probable
distribution of the density levels among the macrocells. To find this distribution, we must maximize the LB entropy under
the constraints of energy 

p2

2m
+
ψ(q)
2


f̄ (q, p)dqdp = E0 (17)

and particle
f̄ (q, p)dqdp = 1, (18)

conservation. In the above equations E0 is the average particle energy in the initial distribution and ψ(q) is the potential
at position q in the stationary state. Maximizing the entropy Eq. (16), under the constraints given by Eqs. (17) and (18), we
find the coarse-grained distribution function f̄ (q, p) = ηρ(q, p) for the SS,

flb(q, p) = f̄ (q, p) =
η

1 + eβ[ϵ(q,p)−µ]
(19)

where ϵ(q, p) =
p2

2m + ψ(q) is the one-particle energy. The Lagrange multipliers β and µ are the inverse temperature and
the chemical potential of the stationary state. The expression (19) is similar to the distribution function of fermions in an
equilibrium system.

Besides Lynden-Bell’s theory, other statistical approaches have also been proposed to study qSSs which arise in the
process of collisionless relaxation. Example include, statistics based on particles instead of the distribution function [109]
and an information-theoretical approach [106,110]. Just like LB theory these approaches require existence of ergodicity and
good mixing [111,112] which, in general, are not valid for systems with LR forces. In this Report, we will only focus on LB
theory. In the following sections we will see how well it compares with the simulations.

4. Gravitation in one dimension

Due inpart to complications of 3Dgravitational systems,whichwill be addressed later on,many studies of self-gravitating
systems have focused on one and two dimensions [30,34,113–122]. The reduced dimensionality makes the study of these
systems much simpler. The fact that the gravitational potential in one and two dimensions is unbounded from above
prevents particle evaporation which makes theoretical and simulation work on 3D systems very difficult. In spite of their
greater simplicity, 1D and 2D gravitational systems share many characteristics of 3D gravity. For example, the global
structure of disk-like galaxies, found using 3D numerical simulation, are also reproduced by 2D simulations [83]. One-
dimensional self-gravitating systems have also been used to study the stellar dynamics of galaxy clusters and of cosmological
models [28,31,58,59,122–131].

A 1D self-gravitating system consists of N sheets of mass densitym uniformly distributed in the y–z plane, free to move
along the x axis. The dynamics of the sheets is the same as the dynamics of point particles of massm interacting by a linear
potential. The particles are free to cross one another. The thermodynamic limit, limN→∞ mN = M = constant, is equivalent
to the Kac prescription necessary to guarantee the extensivity of the energy.

The Poisson equation for this system is

∇
2ψ(x, t) = 4πGρ(x, t) (20)

where G is the gravitational constant and ρ(x, t) is the mass density. In order to simplify the expressions, we will work with
dimensionless variables. We rescale the mass, length, velocity, potential, mass density, and energy2 by M , L0 (an arbitrary
length scale), V0 =

√
2πGML0, ψ0 = 2πGML0, ρ0 = M/L0, and E0 = MV 2

0 = 2πGM2L0, respectively. This is equivalent to
considering G = M = 1 and to defining a dynamical time scale

τD = (2πGρ0)−1/2. (21)

2 A system’s energy takes into account the total work necessary to bring a particle from infinity (or from a position where the potential is zero) to
a position q, i.e.


[ψ(q) − ψ(∞)]dq. For 3D self-gravitating systems the potential at infinity is zero, and for plasmas it is zero at the conducting wall.

However, it is important to note that for 1D and 2D self-gravitating systems, the potential diverges at infinity. Since this divergent term appears in both
the initial and the final state, the problem is avoided by using a renormalized energy, see Ref. [39] for more details.
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Thus, the Poisson equation becomes

∇
2ψ(x, t) = 2ρ(x, t). (22)

For a particle (sheet) of (reduced) mass density located at x′, the density is ρ(x, x′) = δ(x− x′), and the long-range potential
is given by the Green’s function,

G(x, x′) = |x − x′
|. (23)

A particularly interesting aspect of one-dimensional gravity is that the interaction potential does not have any singularities,
which simplifies significantly molecular dynamics (MD) simulations, allowing us to explore in great detail the relaxation of
this model to the qSS.

4.1. Molecular dynamics

The reduced Hamiltonian for a system of N particles interacting by a one-dimensional gravitational potential is

H(x, v) =

N
i=1

v2i

2
+

1
2N

N
i,j

|xi − xj|. (24)

This Hamiltonian, along with Hamilton’s equations of motion, completely determines the dynamics of the system. The
acceleration of a particle at position x, due to its interaction with the other N − 1 particles, is given by

ẍ = −
1
N

N
i=1

x − xi
|x − xi|

, (25)

which may be expressed as

ẍ =
N>(x)− N<(x)

N
, (26)

where N>(x) and N<(x) represent the number of particles to the right and to the left of x, respectively. To simulate the
system according to Eq. (26) requires time that scales with N2. However, the simulation may be simplified by using a vector
containing the indices of each particle, and reordering it according to each particle’s position at each new calculation. The
expression in Eq. (26) then may be written as

ẍ =
(N − i)− (i − 1)

N
=

N − 2i + 1
N

, (27)

where i is the index of the particle at position x. This simplification involves no approximation; the advantage is purely
computational, for the simulations becomemore efficient regarding the computational time [132]—the typical time required
to order a vector of size N varies at most with N lnN [133]. Using this method, the trajectories may be obtained exactly, that
is, atmachine precision [132]. However, for the exact procedure, the trajectoriesmust be calculated at each collision, and the
number of collisions grows as N2. Therefore, in our simulations, we used a fourth-order symplectic integrator, reordering
the index vector at each time step and maintaining the relative error in energy at 10−5.

We simulate numerically the evolution of a system of particles that are initially distributed uniformly with positions xi
where xi ∈ [−xm, xm] and velocities vi ∈ [−vm, vm], so that the initial distribution function is given by

f0(x, v) = ηΘ(xm − |x|)Θ(vm − |v|) (28)

where η = (4xmvm)−1. In order to calculate the initial energy, we must find the potential that is the solution of the Poisson
equation (22) at t = 0,

d2

dx2
ψ(x) =

 1
xm

for |x| ≤ xm
0 for |x| ≥ xm

(29)

with boundary conditions lim|x|→∞ ψ(x) = |x| and ψ ′(0) = 0. The solution is given by

ψ(x) =

 x2

2xm
+

xm
2

for |x| ≤ xm
|x| for |x| ≥ xm.

(30)

Using the definition of the mean energy, Eq. (17), the initial energy of the system is found to be

E0 =
v2m

6
+

1
3

(31)

where without loss of generality we have set xm = 1.
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4.2. Equilibrium

If the system relaxes to equilibrium the gravitational potential must satisfy the Poisson equation

∇
2ψ(x) = 2n(x) (32)

where n(x) is the equilibrium density distribution. Using the Maxwell–Boltzmann distribution, fmb(x, v) = Ce−β(v2/2+w(x)),
the equilibrium density distribution is given by

n(x) =


fmb(x, v) dv =


2π
β

Ce−βω(x), (33)

where β is the Lagrange multiplier used to conserve total energy, C is the normalization constant and ω(x) is the potential
of mean force [101]. As N → ∞, interparticle correlations vanish and ω(x) ∼ ψ(x). Substituting Eq. (33) into Eq. (32), we
obtain the Poisson–Boltzmann equation in its dimensionless form

∇
2ψeq(x) =


8π
β

Ce−βψeq(x). (34)

Solving this equation using the boundary conditions lim|x|→∞ ψeq(x) = |x| andψ ′
eq(0) = 0, the potential is found to be [124]

ψeq(x) = −
1
β

ln

1
4
sech2


βx
2


, (35)

and the distribution function is given by

feq(x, v) =


β3

32π
e−

βv2
2 sech2


βx
2


. (36)

The value of β is determined by the conservation of energy, Eq. (17) with f̄ (x, v) = feq(x, v), yielding

β =
3
2E
. (37)

The equilibrium density and velocity distributions are given by

n(x) =
β

4
sech2


βx
2


(38)

and

n(v) =


β

2π
e−βv2/2. (39)

In Fig. 3 we compare the equilibrium distributions, Eqs. (38) and (39), with the results of MD simulations. As can be seen,
the predictions of equilibrium statistical mechanics are very different from those of MD simulations. This clearly shows that
the ergodicity required by the Boltzmann–Gibbs statistical mechanics is violated.

In the next section we will compare the predictions of Lynden-Bell statistics with the results of MD simulations.

4.3. Lynden-Bell theory for one-dimensional gravity

The application of Lynden-Bell statistics to one-dimensional gravitational systems has spanned various decades, with
divergent results. While early studies have suggested some correspondence between numerical simulations and the
predictions of LB statistics, especially for low-energies, they have also shown the occurrence of high-energy tails in the
distribution, which LB statistics could not describe [29,134–137]. More recent works demonstrated that although for
some very specific initial conditions LB theory agrees well with MD simulations, in general it fails to describe the qSS
[112,127,138,139]. In this section we will examine the predictions of LB statistics and compare them with the results of
MD simulations for various initial conditions.

In order to determine flb(x, v), Eq. (19), for a one-dimensional gravitational system, we need to calculate the gravitational
potentialψlb(x). To do this wemust solve the Poisson equation (Eq. (22)) with f (x, v) = flb(x, v) and the one-particle energy
given by ϵ(x, v) = v2/2 + ψlb(x). Integrating the LB distribution over momentum, we obtain the Poisson equation

d2ψlb(x)
dx2

= −


8π
β
η Li1/2


−e−β(ψlb(x)−µ)


, (40)



Y. Levin et al. / Physics Reports 535 (2014) 1–60 11

Fig. 3. Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75, obtained using MD simulations with N = 2 × 104

(points), averaged over times t = 1000τD to t = 1100τD , compared with the equilibrium distributions (lines), given by Eqs. (38) and (39). Repeating the
MD simulation for the same initial energy, but different initial conditions, and taking the average value of the resulting distributions, error bars are smaller
than the symbol size.

Fig. 4. Distributions in (a) position and (b) velocity for a 1D gravitational system with E0 = 0.75, obtained using MD simulations with N = 2 × 104

(points), averaged over t = 1000τD and t = 1100τD , compared with the LB distributions (lines), n(x) =

flb(x, v)dv and n(v) =


flb(x, v)dxwith flb(x, v)

given by Eq. (19). Error bars are smaller than the symbol size.

with boundary conditions lim|x|→∞ ψlb(x) = |x| and ψ ′
lb(0) = 0, where Lin(x) is the polylogarithm function of order

n [140]. The solution to this equation is obtained numerically. We see that the predictions of LB statistics are in general
quite different from the results of MD simulations, as exemplified in Fig. 4, which compares the position and the velocity
distributions n(x) =


flb(x, v)dv and n(v) =


flb(x, v)dx with the results of MD simulations.

The problem, common to both BG and LB statistics, is that in the thermodynamic limit, systems with LR forces are
intrinsically non-ergodic, invalidating the basic assumptions that underlie both theories. For systems with a finite number
of particles, however, ergodicity is restored on a sufficiently long time scale. Such systems will eventually relax to the BG
equilibrium (if it exists, and the BG entropy has a maximum), after being trapped in a qSS for a time proportional to the
number of particles in the system.

The Kac scaling required by the LR nature of the interaction potential destroys the correlations (collisions) between the
particles [101]. Therefore, in the thermodynamic limit, LR systems are intrinsically collisionless — particles move under
the action of the mean-field potential produced by all the other particles. In general, the mean-field potential has a complex
dynamics, characterized by quasi-periodic oscillations [125]. It is possible, therefore, for some particles to enter in resonance
with the oscillations and gain large amounts of energy at the expense of the collective motion [46,141,142]. This process
is known as Landau damping [143]. The Landau damping diminishes the amplitude of the oscillations and leads to the
formation of a tenuous halo of highly energetic particleswhich surround the high density core [144]. After all the oscillations
have died out, a SS state is established. The phase space distribution of particles in the SS has a characteristic core–halo
structure, very different from the predictions of either BG or LB statistics. Once the stationary state is established, there is
no longer a mechanism through which highly energetic particles of the halo can equilibrate with the particles of the core,
and the ergodicity is broken.
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4.4. The virial condition

If the system is in a stationary state, it must satisfy the virial theorem. Consider a system with a Hamiltonian given by

H =


i

p2
i

2mi
+

1
2


i,j

V (ri − rj)+
κ

2

N
i=1

|ri|γ (41)

where (ri, pi) are respectively the coordinates of position and momentum of the ith particle, V (ri − rj) is the interaction
potential and (κ/2)

N
i=1(ri)

γ is a generic confining potential. The virial function I is defined as

I =


i

ri · pi


, (42)

where ⟨x⟩ represents a time average. Differentiating the virial function with respect to time and using Hamilton’s
equations [145], we find

d
dt

I =


i

p2
i

mi


−


i

ri ·
∂

∂ri


Ṽ +

κ

2


j

|rj|γ


, (43)

where

Ṽ =
1
2


j,k

V (rj − rk). (44)

If Ṽ is a homogeneous function of order p, that is, Ṽ (r) = λ−pṼ (λr), then by Euler’s theorem,

pṼ =


i

ri ·
∂

∂ri
Ṽ .

For a stationary state, dI/dt = 0, which determines the virial condition

2K − pU −
γ κ

2
rγm = 0 (45)

where K =
1
N ⟨
N

i p2
i /2mi⟩ is the average kinetic energy per particle in a SS, U =

1
N ⟨Ṽ ⟩ is the average potential energy

per particle in a SS, and rγm =
1
N ⟨
N

i |ri|γ ⟩. In the case of two-dimensional gravity,3 which will be discussed in Section 5,
the interaction potential is logarithmic, V = 2Gm2 ln(|ri − rj|), and is not a homogeneous function. However, writing the

logarithm as ln x = limp→0


xp
p −

1
p


, after some manipulation (see [39]), we find

GM2 (N − 1)
N

=


i

ri ·
∂

∂ri
Ṽ . (46)

Using Eq. (46) in Eq. (43), the virial condition for a 2D gravitational system is found to be

⟨v2⟩ = GM
N − 1
N

(47)

where we have set κ = 0 in Eq. (41).
In 1D the gravitational potential is a homogeneous function of order p = 1, so that the virial condition reduces to

2K = U . (48)
If at t = 0 the initial distribution function is not a stationary solution of the Vlasov equation, the system will undergo

oscillations.When the relaxation is completed and a qSS is established, Eq. (48)must be satisfied. However, even if the initial
distribution function does not satisfy the stationary Vlasov equation – as is the case for thewaterbag distributions considered
above – we can significantly diminish the amplitude of oscillations during the relaxation process if the initial distribution is
forced to satisfy the virial condition, Eq. (48). For such distributions, even though the initial state is not stationary, it is not
‘‘too far’’ from a qSS. To quantify this, we define the virial number for 1D gravity as R = 2K/U . When R = 1, the virial
condition is satisfied and the oscillations should be suppressed; on the other hand, if R ≠ 1, the system will experience
strong density oscillations due to the imbalance between the kinetic and the potential energies. We expect that the process
of relaxation to the qSS should be quite different for these two cases. Indeed, we find that when R0 = 1, where R0 is the
virial number at time t = 0, the resulting qSS has a compact structure, which is reasonably well captured by LB theory, see
Fig. 5. On the other hand when R0 ≠ 1, the system separates into a central core surrounded by a halo of highly energetic
particles. To understand the mechanism of the core–halo formation, we need to explore the parametric resonances which
appear as a result of the density oscillations.

3 The specific case of two-dimensional gravity is addressed in Ref. [146], which presents a study of the virial theorem in the general case of d dimensions
and includes terms for friction and noise.
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Fig. 5. Distributions in (a) position and (b) velocity of a system that initially was in a waterbag distribution with R0 = 1. The solid line represents the
predictions of LB theory, Eq. (19), while the points are results of MD simulation with N = 2 × 104 , averaged over t = 1000τD to t = 1100τD . For this case,
LB theory provides a fairly accurate approximation for the qSS distribution, despite a small deviation in the distribution tails. Error bars in the distributions
are comparable to the symbol size.

4.5. The envelope equation

To explore the density oscillations, we define the envelope xe(t) to be the extent of the system, xe(t) ≡

3⟨x2(t)⟩. Note

that at t = 0, the envelope xe(t) coincides with the boundary of the initial waterbag distribution, xe(0) = 1. Differentiating
xe(t) twice with respect to time, we have

ẍe(t) =
3⟨x(t)ẍ(t)⟩

xe(t)
+

3⟨ẋ2(t)⟩
xe(t)

−
9⟨x(t)ẋ(t)⟩2

x3e (t)
. (49)

To simplify the first term, we suppose that the mass density oscillations are smooth, so that the particle distribution
remains uniform. Under these conditions, the oscillating gravitational potentialψe(x, t)maintains the functional form given
by Eq. (30), but with xm → xe(t),

ψe(x, t) =

 x2

2xe(t)
+

xe(t)
2

for |x| ≤ xe(t)

|x| for |x| ≥ xe(t).
(50)

Similarly, the distribution function will be approximated by a waterbag

fe(x, v, t) = ηeΘ(xe(t)− |x|)Θ(vm − |v|) (51)

with ηe = [4xe(t)vm]
−1. The average ⟨xẍ⟩ can then be expressed as

⟨xẍ⟩ = −


x
d
dx
ψe(x, t)


= −


x
d
dx
ψe(x, t)fe(x, v, t) dx dv

= −
1

2xe(t)

 xe(t)

−xe(t)

x2

xe(t)
dx, (52)

resulting in

⟨xẍ⟩ = −
xe(t)
3
. (53)

The second and the third terms of Eq. (49) are

⟨ẋ2⟩ =
1

2vm

 vm

−vm

v2 dv =
v2m

3
(54)

and

⟨xẋ⟩ =
1

4xe(t)vm

 xe(t)

−xe(t)
x dx

 vm

−vm

v dv = 0, (55)
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Fig. 6. Oscillations of the envelope xe(t) determined by Eq. (56) (solid line) compared to results of MD simulation (squares). The virial number isR0 = 0.5.

Fig. 7. Poincaré sections of test particle dynamics (see Eq. (58)) for R0 ≈ 1 (a) and R0 = 0.5 (b). In (a) the dynamics is integrable while in (b), two
resonance islands are formed. Panel (c) shows the phase space obtained using MD simulation of a 1D self-gravitating system with R0 = 0.5 at t = 7.
The test particle dynamics enables us to determine the maximum energy ϵh that a particle in the full N-body simulation can achieve. In the case of 1D
gravitation, ϵh = |xh|, where xh , indicated in panel (b), is the maximum position reached by a test particle.

considering that at t = 0 there is no correlation between position and velocity. The envelope equation reduces to

ẍe(t) =
R0

xe(t)
− 1, (56)

where R0 = 2K(t = 0)/U(t = 0) = v2m and the initial conditions are xe(0) = 1 and ẋe(t) = 0. If R0 = 1, then ẍe(t) = 0,
and the system does not develop oscillations. Fig. 6 compares the oscillations of the envelope predicted by Eq. (56) with the
results of MD simulation, showing a reasonable agreement for short times.

4.6. The test particle model

To understand the mechanism of halo formation, we first study the dynamics of noninteracting test particles initially
located at positions x0i ∈ [−1, 1] with velocities v0i ∈ [−vm, vm], where vm =

√
R0. Each particle moves in a gravitational

potential produced by the oscillating mass density

ρ(t) =
1

2xe(t)
Θ(xe(t)− |x|) (57)

where xe(t) is governed by the envelope equation, Eq. (56). The trajectory of a test particle is thendetermined by the equation
of motion

ẍi(t) =

−
xi(t)
xe(t)

for |xi(t)| ≤ xe(t)

− sgn[xi(t)− xe(t)] for |xi(t)| ≥ xe(t)
(58)

where sgn is the sign function [147].
In Fig. 7 we show the Poincaré sections for test particle dynamics. When R0 = 1, the trajectories of the test particles

correspond to harmonic oscillators and the dynamics is completely regular; on the other hand, when R0 ≠ 1, we see the
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appearance of resonance islands. At short times a very similar structure of the phase space is also found in the complete MD
simulation, as shown in panel (c) of the same figure. The formation of resonance islands is the result of the particle(density)-
wave interactions [148–150]. The parametric resonances allow some particles to move into the regions of the phase space
which are highly improbable from the perspective of BG or LB statistics. Once the oscillations die out, these particles are
trapped, becoming a part of a halo.

4.7. The core–halo distribution

From the Jeans theorem, a steady-state solution of the Vlasov equation depends on the phase space coordinates only
through the integrals of motion of the mean-field potential. Conversely, any function of the integrals of motion is a steady-
state solution of the Vlasov equation [64]. In all the cases treated in this Report, the only integral ofmotion is the one-particle
energy. Thus, a Maxwell–Boltzmann distribution is only one of the infinite number of solutions of the Vlasov equation. In
particular an arbitrary initial distributionwill not converge to theMaxwell–Boltzmanndistribution, as is the case for systems
with finite-range forces.

Unlike gravitation in three dimensions, in 1D particles cannot escape to infinity. The test particle dynamics shows,
however, that the resonant particles may gain a lot of energy from collective oscillations and form a tenuous high-energy
halo that surrounds the central core region. Since the Hamiltonian dynamics is conservative, the gain of energy of resonant
particles must result in the loss of energy (cooling down) of the core particles. In principle, the halo formation will continue
until the oscillations of the core have completely died down. Once the SS state is established, the core particles should be
in the ‘‘ground state’’. The incompressibility constraint imposed by the Vlasov dynamics, however, does not allow the core
particles to collapse to the minimum of the potential energy. Rather, these particles will arrange in such a way as to occupy
all of the low energy states up to the allowed maximum phase space density η,

f̄core(x, v) = ηΘ(ϵF − ϵ(x, v)), (59)

where ϵF is the ‘‘Fermi energy’’ of the core.
The maximum energy that a halo particle can gain corresponds to the resonant orbit. As the oscillations die down, the

resonances shift toward the smaller energies, resulting in a quasi-homogeneous population of the phase space between ϵF
and the maximum halo energy, ϵh. We will, therefore, suppose that in a qSS the halo particles are distributed according to

f̄halo(x, v) = χΘ(ϵ(x, v)− ϵF )Θ(ϵh − ϵ(x, v)), (60)

where χ is the phase space density of the halo particles and the maximum halo energy, ϵh, can be calculated using the test
particle dynamics and is given by ϵh = |xh|, see Fig. 7. The complete core–halo distribution is then

f̄ch(x, v) = ηΘ(ϵF − ϵ(x, v))+ χΘ(ϵ(x, v)− ϵF )Θ(ϵh − ϵ(x, v)). (61)

From now on, for simplicity we will write fch instead of f̄ch. After determining ϵh using the test particle dynamics, two
unknowns remain, ϵF and χ , which are obtained using the conservation of the total energy and the number of particles
in the system. Integrating the core–halo distribution function over velocities and substituting the resulting particle density
into the Poisson equation, the gravitational potential is found to satisfy

d2

dx2
ψch(x) = 2

√
2

(η − χ)

ϵF − ψch(x)+ χ


ϵh − ψch(x) for ψch(x) ≤ ϵF ,

χ

ϵh − ψch(x) for ϵF ≤ ψch(x) ≤ ϵh,

0 for ψch(x) ≥ ϵh,

(62)

with the boundary conditions given by lim|x|→∞ ψch(x) = |x| and ψ ′
ch(0) = 0. The parameters χ and ϵF are determined

self-consistently from the numerical solution of Eq. (62) and the conservation of the total energy and the number of particles
(Eqs. (17) and (18)) in the system. Once the potential is knownwe can easily calculate the distributions n(x) =


fch(x, v) dv

and n(v) =

fch(x, v) dx, see Fig. 8.

4.8. Thermodynamic equilibrium

For finite N , correlations are not completely negligible and eventually they will drive the system to thermodynamic
equilibrium. The equilibrium state should be described by the MB distribution Eq. (36), discussed in Section 4.2. Therefore if
the number of particles in the system is not too large and the simulation is run for a sufficiently long time the thermodynamic
equilibrium should be observed. Fig. 9 shows the results of MD simulation for t = 3× 106τD. We see that after this time the
system indeed relaxes to the thermodynamic equilibrium with the particle distribution given by Eq. (36).

The approach to equilibrium can be observed using a crossover parameter, ζ (t), which measures how well the system’s
density profile is described by the core–halo distribution fch(x, v), Eq. (61) at each instant. We define

ζ (t) =
1
N2


[N(x, t)− Nch(x)]2dx (63)
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Fig. 8. Distributions inside qSS in (a) position and (b) velocity, for a system with R0 = 2.5, and distributions in (c) position and (d) velocity for a system
with R0 = 0.5. Points show the results of MD simulations with N = 2 × 104 averaged over t = 1000τD to t = 1100τD , and the solid lines correspond to
the marginal distributions predicted by the core–halo theory. Error bars in the distributions are comparable to the symbol size.

Fig. 9. Equilibrium distributions: (a) position and (b) velocity, for a system with R0 = 2.5 at time t = 3 × 106τD , obtained using MD simulation with
N = 1000 (points). Solid lines are the predictions of BG statistics, Eqs. (38) and (39).

where N(x, t) is the number of particles located between x and x+dx at time t and Nch(x) = N

fch(x, v)dv. The smaller the

value of ζ (t), the better the agreement between the system’smarginal distribution in position and the predicted distribution
of the core–halo theory. When the system starts to cross over to equilibrium, ζ (t) begins to deviate from its minimum,
growing until it reaches the equilibrium value, given by ζeq =

1
N2


[Nmb(x) − Nch(x)]2dx where Nmb(x) = Nn(x) with n(x)

given by Eq. (38). In Fig. 10, we show the evolution of ζ (t) for different values of N . After relaxing to the qSS, ζ (t) rises and
approaches the equilibrium value. Rescaling time with τ× = τDNγ , with γ = 1.8, all the curves collapse onto one universal
curve. This value of γ is approximate — to find a precise value of γ , a very large number of particles must be used in MD
simulations. Nevertheless, the observed value of γ agrees quite well with the exponent γ = 2 predicted by the theoretical
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Fig. 10. Relaxation to equilibrium, shown by the crossover parameter ζ (t), Eq. (63), with time rescaled by 105τD in (a) and by τ× = τDN1.8 in (b). In this
case, the equilibrium value ζeq is approximately 0.032. The virial number is R0 = 0.5.

argument of Section 2. While our simulations find γ = 1.8, other previous simulations with smaller number of particles
find γ = 1 [115], γ = 2 [151] and greater [31,32,152].

5. Gravitation in two dimensions

We next consider self-gravitating systems in two dimensions. Such systems and their dynamics have been applied
to study topics ranging from the spiral structure of disk-like galaxies [113,114,153] to the large-scale structure of the
universe [154]. They have also been analyzed in the context of equilibrium thermodynamics [155,156].

The system consists of N particles of mass m in a two-dimensional space. The total mass of the system is M = mN . It
is convenient to define dimensionless variables by rescaling length, velocity, potential, and energy with respect to L0 (an
arbitrary length scale), V0 =

√
2GM ,ψ0 = 2GM and E0 = MV 2

0 = 2GM2, respectively, where G is the gravitational constant.
This process is equivalent to settingM = G = 1 and to defining the dynamical time

τD =
L0

√
2GM

. (64)

In three-dimensional space, the system corresponds to rods of mass densitym [155].
Considering only systems with azimuthal symmetry, the corresponding gravitational potential ψ satisfies the

dimensionless Poisson equation,

∇
2ψ(r, t) = 2πρ(r, t), (65)

where ρ(r, t) is the mass density of a self-gravitating system which is obtained from the one particle distribution function,
ρ(r, t) =


f (r, v; t) d2v. For an isolated particle the density is

ρ(r, r′) = δ(|r − r′|), (66)

so that the Green’s function solution to Eq. (65) is

G(r, r′) = ln |r − r′|. (67)

The Hamiltonian for a N particle gravitational system is then

H =

N
i=1

p2i
2m

+
m2

2

N
i,j=1

ln |ri − rj|. (68)

5.1. Molecular dynamics

Wewill study 2D gravitational systems in the thermodynamic limit. In this limit, if the initial distribution is azimuthally
symmetric, the mean-field potential will also retain this symmetry, so that the angular momentum, pθ = mr2θ̇ , of each
particle is conserved. This allows us to use an effective Hamiltonian description based on Gauss’s law. A particle at position
ri is subject to an interaction potential produced by all the particles with r ≤ ri, leading to an effective Hamiltonian

Heff (ri, θi, pri , pθi) =

N
i=1


p2ri
2m

+
p2θi

2mr2i


+

N
i=1

meff (ri)m ln ri, (69)
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where

meff (ri) = m
N
j=1

Θ(ri − rj), (70)

is the mass of all the particles with the radial coordinates r < ri. The equation of motion for ri is then

r̈i =
v2θi

r3i
−

meff (ri)
ri

, (71)

where vθi = pθ/m is determined by the initial distribution. The advantage of the effective Hamiltonian is that the simulation
time of the system’s dynamics depends exclusively on the time of sorting a vector composed of N elements, similar to 1D
gravity.

At the start of the simulation the N point particles are distributed uniformly inside a circle of radius rm. They are
also assigned velocities from a uniform distribution with the maximum value vm. This corresponds to a one-level initial
distribution of the form

f0(r, v) = ηΘ(rm − r)Θ(vm − v) (72)

where η = (π2r2mv
2
m)

−1 is the normalization constant.
Since in the thermodynamic limit the mean-field potential is purely radial, the angular momentum of each particle will

remain constant throughout the simulation. The radial dynamics of each particle is then determined by the Eq. (71), while
the θi(t) dynamics is controlled by the angular momentum conservation vθi(t) = vθi(0). The magnitude of the velocity of

the particle i is vi =


v2ri + (riθ̇i)2.

The potential ψ associated with the initial distribution satisfies the Poisson equation,

d2ψ(r)
dr2

+
1
r
dψ(r)
dr

=


2
r2m

for r ≤ rm

0 for r > rm
(73)

with the boundary conditions given by limr→∞ ψ(r) = ln(r) and ψ ′(0) = 0. The solution to this equation is

ψ(r) =


r2 − r2m
2r2m

+ ln(rm) for r ≤ rm

ln(r) for r > rm.
(74)

Using this potential, Eq. (74), and the initial distribution function, Eq. (72), in the expression for conservation of energy,
Eq. (17), the initial energy of the system is calculated to be

E0 =
v2m

4
−

1
8
, (75)

where without loss of generality we have set rm = 1.
We now consider two cases: one in which the initial distribution obeys the virial condition (R0 = 1) and one in which

it does not (R0 ≠ 1). In Section 4.4, we have shown that the virial condition for a two-dimensional gravitational system
requires that ⟨v2⟩ = GM(N − 1)/N . In the thermodynamic limit, using the rescaled variables, the virial condition reduces
to

⟨v2⟩ =
1
2
. (76)

We then define the virial number for a 2D gravitational system to be

R = 2⟨v2⟩. (77)

5.2. Lynden-Bell theory for a 2D self-gravitating system

In analogy with 1D gravity, if the initial distribution of a 2D self-gravitating system obeys the virial condition, we expect
that the parametric resonances will not be excited and the qSS should be well described by the Lynden-Bell statistics. The
mean-field potential should then satisfy the Poisson equation with the mass density given by the momentum integral of
Eq. (19),

d2ψlb(r)
dr2

+
1
r
dψlb(r)

dr
=

4π2η

β
ln[1 + e−β(ψlb(r)−µ)]. (78)
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Fig. 11. Particle distributions in (a) position and (b) velocity of a 2D gravitational system that initially satisfied the virial condition. The solid lines represent
the prediction of LB statistics, n(r) = N(r)/N and n(v) = N(v)/N , with N(r) and N(v) given by Eqs. (79) and (80). Points are results of MD simulation for
N = 10,000 particles, averaged over times t = 1000 to t = 1100. Error bars in the distributions are comparable to the symbol size.

Fig. 12. Distribution in position for a 2D self-gravitating system with R0 = 0.694. The solid line represents the prediction of LB theory, n(r) = N(r)/N
with N(r) given by Eq. (79), while the symbols are the results of MD simulation with N = 10,000 particles, averaged over times t = 2000 to t = 2100.
Error bars in the distributions are comparable to the symbol size.

The boundary conditions for this equation are limr→∞ ψlb(r) = ln(r) and ψ ′
lb(0) = 0. The parameters β and µ are

determined self-consistently by the conservation of energy and norm of the distribution function, Eqs. (17) and (18). Once
ψlb(r), β , and µ are calculated, we can compare the theoretical predictions with the results of the MD simulations. To do
this we calculate the marginal distributions: the number of particles located between [r, r + dr],

N(r) = 2πNr


d2vflb(r, v) =
4Nr
βv2m

ln[1 + e−β(ψlb(r)−µ)] ; (79)

and the number of particles with velocities between [v, v + dv],

N(v) = 2πNv


d2rflb(r, v). (80)

Comparing the theory and the simulation, we see a reasonably good agreement between the LB statistics and the results
of MD simulations, Fig. 11. However, if the initial distribution does not satisfy the virial condition, LB theory starts to
deviate from the results of MD simulations. A tail in the marginal distribution functions emerges, showing the formation of
a core–halo structure, see Fig. 12.

5.3. The envelope equation

The appearance of the core–halo structure is a consequence of the parametric resonances which arise from the density
oscillations. To study these oscillations we define the envelope of the particle distribution as re(t) =

√
2⟨r · r⟩. Note that
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with this definition re(0) = rm. Differentiating re(t) twice with respect to time, we find

r̈e(t) =
2⟨r · r̈⟩
re(t)

+
2⟨ṙ · ṙ⟩
re(t)

−
4⟨r · ṙ⟩2

re3(t)
, (81)

which can be rewritten as

r̈e(t) =
2⟨r · r̈⟩
re(t)

+
ε2(t)
r3e (t)

(82)

where

ε2(t) ≡ 4

⟨r · r⟩⟨ṙ · ṙ⟩ − ⟨r · ṙ⟩2


(83)

is known as the ‘‘emittance’’. The emittance is an important parameter in the physics of charged particle beams, and is
related to the area occupied by the particles in the phase space [79]. Unlike the one-dimensional case, in two dimensions
the term ⟨r · r̈⟩ can be simplified using the Poisson equation (65),

⟨r · r̈⟩ =


r · r̈ fe(r, v, t)d2rd2v

=
1
2π


r · r̈ ∇

2ψed2r

= −


r2
∂ψ

∂r
∇

2ψedr

= −


r
∂ψe

∂r
∂

∂r


r
∂ψe

∂r


dr

= −
1
2

 re(t)

0
dr
∂

∂r


r
∂ψe

∂r

2

. (84)

The gradient of the potential at re is 1/re, and we obtain

⟨r · r̈⟩ = −1/2. (85)

We are interested to study the behavior of a 2D self-gravitating system when its initial distribution does not deviate
significantly from the virial condition. In this case, we expect that the emittance will remain close to its initial value,
ε2(0) = v2m = R0, so that the envelope equation reduces to

r̈e(t) =
R0

r3e (t)
−

1
re(t)

. (86)

As expected, if re(0) = 1 and R0 = 1, r̈e = 0, so that the envelope does not develop oscillations.
Comparing the temporal evolution of re(t) with the data from MD simulations, we see that there is a reasonably good

agreement between the two, especially for short times (Fig. 13).

5.4. The test particle model

We now study the behavior of test particles subject to a gravitational potentialψe(t) produced by an oscillating uniform
mass distribution,

ρ(t) =
1

πr2e (t)
Θ(re(t)− r). (87)

Solving the Poisson equation we find

ψe(r, t) =

 r2 − re(t)2

2re(t)2
+ ln(re(t)) for r ≤ re(t)

ln(r) for r ≥ re(t).
(88)

This means that the dynamics of a test particle i which at t = 0 was at ri(0) and had an angular momentum pθi will be
governed by the equation of motion

r̈i(t)−
vθi

2

ri3(t)
=


−

ri(t)
r2e (t)

for ri(t) ≤ re(t)

−
1

ri(t)
for ri(t) ≥ re(t)

(89)

where re(t) is the solution of Eq. (86).
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Fig. 13. Evolution of the envelope re according to Eq. (86) (solid line) compared to MD simulation (points) for a 2D self-gravitating systemwith R0 = 1.5.
A reasonably good agreement is seen for short times.

Fig. 14. Poincaré sections for a 2D self-gravitating system with (a) R0 ≈ 1 and (b) R0 = 0.9. While in (a) the dynamics is completely regular in (b) we
see the formation of a resonance island. We have considered vθi = 0 so that only the radial velocity appears in the Poincaré sections.

We integrate the equations of motion (89) for 15 test particles, uniformly distributed at t = 0, ri(0) ∈ [0, 1] and
vi(0) ∈ [0, vm], with vm =

√
R0. The Poincaré section is constructed by plotting the position and velocity of each test

particle when the envelope re(t) is at its minimum value, see Fig. 14.
In Fig. 15 we compare the phase space structure of the test particle dynamics to a snapshot of the phase space obtained

using MD simulation, after the qSS has been established. We see that the test particle dynamics allows us to calculate the
maximum energy that a particle of a self-gravitating system can gain from the density oscillations.

5.5. The core–halo distribution

The particles which enter in resonance with the core density oscillations escape from the central region producing a
tenuous halo. The halo formation progressively dampens the oscillations, bringing the resonances closer and closer to the
core. When the qSS is established, we expect that the particle distribution will, once again, correspond to the core–halo
distribution, given by

fch(r, v) = ηΘ(ϵF − ϵ(r, v))+ χΘ(ϵ(r, v)− ϵF )Θ(ϵh − ϵ(r, v)), (90)

where ϵF and χ are calculated using conservation of energy and norm and ϵh is determined by the test particle dynamics,
see Fig. 15. Integrating the core–halo distribution over v, we obtain the particle density in the qSS state. Substituting this
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Fig. 15. Poincaré section of test particles (a) moving in an effective potential given by Eq. (88) and the phase space of MD simulation at t = 2000 with
N = 20,000 (b). The virial number isR0 = 0.694. Comparing the two phase spaces, we see that the test particle dynamics allows us to accurately determine
the maximum energy ϵh that a particle of a 2D self-gravitating system can gain from the density oscillations. In this particular case, ϵh = ln(rh), where rh
is the maximum position reached by a test particle, as indicated in the panel (a).

Fig. 16. Distributions in (a) position and (b) velocity for a 2D self-gravitating system with R0 = 0.25. The solid line corresponds to the prediction of the
core–halo distribution function, Eq. (90), and points are results of MD simulation with N = 10,000 particles averaged over times t = 2000 to t = 2100.
Error bars in the distributions are comparable to the symbol size.

into Poisson equation (65), we obtain the equation for the gravitational potential of a 2D cluster

∇
2ψch(r) = 4π2


η(ϵF − ψch(r))+ χ(ϵh − ϵF ) for ψch(r) < ϵF ,
χ(ϵh − ψch(r)) for ϵF ≤ ψch(r) ≤ ϵh,
0 for ψch(r) > ϵh,

(91)

with boundary conditions limr→∞ ψch(r) = ln(r) andψ ′
ch(0) = 0. The system of equations (91) can be solved analytically,

see Ref. [39]. Comparing the marginal distributions predicted by the core–halo theory to the results of MD simulations
(Fig. 16), an excellent agreement between the two is observed.

5.6. Relaxation time

Finally, it is interesting to explore howmuch time τ×(N) a finite system of N particles remains in the qSS before relaxing
to the true thermodynamic equilibrium. To this end, we use the crossover parameter ζ (t), defined as

ζ (t) =
1
N2


∞

0
[N(r, t)− Nch(r)]2dr (92)

whereN(r, t) is the number of particles located inside shells between r and r+dr at time t andNch(r) = 2πNr

fch (r, v) d2v,

where fch (r, v) is the core–halo distribution, Eq. (90). Fig. 17 shows the value of ζ (t) for systems with different numbers
of particles. The panel Fig. 17b shows that if the time is rescaled by τ× = Nγ τD, where γ = 1.35 and τD is the dynamical
time defined by Eq. (64), all the curves fall on a universal curve, indicating the divergence of the crossover time in the
thermodynamic limit. Thus, in the limit N → ∞ a self-gravitating system will remain forever trapped in a nonequilibrium
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Fig. 17. (a) ζ (t) for different numbers of particles in the 2D self-gravitating system. In the inset, we show the fast (N independent) relaxation to the
core–halo qSS after a time t ≈ 2000τD . The system remains in the qSS for a time interval that scales with the number of particles. When the time is
rescaled by τ×(N) all the data in (a) fall on a universal curve (b).

stationary state. Recent simulations performed with discrete particles instead of the concentric shells used in this Report
have lead to exponent γ ≈ 1 [157], which is in good agreementwith the scaling argument presented in Section 2, t×N/ lnN .

5.7. Thermodynamic equilibrium

For a finite number of particles, after a time τ×(N), we expect the system to relax to thermodynamic equilibrium, with

fmb(r, v) = Ce
−β


v2
2 +ψeq(r)


, (93)

where C is the normalization constant. To see that this is the case, we calculate the gravitational potential and the marginal
distributions and compare them to the results of MD simulations. The gravitational potential in equilibriumψeq will satisfy
the Poisson–Boltzmann equation

∇
2ψeq(r) =

d2ψeq(r)
dr2

+
1
r
dψeq

dr
=

4π2C
β

e−βψeq(r), (94)

where β = 1/T is the Lagrangemultiplier used to enforce the conservation of the total energy. The solution of this equation
is given in Ref. [39],

ψeq(r) =
1
2
ln

e2(2E−1)

+ r2

. (95)

Curiously, an isolated 2D gravitational system can only exist at one temperature, T = 1/4, independent of the initial energy.
If such a system is put in contact with a thermal bath, it will either gain energy from the bath and grow without bound or
lose energy and shrink, depending if the temperature of the bath is greater or smaller than T = 1/4, respectively.

Fig. 18 compares the marginal distributions obtained using the MD simulations with the predictions of equilibrium
statistical mechanics. The number density of particles located between [r, r + dr] is

N(r) = 2πNr


d2v fmb(r, v) =
2Ne2(2E−1)r

(e2(2E−1) + r2)2
, (96)

and the number density of particles with velocities between [v, v + dv] is

N(v) = 2πNv


d2r fmb(r, v) = 4Nve−2v2 . (97)

The figure shows a good agreement between the results of MD simulations and BG statistics. However, to reach
thermodynamic equilibrium, it was necessary to run a simulation with N = 10,000 particles for t = 106 dynamical times.
Up to this time, the system remained trapped in a qSS state with the particles distributed in accordance with the core–halo
distribution function fch(r, v), Eq. (90).
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Fig. 18. Equilibrium distributions: (a) position and (b) velocity of a 2D self-gravitating system with E0 = −0.0434. The solid line corresponds to the
equilibrium distributions, Eqs. (96) and (97), and the points are results of MD simulations with N = 10,000 particles at t = 106 .

6. Gravitation in three dimensions

The relaxation of 3D self-gravitating systems is extremely difficult to study. There are two basic problems arising from
the fact that Newton’s gravitational potential has no lower bound, but is bounded from above. The consequence of the
upper bound is that some particles of a self-gravitating system can gain enough kinetic energy to escape the gravitational
field of the cluster. In principle, there is no limit to the particle evaporation since the energy can be constantly supplied
by the two-body collisions [38,61,105] and the gravitational collapse. As a consequence, the Poisson–Boltzmann equation
for a 3D open system has no solutions. Based on cosmological simulations, however, it has been observed that 3D systems
do relax to qSSs [158–160]. There have been a number of phenomenological models proposed to describe the observed
density profiles in such qSS: ‘‘de Vaucouleurs’’, ‘‘Sérsic’’ and ‘‘NFW’’ models [161–168]. These, phenomenological density
distributions, however, lack the theoretical foundation.

The fact that the Poisson–Boltzmann equation does not have a solution indicates that open 3D self-gravitating systems
are intrinsically unstable in the infinite time limit. This instability is a consequence of the binary collisions which lead to a
flux of evaporating particles. On shorter time scales, however, it is possible for a system to relax to a collisionless qSS. Again,
however, the situation in 3D is much more complex than in one and two dimensions [30,34,113–118,120–122]. Significant
evaporation of particles can happen even on very short time scales, leading to a halo that extends all the way to infinity.
At the moment, there is no theory that can account for the particle distribution inside a 3D halo. The theory of parametric
resonances, which was so successful for treating 1D and 2D gravity, cannot be applied in 3D since, in general, there are no
bounded resonant orbits.

Although the particle distribution in a qSS cannot be predicted a priori, we expect that it will have a core–halo structure.
Evaporation should progressively cool down the core region. Statistically only a completely degenerate core can remain
stable in an infinite space— at finite temperature the entropy gainwill always favor particle evaporation. Furthermore, since
the collisionless relaxation is controlled by the Vlasov equation, the phase space density in the core cannot exceed that of
the initial waterbag distribution. We, therefore, expect that the core will be described by a fully degenerate Fermi–Dirac
distribution [38] with the ‘‘spin’’ degeneracy equal to the phase space density of the initial waterbag distribution. The
difficulty, however, is that without knowing the full particle distribution in the halo, we cannot calculate the self-consistent
gravitational potential and close all the equations of the theory.

For a 3D gravitational system of total massM , the gravitational potential in the qSS must satisfy the Poisson equation,

∇
2ψ(r) = 4πGM


f (r, v)d3v, (98)

where f (r, v) is the one particle distribution function. If the potential ψ(r) has a radial symmetry, the particles can be
represented as spherical shells of massm = M/N . This approach greatly facilitates the numerical simulations, and becomes
exact in the thermodynamic limit.

It is convenient to measure all the distances in an arbitrary length unit r0, the time in units of dynamical time,

τD =


r30
GM

, (99)

and the gravitational potential in units of ψ0 = GM/r0. The Poisson equation (98) then reduces to

∇
2ψ(r, t) = 4π


f (r, v, t)d3v. (100)
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Fig. 19. Poincaré sections of a 3D gravitational system, for (a) R0 ≈ 1 and (b) R0 = 0.97. In (a) the orbits are completely integrable, whereas in (b), we
see a resonance island.

For a particle located at r′, ρ(r) = δ(|r−r′|), the Green’s function of the Poisson equation is the usual Newton’s gravitational
potential

G(|r − r′|) = 1/|r − r′|. (101)

This potential diverges at small distances and is bounded from above.We saw already that in 1D and 2D some particles enter
in resonance with the density oscillations and gain a lot of energy. The situation in 3D is evenmore complex — the potential
is bounded from above so that the resonant particles can gain enough energy to completely escape from the gravitational
field of the cluster.

6.1. Test particle dynamics

To get a better idea of the relaxation process which leads to the core–halo formation, we study the dynamics of test
particles moving under the action of an oscillating gravitational potential. Once again we consider particles which at t = 0
were distributed uniformly in the phase space inside a sphere of radius 0 < r ≤ rm and 0 < v ≤ vm. We define the

‘‘envelope radius’’ as re(t) =


5⟨r2⟩
3 , which at t = 0 satisfies re(t) = rm. We will work in dimensionless units and set

r0 = rm. Differentiating twicewith respect to time andperformingmanipulations similar to those for 1D and2Dgravitational
systems, we obtain a differential equation that governs the envelope dynamics,

r̈e +
1
r2e

−
R0

r3e
= 0, (102)

where

R0 = −
2K0

V0
(103)

is the virial number, and K0 and V0 are the kinetic and the potential energy of the initial distribution.
We consider the dynamics of 10 test particles, initially distributed uniformly with positions ri ∈ [0, 1] and velocities

vi ∈ [0, vm],

r̈i(t)−
l2i

ri3(t)
=


−

ri(t)
r3e (t)

for ri(t) ≤ re(t)

−
1

r2i (t)
for ri(t) ≥ re(t),

(104)

where li = |ri(0)× vi(0)| and re(t) evolves according to Eq. (102). Fig. 19 shows the Poincaré sections for two systems with
R0 ≈ 1 and R0 = 0.97. For R0 ≈ 1, the orbits remain integrable, while even a small deviation from the virial condition
results in the appearance of a resonance island. For slightly larger or smaller R0 the resonant orbit becomes unbounded.

6.2. Lynden-Bell theory for a 3D self-gravitating system

It is interesting to consider the predictions of the LB theory for a 3D self-gravitating system. In this case the one-particle
distribution function becomes

flb(r, v) =
η

eβ[ϵ(r,v)−µ] + 1
, (105)
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Fig. 20. (a) β and (b) µ as a function of rw , for a 3D self-gravitating system. While the inverse temperature parameter β diverges in (a), the chemical
potential µ in (b) asymptotically goes to a finite value µ ≈ −0.41, as rw increases. The virial number is R0 = 1.7.

where η = 9/16π2v3m and ϵ(r, v) = v2/2 + ψ(r). Integrating over the velocities we obtain the density distribution
corresponding the LB stationary state. Substituting this into the Poisson equation allows us to write a self-consistent
equation for the gravitational potential

1
r2
∂

∂r
r2
∂ψ

∂r
= −16π2 η


π

2β3
Li3/2(−eβ[µ−ψ(r)]), (106)

where Lin(x) is the nth polylogarithm function of x. This equation has to be solved numerically and the two Lagrange
multiplier β and µ must be calculated to preserve the number of particles and the energy of the system. The solution of
Eq. (106) is complicated by the open boundary conditions. In practice, wewill solve this equation by enclosing the system in
a spherical box of radius rw and then take the limit rw → ∞. As expected, when rw → ∞, the LB distribution separates into
a completely degenerate core and a very tenuous halo which extends all the way to rw . However, the particle distribution
in the halo is very different from the ones found in MD simulations, see Fig. 21, so that LB theory fails to correctly describe
a 3D self-gravitating system.

6.3. Systems with R0 = 1

If the initial particle distribution satisfies the virial condition R0 = 1, the macroscopic oscillations will be suppressed
and the parametric resonances will not be excited, see Fig. 19. For such initial distributions, we saw that LB theory worked
reasonably well for 1D and 2D gravitational systems. For 3D systems, however, LB theory fails even when R0 = 1. As
rw → ∞, the solution of Eq. (106) requires that β → ∞ (see Fig. 20) and the distribution function approaches the
degenerate limit fcore(r, v) = η1Θ(µ − ϵ) (plus halo particles at infinity). Thus, for an open system, LB theory will always
predict a fully degenerate core [169]. This conclusion, however, is valid only in the asymptotic t → ∞ limit. In this limit,
even small oscillations of the envelope will lead to particle evaporation and result in formation of a cold core. In practice,
however, for R0 = 1 the rate of evaporation is very low, so that the degenerate limit will not be reached in the time of
simulation. To treat this ‘‘short’’ time limit, we can introduce an effective cutoff (a wall) at rw . The precise value of the
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Fig. 21. The (a) mass and (b) velocity distributions of a 3D self-gravitating system in the qSS obtained by MD simulation (symbols) and the LB prediction
(solid line). The wall radius is placed at rw = 104 and the virial number is R0 = 1.7.

cutoff is unimportant, as long as it is not too large 5 ≤ rw ≤ 100. The wall will prevent the particle evaporation and a
complete cooling of the core region. Indeed, the cutoff-LB distribution (cLB) is found to describe reasonably the qSS state for
R0 = 1 [38], see Fig. 22.

7. Non-neutral plasmas

In this chapterwewill analyze qSSs ofmagnetically confined non-neutral plasmas. The non-neutrality condition is crucial
for the plasma to be a long-ranged interacting system — for neutral two component plasmas, Debye screening leads to an
effective short-range interaction potential [79,170,171]. The equilibrium state of neutral plasmas and electrolytes, therefore,
can be studied using the usual Boltzmann–Gibbs statistical mechanics [101].

Many different applications, such as heavy ion fusion, high-energy physics, communications, materials processing, and
cancer therapy, depend on the physics of transport of intense charged-particle beams. The goal is to avoid the heavy particle
losses produced by the parametric resonances [47,172], which can lead to halo formation that is detrimental to the beam
quality, and can result in damage to the accelerator walls. A theory which can quantitatively predict this effect is, therefore,
highly desirable for a better understanding of the physics of beam transport [50,144,173–175].

In general, the dynamics of the beams is influenced by multiple effects, including the mismatched envelope (rms
radius of the beam) [50–52,144,176], movement outside the axis of symmetry [177–182], nonuniformities in the beam
distribution [149,183–185], and the image forces due to the surrounding conducting walls [186–188]. Of all these, the
study of parametric resonances resulting from the transverse beam oscillations has attracted the most attention. Envelope
mismatch is believed to be the main cause of the halo formation in space-charge dominated beams [189]. In this section we
will show that the mismatch of the beam envelope is closely related to the virial condition – similarly to the one found for
self-gravitating systems – and that the final qSS is, once again, described by the core–halo distribution function.

7.1. The model

Our system consists of a beam of charged point particles, confined by an external magnetic field Bext(r) = B0ẑ,
propagating along the axial ẑ direction, with velocity Vb. The beam has a characteristic radius rb and is surrounded by a
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Fig. 22. The mass (a) and velocity (b) distributions in the qSS of a 3D self-gravitating system obtained by MD simulation with N = 2× 104 (symbols) and
the distributions obtained using LB theory with a cutoff at rw = 10 (solid line), for an initially virialized waterbag distribution, R0 = 1.

Fig. 23. Charged particle beamof characteristic radius rb propagating along the longitudinal direction ẑwith constant velocityVb . The particles are confined
by a magnetic field Bext

= B0 ẑ, and the beam is isolated from the external environment by a conducting cylindrical wall located at rw .

conductive cylindrical wall of radius rw .4 We assume that the beam has axial symmetry and that the motion along the
ẑ direction is uniform. Consequently, we consider that the relevant dynamics takes place only in the transverse plane
‘‘⊥’’.5 Under these conditions, the time t can be replaced by the longitudinal coordinate s, by means of a canonical
transformation of the original Hamiltonian, where s = Vbt and Vb = βbc , c being the speed of light in vacuum, as illustrated
in Fig. 23.

The charge of the beam particle is Zie, where Zi is the valence and e is the electron charge. Furthermore, assuming that the
transverse velocity of the beam particles is much lower than the longitudinal velocity, the dynamics along the transverse
plane may be considered non-relativistic. This set of conditions, known as the paraxial approximation, is sufficient to study
narrow and intense charged-particle beams [79].

4 A conducting grounded wall requires that the electric potential at the wall vanishes φs(rw) = 0.
5 We approximate∇

2
≈ ∇

2
⊥
since the variation of the potential along the longitudinal direction is negligible compared to the variations in the transverse

plane. Therefore, in this section, ∇ will be understood to represent ∇⊥ .
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Fig. 24. Change of reference frames: ‘‘O’’ represents the laboratory frame and ‘‘O′ ’’ the Larmor frame.

The electric Es and magnetic Bs fields satisfy Maxwell’s equations [79] and the electric potential the Poisson equation,

∇
2φs

=
1
r
∂

∂r


r
∂

∂r


φs(r, s) = −4πZienb (107)

with boundary conditions φ(rw) = 0 and φ′(0) = 0, where nb is the number density of the particles. The electric potential
is always zero outside the conductive wall, located at rw . The vector potential, ẑAs

z(r, s), produced by the current of charges
ZienbVzb – the longitudinal velocity of the beam, Vzb(r, s), is approximated by Vb – satisfies

∇
2As

z(r, s) = −4πZienbβb. (108)

Comparing Eqs. (107) and (108), we see that the electric and vector potentials are related by

As
z = βbφ

s. (109)

Thus, solving the Poisson equation (107), we find the electromagnetic field acting on each particle,

Es
= −∇φs(r, s), (110)

B = Bext
+ βb∇φ

s(r, s) × ẑ. (111)

As a matter of convenience, [47,79], we study the system in the Larmor frame which rotates in relation to the laboratory
with a constant angular frequencyΩL = −ZieB0/2γbmc , where γb = (1−β2

b )
−1/2 andm is themass of a particle, see Fig. 24.

We define the dimensionless potential as

ψb(r, s) =

Zie/γ 3

b mβ
2
b c

2φs(r, s). (112)

In the Larmor frame, the focusing due to the magnetic field Bext , results in a radial confining force. The change to the Larmor
frame is accomplished by a change of coordinates (r, θ) → (r ′, θ ′), where

r ′
= r,

θ ′
= θ −ΩL s, (113)

as shown in Fig. 24. The evolution of the distribution function f (r, v, s) in the Larmor frame satisfies the Poisson–Vlasov
systems of equations [79],

∂ f
∂s

+ v · ∇f +

−κ2

z r − ∇ψb(r)

· ∇vf = 0, (114)

∇
2ψb(r) = −2πKn(r, s), (115)

where n(r, s) =

f dv is the density profile of the beam, κz = |ΩL|/βbc is the focusing field parameter, and K =

2Z2
i e

2Nb/γ
3
b β

2
bmc2 is the perveance whichmeasures the intensity of the beam. The number of particles per unit axial length
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is Nb, r is the position vector in the transverse plane, and v ≡ dr/ds is the dimensionless transverse ‘‘velocity’’. The problem
then reduces to studying the dynamics of 2D pseudo-particles of charge q =


K
Nb

confined by an external parabolic potential

U = κzr2/2. The interaction potential between the particles isµb(r, r′) = q2Gb(r, r′)where Gb(r, r′) is the Green’s function
of the two-dimensional Poisson equation. For conducting boundary conditions at rw , the Green’s function can be calculated
using Kelvin’s inversion theorem [147,190]. The Hamiltonian for the effective 2D system is then

Hb(ri, θi, vri , vθi) =

Nb
i=1


v2ri

2
+
v2θi

2r2i


−

q2

2

Nb
i,j=1

Gb(ri, rj)+
κ2
z r

2
i

2
. (116)

Starting from an arbitrary initial distribution, the system of particles can now be simulated to obtain the final qSS.
If the system has azimuthal symmetry, the simulations can be simplified further. In the thermodynamic limit the Vlasov

mean-field description becomes exact, so that each particle moves under the action of the mean electromagnetic potential
produced by all the other particles. To approach the mean-field limit with a finite number of particles we can uniformly
smear the charge of each particle over a circle or radius ri corresponding to its position. This is the same approximation that
was used to efficiently simulate 2D and 3D gravitational systems. Using Gauss’s law, the equation of motion for the radial
coordinate of a particle i becomes

r̈eff (ri) =
v2θi

r3i
+

K
Nb

neff (ri)
ri

− κ2
z ri, (117)

neff (ri) =

Nb
j=1

Θ(ri − rj), (118)

where neff is the number of particles with r < ri and vθi = r2i θ̇i. Since the force acting on each particle is radially symmetric,
vθi is a conserved quantity determined from the initial condition, vθi(t) = vθi(0). The effectiveHamiltonian in themean-field
limit can then be written as

Hb
eff (ri, θi, vri , vθi) =

Nb
i=1


v2ri

2
+
v2θi

2r2i
−

K
Nb

neff (ri) ln


ri
rw


+
κ2
z r

2
i

2


. (119)

7.2. The envelope equation

We define the beam envelope as rb ≡

2⟨r2⟩

1/2. Differentiating twice with respect to s gives us the beam envelope
equation,

r̈b + κ2
z rb −

K
rb

−
ε2(t)
r3b

= 0, (120)

where ε(t) is the emittance, Eq. (83). This equation is exact; however, the dynamics of ε(t) is unknown. For short times we
will set it equal to the initial emittance ε(t) = ε(0) ≡ ε0.

The beam envelope will not oscillate if r̈b = 0. This defines the matched beam radius,

r∗

b =


K
2κ2

z
+


K 2

4κ4
z

+
ε20

κ2
z

1/21/2

, (121)

which is equivalent to the virial condition, Eq. (45).
If the initial beam is launched with the radius rb = r∗

b , it will not develop significant oscillations and will not suffer
emittance growth. However, in practice it is virtually impossible to launch a beam precisely at this radius. We, therefore,
define the virial parameter as

µ(t) ≡ rb(t)/r∗

b , (122)

which measures how far the initial beam deviates from the virial condition.

7.3. Initial conditions

At t = 0 the Nb particles are distributed uniformly in phase space with ri ∈ [0, rm] and velocities vi ∈ [0, vm],

f0(rm, vm) = ηΘ(rm − r)Θ(vm − v). (123)
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It is convenient to measure all length in units
√
ε0/κz and ‘‘time’’ (longitudinal length) s in units of 1/κz . The transverse

velocities will then be measured in units
√
ε0κz . In these dimensionless units the matched beam radius becomes

r∗

b =


K ∗

2
+


K ∗2

4
+ 1

1/21/2

, (124)

where K ∗
= K/ε0κz . Unlike for self-gravitating systems, for which only the virial number determined the dynamical

evolution, in the case of beams we have two dimensionless parameters, K ∗ and µ0 = µ(0).
In the reduced units, ε0 = 1 and

vm = 1/rm, (125)

where rm = rb(0) and the emittance growth is εqSS .
The potential ψb

wb associated with the initial distribution given by Eq. (123) can be obtained by solving the Poisson
equation (115),

d2ψb
wb(r)
dr2

+
1
r
dψb

wb(r)
dr

=


−2K ∗/r2m for r ≤ rm,
0 for rm < r ≤ rw,

(126)

with the boundary conditions ψb
wb(rw) = 0 and ψ ′b

wb(0) = 0. The solution is

ψb
wb(r) =

−K ∗


(r2 − r2m)

2r2m
+ ln(rm/rw)


for r ≤ rm,

−K ∗ ln(r/rw) for rm ≤ r ≤ rw.
(127)

For the initial waterbag distribution (123), the initial energy of the system is

E0(K ∗, rw;µ0) =
v2m

4
+

r2m
4

+
K ∗

8
−

K ∗

2
ln

rm
rw


, (128)

with rm and vm defined by Eqs. (122) and (125), respectively.6

7.4. Lynden-Bell theory for a charged particle beam

We will first analyze the situation in which the beam envelope at t = 0 is matched, i.e. satisfies the virial condition
µ0 = 1. From our experience with self-gravitating systems, we expect that in this case LB statistics should work reasonably
well. The electromagnetic potential should then satisfy the Poisson equation (115), with the charge density obtained by
integrating the distribution function, Eq. (19), over velocities,

d2ψb
lb(r)

dr2
+

1
r
dψb

lb(r)
dr

= −
4π2K ∗

β
ln


1 + e

−β


ψb
lb(r)+

r2
2 −α


. (129)

The Lagrange multipliers α and β are determined using energy and norm conservation. The solution to this equation is
obtained numerically and the resulting marginal distributions

N(r) = 2πNbr


d2vflb(r, v) (130)

and

N(v) = 2πNbv


d2rflb(r, v) (131)

are compared with the results of MD simulations in Fig. 25, showing a very good agreement.

6 If the initial distribution is nonuniform, the functional dependence between vm and rm will change.
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Fig. 25. Number density of particles in (a) position and (b) velocity for a system initially in awaterbag distributionwithµ0 = 1, where K ∗
= 1 and rw = 4.

The solid line corresponds to the distribution obtained using LB theory, Eq. (19), and the points are results of MD simulation with Nb = 50,000 particles,
averaged over 100 dynamical times after the system reached a qSS. Error bars in the distributions are comparable to the symbol size.

Fig. 26. Poincaré section of the test particles (a) and phase space of the N-body MD simulation (b) using the Hamiltonian (119) at t = 200, for an initial
distribution with µ0 = 1.5 and K ∗

= 1. The test particle dynamics allows us to determine the maximum position rh reached and, consequently, the

maximum energy ϵh that a particle may attain, ϵh =
r2h
2 − ln rh

rw
.

7.5. The test particle model

In practice, it is very difficult to launch a perfectlymatched beam. Inmost caseµ0 ≠ 1 and parametric resonances will be
excited. To study these, we once again appeal to themodel of non-interacting test particlesmoving in an oscillating potential
ψe(rb(t)). We consider 15 test particles initially distributed uniformly with positions ri ∈ [0, rm] and velocities vi ∈ [0, vm].
The equation of motion for the particle i is

r̈i(t)−
vθi

2

ri3(t)
+ ri(t) =


K ∗

ri(t)
r2b (t)

for ri(t) ≤ rb(t)

K ∗
1

ri(t)
for ri(t) ≥ rb(t),

(132)

where rb(t) evolves according to (120) with ε(t) = ε0.
Comparing the result of the test particle dynamics with the full N-body MD simulation, shown in Fig. 26, we see that the

reduced test-particle model predicts accurately the location of the resonant orbit. This allows us to calculate the maximum

energy ϵh that a particle can gain from the parametric resonance, ϵh =
r2h
2 − ln rh

rw
, where rh is the maximum distance from

the origin reached by a test particle of the initial distribution, see Fig. 26(a). Phenomenologically it has been found [50]
that for beams with large space charge K ∗, rh is simply related to the virial parameter and the matched envelope radius,
rh = 2r∗

b (1 + ln(µ0)).
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Fig. 27. Regions of phase space used in the solution of Eq. (115).

7.6. The core–halo distribution

For mismatched beams (µ0 ≠ 1), we expect that the qSS distribution function will, once again, be of the core–halo type,

fch(r, v) =
1
π2

[Θ(ϵF − ϵ(r, v))+ χΘ(ϵh − ϵ(r, v))Θ(ϵ(r, v)− ϵF )] . (133)

It is convenient to divide phase space into three regions, I , II , and III (Fig. 27), corresponding respectively to r < rc ,
rc < r < rh, and rh < r < rw , where rc is the core radius. The particle density

n(r) =


fch(r, v)d2v (134)

in the three regions can be written as

nI(r) =
2
π

[ϵF + χ(ϵh − ϵF )− VI(r)] , (135)

nII(r) =
2χ
π

[ϵh − VII(r)] , (136)

and nIII(r) = 0, where Vi(r) ≡ ψchi(r) + r2/2, i = I, II, III is the total potential that takes into account the effects of
the interaction between particles as well as the contribution of the external field. The parameter rc is determined by the
condition V (rc) = ϵF . Themaximum halo extent rh is calculated using test particle dynamics, see Fig. 26(a). Bothψchi(r) and
Vi(r) and their first derivativesmust be continuous at r = rc and r = rh. These conditions, togetherwith the Poisson equation
(115), provide a closed set of equations for the potential in different regions. The equations can be solved analytically,
allowing us to calculate the distribution function in the qSS [191]. A good agreement between theory and MD simulation is
shown in Fig. 28.

The theory also allows us to predict the emittance growth, a quantity which is of primary importance for beam physics.
Comparing the predictions of the present theory with the results of MD simulations, an excellent agreement between the
two is observed, Fig. 29. The theory is also in excellent agreement with the experimental measurements [50].

The fraction of particles that escape from the core region to form a high energy halo can be obtained by integrating the
distribution function between the energies ϵF and ϵh, Fh = (χ/π2)


Θ(ϵh − ϵ)Θ(ϵ − ϵF )d2rd2v (Fig. 30). We find

Fh = 1 − 2Ar2c I2(αcrc), (137)

where In(z) is the modified Bessel function of the first kind of order n.

7.7. Relaxation time

Since plasmas contain astronomical numbers of charged particles, relaxation to Boltzmann–Gibbs thermodynamic
equilibrium will not happen on laboratory time scale. From the purely theoretical stand point, however, it is interesting
to study what would happen if the number of particles can be reduced. This can be easily achieved on computer, if not in
practice. We thus define a crossover parameter

ζ (t) =
1
N2


∞

0
[N(v, t)− Nlb(v)]

2dv (138)
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Fig. 28. Particle distribution for a mismatched beam, with µ0 = 1.5 and K ∗
= 1. Points are results of MD simulation with N = 5 × 104 , averaged over

100 dynamical times in the qSS, and the line shows the prediction obtained using the core–halo distribution, Eq. (134). Error bars in the distributions are
comparable to the symbol size.

Fig. 29. Emittance growth, ε/ε0 , as a function of the initial virial parameter µ0 predicted by the core–halo theory (solid line) and compared with the MD
simulations (points) for K ∗

= 1.

Fig. 30. Fraction of particles occupying the halo, Eq. (137), as a function of the initial mismatch µ0 , for K ∗
= 1.

where N(v, t) is the number of particles with velocity in the interval [v, v + dv] at simulation time t , and Nlb(v) is given
by Eq. (131). The LB distribution is used in the definition of ζ (t) because we consider cases when the virial condition is
initially satisfied. The value of ζ (t) should tend toward its asymptotic value, ζeq, as the system approaches thermodynamic
equilibrium. This value is given by

ζeq =
1
N2


∞

0
[Neq(v)− Nlb(v)]

2dv, (139)
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Fig. 31. (a) ζ (t) for different numbers of particles in the system. When the dynamical time τD is rescaled by τ× , all points in (a) converge to a universal
curve (b). In this case, the asymptotic value of ζ is ζeq ≈ 0.08. The simulations were performed with explicit particles with initial distribution satisfying
the virial condition, µ0 = K ∗

= 1.

where Neq(v) = 2πNv

fmb(r, v) dr and fmb(r, v) is the equilibrium distribution function. The dynamic time scale is set

to τD = κz . If the simulation time is scaled with τ× = Nγ τD, where γ = 1.3, all curves fall on the same universal curve.
This shows that in thermodynamic limit the crossover time diverges as N1.3τD (Fig. 31). The result is very similar to the one
found in self-gravitating systems. Recently a theoretical model based on the Chandrasekhar collisional mechanism has been
proposed to account for such large crossover time. The theory predicts that the most important factor in determining the
exponent γ is the system dimensionality [192,193].

7.8. Thermodynamic equilibrium

After the crossover time τ×(N), during which the plasma remains trapped in an out of equilibrium qSS, it should relax
to the thermodynamic equilibrium in which the particle density and velocity distributions should be given by the usual
Boltzmann–Gibbs statistical mechanics

n(r) = Ce
−β


ω(r)+ r2

2


(140)

and

n(v) =
β

2π
e−

β|v|2
2 , (141)

where C is the normalization constant, β = 1/T is the Lagrange multiplier for conservation of energy, and ω(r) is the
potential of mean force [101]. For large number of particles, the correlations become unimportant and ω(r) ≈ ψ(r). The
potential ψeq must then satisfy the Poisson–Boltzmann equation,

d2ψeq(r)
dr2

+
1
r
dψeq(r)

dr
= −

4π2K ∗C
β

e
−β


ψeq(r)+ r2

2


(142)

with the boundary conditions ψeq(rw) = 0 and ψ ′
eq(0) = 0. The solution to this equation can be obtained numerically. In

Fig. 32 we compare the predictions of the Boltzmann–Gibbs statistical mechanics with the results of MD simulations. The
computer runs were performed with not too many particles to allow the system to relax to equilibrium within reasonable
CPU time. Fig. 32 shows the marginal distributions N(r) = 2πrn(r), and N(v) = 2πvn(v) with n(r) and n(v) given by
Eqs. (140) and (141). As expected, after a sufficiently long time the system relaxes to the thermodynamic equilibrium.

8. The Hamiltonian mean field model

The gravitational and plasma systems studied up to now are of great practical importance. From the perspective of
statisticalmechanics, however, they have a serious drawback— they donot exhibit a phase transition. In the last two sections
of this review we will consider two systems with long-range forces which do show a spontaneous symmetry breaking. In
particular, we are interested to explore how the phase transitions between the qSSs differ from the usual equilibrium phase
transitions.
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Fig. 32. Distribution in (a) position and (b) velocity for a systemwith E0 = 1.597. The solid line represents the equilibrium resultsN(r) andN(v), obtained
using the Maxwell–Boltzmann distribution, and the points are the results of molecular dynamics simulations with N = 1000 particles. A fourth-order
symplectic integrator with constant step size of dt = 10−2 was used for the molecular dynamics [194].

The first system that we will study is the Hamiltonian Mean Field (HMF) model. The HMF is a mean-field version of the
XY -model, in which all spins interact with each other [195,196]. It has become a paradigm of a system with long-range
interaction [197–200], and is especially interesting due to its phase transition. For one-dimensional systems with short-
range forces the Mermin–Wagner theorem prohibits spontaneous symmetry breaking in 1D [201]. The phase transition in
the HMF is only possible because of the infinite range interaction between the spins [202,203]. The HMF model can also be
considered a simplified representation of a one-dimensional self-gravitating [204] or Coulomb system [205] on a ring, and
has some similarity with the Colson–Bonifacio model of a single-pass free electron laser [206–209].

8.1. The model

The HMFmodel can be interpreted in terms of interacting spins or as particles confined to move on a circle of radius one.
The particle interpretation is more convenient for studying the dynamics of this model, so we will adopt it for most of our
discussion. The dynamics of N particles of the HMF is governed by the Hamiltonian [196]

H =

N
i=1

p2i
2

+
γ

2N

N
i,j=1


1 − cos(θi − θj)


, (143)

where θi is the coordinate and pi the conjugatemomentumof the ith particle, and γ is a parameter that controls the intensity
of the interaction. The sign of γ determines the type of coupling between the particles: if γ > 0, the interaction is attractive
and the coupling is ferromagnetic; if γ < 0, the interaction is repulsive and the coupling is antiferromagnetic.

TheHamiltonian (143) is a simplification of a one-dimensional gravitational or a Coulomb systemwith periodic boundary
conditions and a neutralizing background. For example, consider a system formed by N particles distributed along a ring of
unit radius, i.e. with position θ ∈ [−π, π ]. The Poisson equation is

∇
2ψ(θ) = ξ

N
i=1


δ(θ − θi)−

1
2π


(144)

where ξ depends on the system under consideration, and ψ(−π) = ψ(π), ψ ′(−π) = ψ ′(π) = 0 if θi = 0, ∀ i. In the
gravitational case ξ = 4πGm, where G is the gravitational constant,m = M/N is the particle mass andM the total mass. For
the Coulomb case, ξ = −q/ε0, where q = Q/N is the charge density, Q the total charge and ε0 the vacuum permittivity. The
term 1/2π represents the uniform neutralizing background which is necessary both for Coulomb and gravitational systems
with periodic boundary conditions.

Expressing the Dirac delta in its Fourier representation, δ(θ − θi) =


n exp[ i n(θ − θi)]/2π and integrating the Poisson
equation, the potential produced by N particles is found to be

ψ(θ) = ξ

N
i=1

∞
n=1


1 − cos(n(θ − θi))

πn2


. (145)

The potential is normalized so that ψ(0) = 0 when θi = 0, ∀i. Truncating the series at n = 1 and taking γ /N = ξ/π , we
recover the potential of the HMF model.
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We will consider the ferromagnetic HMF model. Rescaling time, we can set γ = 1. The Hamiltonian (143) can then be
written as

H =

N
i=1

p2i
2

+
1
2N

N
i,j=1

(1 − cos θi cos θj − sin θi sin θj), (146)

or

H =

N
i=1

p2i
2

+
1
2

−
1
2N


N
i=1

cos θi

2

−
1
2N


N
i=1

sin θi

2

. (147)

The order parameter of the system is the magnetization per particle, M = (Mx,My), which measures how ‘‘bunched’’ is
the particle distribution. IfM = 0 the particles are uniformly distributed over the ring. The components of themagnetization
are

Mx = ⟨cos θ⟩ =
1
N

N
i=1

cos θi (148)

and

My = ⟨sin θ⟩ =
1
N

N
i=1

sin θi. (149)

The energy per particle, E = H/N , can be written as

E =
⟨p2⟩
2

+
1 − M2

x − M2
y

2
, (150)

and the one particle energy is

ϵ(θi, pi) =
p2i
2

+ 1 − Mx cos(θi)− My sin(θi). (151)

If the initial distribution is symmetric in θ , then My = 0, and in the thermodynamic limit, it will remain so throughout the
evolution [25]. For now we will only consider symmetric distributions and setMy(t) = 0.

8.2. Thermodynamic equilibrium

Classical statistical mechanics provides a prediction for the thermodynamic equilibrium of the HMF model [196]. In
this subsection, we shall briefly describe the results in the microcanonical ensemble. A more extensive treatment of the
equilibrium state of the HMF model can be found in Ref. [7].

Themicrocanonical ensemble is defined by the surface of constant energy E in the 2Nd-dimensional configuration space,
d being the number of degrees of freedom of each particle (d = 1 for the HMF),

Ω(E,N) =

 π

−π

dθ


∞

−∞

dp δ(H(p, θ)− E), (152)

where θ andp areN-dimensional vectors representing the positions and velocities of allN particles that compose the system:
θ = (θ1, θ2, . . . , θN) and p = (p1, p2, . . . , pN). Thus, we also write dθ =

N
i=1 dθi and dp =

N
i=1 dpi.

The Boltzmann entropy per particle is s =
1
N lnΩ which is calculated to be [7,210]

s(E) =
1
2
(ln 4π + 1)+ sup

M


1
2
ln


E −
1 − M2

2


−

M2

2E − 1 + M2
+ ln I0


M

2E − 1 + M2


(153)

where In(z) =

dθ cos nθ exp(z cos θ) is the modified Bessel function of the first kind. The curve s(E) is shown on Fig. 33.

The equilibrium magnetization is obtained by solving the equation

I1


M
2E−1+M2


I0


M
2E−1+M2

 = M, (154)

and is plotted as a function of E in Fig. 34. Finally, Fig. 35 shows the inverse temperature β = 1/T as a function of E . These
figures indicate a second-order phase transition between ferromagnetic and paramagnetic states at Ec = 0.75.
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Fig. 33. Microcanonical entropy as a function of the mean energy for the HMF model.

Fig. 34. Equilibrium magnetization as a function of the mean energy E for the HMF.

Fig. 35. The inverse temperature β = 1/(2E − 1 + M2) as a function of the mean energy E for the HMF. The sharp corner at E = 0.75 indicates a
second-order phase transition.

8.3. Nonequilibrium quasi-stationary states

The results shown in Section 8.2 are valid if the HMF is able to relax to thermodynamic equilibrium. However, as we have
seen throughout this report, in thermodynamic limit systemswith long-range interactions do not reach the equilibrium, but
become trapped in a qSS, the lifetime of which diverges with the number of particles [102]. Thus, in practice the equilibrium
state will never be achieved by the HMFmodel with a large enough number of particles. To explore the properties of the qSS
and the possible phase transitions between the different nonequilibrium states, we use MD simulations. In this report we
focus on simulations with initial distributions of the one-level waterbag type — Eq. (155); for results of studies of the qSSs
of the HMF model using other types of initial distributions, see for example Refs. [211–213].
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At t = 0 the particles are distributed in accordance with the one-level waterbag distribution,

f0(θ, p) = ηΘ(θm − |θ |)Θ(pm − |p|), (155)

whereΘ(x) is the Heaviside step function. The constants η (density), θm (maximum value of θ ) and pm (maximum value of
p) are determined by the normalization of the distribution, initial magnetization (M0) and mean energy (E ), respectively,

1 =

 π

−π

dθ


∞

−∞

dp f0(θ, p), (156)

M0 =

 π

−π

dθ


∞

−∞

dp f0(θ, p) cos θ, (157)

and

E =

 π

−π

dθ


∞

−∞

dp f0(θ, p)
p2

2
+

1 − M2
0

2
. (158)

These lead to

η =
1

4θm pm
, (159)

M0 =
sin θm
θm

, (160)

and

pm =


3 ( 2E − 1 + M2

0 ). (161)

To simulate a system composed of N particles, we use two vectors of dimension N/2, where the ith component of the
first vector represents the angle θi of the ith particle, and similarly the ith component of the second vector is themomentum
pi of the respective particle. As the initial condition, each θi and pi take a random value between [−θm, θm] and [−pm, pm],
respectively. For each of these particles, we consider that there exists a particle in a symmetrical position in phase space:
θi+N/2 = −θi and pi+N/2 = −pi, which ensures thatMy(t) = 0∀ t and increases the simulation speed — since the dynamics
is symmetric, we only need to integrate the motion of half of the particles.

The trajectory of each particle is governed by the equation of motion θ̈i = ṗi = −∂H/∂θi, or

θ̈i = −
1
N

sin θi
N
j=1

cos θj +
1
N

cos θi
N
j=1

sin θj

= −Mx sin θi + My cos θi
= −M sin θi. (162)

The numerical integration is implemented using a fourth-order symplectic integrator [214], available online from
E. Hairer [215]. To control the numerical precision, the error in conservation of energy per particle E , given by Eq. (150),
was kept at approximately 10−8.

Fig. 36 shows examples of two initial phase space distributions, panels (a) and (c), and the respective distributions after
a qSS have been achieved, panels (b) and (d). The simulations were performed with N = 2 × 105 particles. The initial
magnetization was the same in both simulations, M0 = 0.8 — both initial waterbags had the same θm. The pm’s for the two
distributions were different corresponding to energies (a) E = 0.7 and (c) E = 0.45. The two initial conditions lead to
different phases: the higher energy configuration leads to a paramagnetic (homogeneous) distribution, panel (b), while the
system with lower energy remains magnetized, panel (d).

The final qSS state depends both on the initial magnetization M0 and energy E . This is very different from the state of
thermodynamic equilibrium which depends only on E . The evolution ofM for two systems with the same energy E = 0.62
and different values of M0 is shown in Fig. 37. A system with an initial magnetization M0 = 0.2 quickly relaxes to a
paramagnetic state inwhich itsmagnetization oscillates aroundM = 0. On the other hand, a systemwithM0 = 0.8 remains
magnetized. In both cases, the magnetization M(t) oscillates around its quasi-stationary value Ms, given by the temporal
average of M(t) [211]. However, while the oscillations inside the ferromagnetic state are clearly damped, the amplitude of
oscillations in the paramagnetic state remains finite. The difference between the two states is that inside the ferromagnetic
phase the particles experience a finite mean-field potential produced byM(t)while in the paramagnetic phase the average
potential is zero. Thismeans that inside the ferromagnetic state some particles can enter in resonancewith the oscillations of
the potential and gain energy from the collective motion. This, in turn, will result in Landau damping of the magnetization
and the relaxation to qSS. In the paramagnetic phase, M(t) oscillates around zero, so there is no resonant mechanism to
dampen the oscillations.
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Fig. 36. Phase space of molecular dynamics with N = 2 × 105 . The left column shows the initial distributions with (a) E = 0.7 and (c) E = 0.45. The
initial magnetization is the same for both cases, M0 = 0.8. The right column shows the two final qSS to which the system relaxes: (b) paramagnetic and
(d) ferromagnetic. The simulation time is t = 5000.

Fig. 37. Magnetization as a function of time obtained using MD simulation with N = 106 particles. For the same energy E = 0.62, different initial
magnetizations result in distinct qSS: forM0 = 0.8 ferromagnetic (solid line) and forM0 = 0.2 paramagnetic (dashed line).

The location of the phase transition can be determined by performing simulations for different initial conditions,
varying E for a fixed initial magnetization and calculating Ms. The resulting nonequilibrium phase diagram for the HMF
model is shown in Fig. 38. The results are fairly similar to the nonequilibrium phase diagram found using the Lynden-Bell
entropy [216], yet has some differences, primarily as to the order of the phase transition in some regions, as will be seen
further on in this chapter, and in the location of the transition for higher initial magnetizations.

It is interesting to compare the nonequilibrium phase diagramwith the one found for the equilibrium of the HMFmodel.
In equilibrium, the critical energy Ee = 0.75 separates the paramagnetic (E > Ee) from the ferromagnetic phase (E < Ee)
and is independent of the initial magnetization, as is shown by the dashed–dotted line of zero slope in the phase diagram,
Fig. 38. On the other hand, the transition between the nonequilibrium ferromagnetic and paramagnetic phases occurs at
different values of E , depending on the initial magnetization. This transition is represented by a solid line. The shaded
region is the forbidden zone — since the minimum kinetic energy is zero, M0 determines the minimum allowed energy
per particle Emin = (1 − M2

0 )/2. The diagram also shows a region in which the nonequilibrium order–disorder transition
is not well defined: the wide, shaded line around the critical line for M0 > 0.6, approximately. For these values of M0,
there are regions where the average energy E is above the critical line, yet in which the system remains magnetized. Similar
regions, or reentrances, have also been observed in studies of the HMF model using numerical resolution of the Vlasov
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Fig. 38. Phase diagram of the HMF model. The solid line shows the nonequilibrium transition, obtained using MD simulations. Around this line, for
M0 > 0.6, approximately, the green line shows a region in which the transition is not very well defined, where ‘‘reentrances’’, small ferromagnetic regions
exist above the critical line, inside the paramagnetic region. The equilibrium transition, at E = 0.75, is represented by the blue dash-dotted line. The gray
area represents forbidden initial conditions, delimited by the minimum energy necessary for a given M0 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 39. Example of the envelope θe at t = 0 (red lines) in comparison with an initial waterbag distribution of particles (dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

equation [217] and Lynden-Bell statistics [218]. Finally, while the equilibrium phase transition between the ferromagnetic
and paramagnetic phases is of second order [7], the nonequilibrium phase transition is of first order.

In our studies of self-gravitating systems and plasmas, we saw the importance of the virial theorem to determine when
strong collective oscillations will occur. However, since the potential of the HMF is not a homogeneous function of the
separation between the particles, we cannot directly apply the results of Section 4.4 to determine the virial condition. To
discover underwhat conditions themagnetization of theHMFmodelwill remain constant, so that the parametric resonances
will not be excited, we need to derive a Generalized Virial Condition (GVC). To do this we define the envelope of the particle
distribution of the HMF as [19]

θe(t) =


3⟨θ2(t)⟩. (163)

Note that at t = 0, the envelope coincides with the maximum θ of the initial waterbag distribution, θm, see Fig. 39.
Differentiating Eq. (163) twice with respect to time, we find

θ̈e(t) =
3⟨θ̇2(t)⟩
θe(t)

+
3⟨θ θ̈(t)⟩
θe(t)

−
9⟨θ(t)θ̇(t)⟩2

θ3e (t)
. (164)

As the result of the conservation of energy, see Eq. (150), in the first term, themean square velocity ⟨θ̇2(t)⟩ is 2E −1+M2(t).
To calculate the other averages, we assume the marginal distribution in θ remains uniform in the interval [−θe(t), θe(t)]
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Fig. 40. Comparison of the magnetization M(t) =


i cos θi/N of molecular dynamics (dots) and of the envelope magnetization Me(t) = sin θe(t)/θe(t)
(line). The initial condition is (M0 = 0.75, E = 0.25), off the generalized virial curve.

and zero outside. Using this approximation, the second term of Eq. (164) reduces to

⟨θ θ̈(t)⟩ =
−M(t)
2θe(t)

 θe(t)

−θe(t)
θ sin θdθ

=
M(t)
2θe(t)

[θ cos θ − sin θ ]θe(t)
−θe(t)

=
M(t)
2θe(t)

[2θe(t) cos θe(t)− 2 sin θe(t)]

= M(t) cos θe − M(t)
sin θe(t)
θe(t)

.

The last term of Eq. (164) may be neglected by disregarding the correlations between θ and p. The resulting envelope
equation is

θ̈e(t) =
3
θe
(2E + Me(t) cos θe − 1) , (165)

where we have used

Me(t) =
1

2θe(t)

 θe(t)

−θe(t)
cos θdθ

=
sin θe(t)
θe(t)

. (166)

Fig. 40 compares the evolution of magnetization Me(t), predicted by the Eqs. (165) and (166), with the magnetization
obtained using the fullN-bodyMD simulation.We see an excellent agreement between the theory and simulation, especially
at short times. For longer times, the amplitude of the magnetization observed in the simulations is damped, while in
the envelope oscillations it is not. This occurs because the envelope equation is conservative, while in the simulation the
parametric resonances transfer the energy from the collective oscillations to the individual particles.

The GVC corresponds to the initial condition for which the envelope does not oscillate, so thatMe(t) = M0. This happens
when [19],

2E + M0 cos θm − 1 = 0, (167)

so that θ̈e(t) = 0. Eq. (167) defines the GVC condition which is plotted by the dashed line in the nonequilibrium phase
diagram of Fig. 41.

To test the GVC we perform MD simulations starting with initial waterbag distributions which lie directly on top of the
GVC curve (167).We then plotwith triangles in Fig. 41 the finalmagnetization towhich the system relaxes (note that for both
the initial and the final state the energy is the same).We see that the final stationarymagnetizationsMs are almost exactly the
same as the initial magnetizationsM0. Furthermore, for systemswith initial conditions off the GVC curve, themagnetization



Y. Levin et al. / Physics Reports 535 (2014) 1–60 43

Fig. 41. Phase diagram of the HMF model, exhibiting the generalized virial condition (red dashed line). Triangles represent the stationary magnetization
Ms , determined using MD simulations, of systems with initial conditions on the generalized virial condition. Points A, B and C show the initial state of the
systems corresponding to Fig. 42, and T and B to Fig. 43. The arrows next to A and C indicate that the stationarymagnetization corresponding to these initial
conditions is close to the magnetization of the GVC curve for the same energy E . The continuation of the GVC curve, the blue dotted line for M0 < 0.343,
shows an unstable region. The lower gray area represents inaccessible initial conditions. The black solid line shows the phase transition, and the thick green
line represents the region of reentrances, where some small ferromagnetic regions exist above the critical line.

quickly changes and begins to oscillate around the stationary value corresponding to Ms on the GVC curve with the same
E . For example, points A and C of Fig. 41 each represent initial conditions off the GVC. Let us call the coordinates of these
points (MA

0 , E
A) and (MC

0 , E
C ), respectively. The stationary values obtained using theMD simulations correspond to (MA

s , E
A)

and (MC
s , E

C ). The arrows next to points A and C indicate the values of MA
s and MC

s on the GVC curve to which the system
relaxes. This result is quite surprising, since the distribution functions for the initial and the final state are very different for
systems that do not satisfy the GVC [19]. It is not clear at thismomentwhy the approximate GVC derived using thewaterbag
distribution works so well to predict the final magnetizations for systems which initially are very far from their qSS.

Eq. (167) has an unstable branch, represented by the blue dotted line in Fig. 41. If the initial conditions place the system
exactly on this branch, the magnetization will remain the same, however, any perturbation will make the system evolve
from the line of unstable fixed points toward the line of stable ones, represented by the red dashed curve.

8.4. Lynden-Bell theory for the HMF model

The LB theory has been extensively applied to the HMF model, in some cases showing reasonable agreement with the
results of MD simulations [54,55,219,220]. From the examples of gravity and plasma, however, we expect that LB theory
should only work when the initial distribution satisfies the GVC. For non-virial initial conditions, resonances should drive
the HMF into a qSS with a core–halo particle distribution [19,25].

The LB distribution for the HMF model is given by [55]

f̄lb(θ, p) = η
e−β(p2/2−M[f̄lb] cos θ−µ)

1 + e−β(p2/2−M[f̄lb] cos θ−µ)
, (168)

whereM(f̄lb) =

f̄lb cos θdpdθ . The phase space density η is determined by the initial distribution (159), while β andµ are

the Lagrange multipliers used to preserve the norm and the energy. Solving the system of equations

E =
η

2


p2

1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ +

1 − M(f̄ )2

2
, (169)

1 = η

 
1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ (170)

and

M = η


cos θ


1 + exp(βp2/2 − βM(f̄ ) cos θ − βµ)

−1
dpdθ (171)

we can calculate β , µ and M and obtain the particle distribution predicted by LB for the qSS.
In Fig. 42, we show the marginal distributions, in angle and momentum, obtained using MD simulations, and compare

them with the predictions of LB theory. Three different initial conditions are shown in Fig. 41: panels A and C correspond
to non-virial initial conditions, while panel B shows the initial condition that lies on the GVC. For the non-virial initial
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Fig. 42. Distributions in angle (left column) and momentum (right column) of the stationary states calculated using molecular dynamics (squares) and
LB theory (lines) for three different initial conditions — top row (point A of Fig. 41): M0 = 0.8, E = 0.43 (off the generalized virial curve); middle row
(point B of Fig. 41): M0 = 0.8, E = 0.3297 (on the generalized virial curve); bottom row (point C of Fig. 41): M0 = 0.8, E = 0.25 (off the GVC). In the
MD simulations were used N = 105 and the corresponding distributions were averaged between times t = 15,000 and t = 17,000. Error bars in the
distributions are smaller than the symbol size.

conditions, the distribution functions show a significant deviation from the LB theory. On the other hand, the initial
distribution that satisfies the GVC is found to relax to the qSS which is well described by LB theory, panel B of
Fig. 41.

8.5. The test particle model

The discrepancies between the results of MD simulations and the LB theory, for initial distributions which do not satisfy
the GVC, are a consequence of the parametric resonances which transfer the energy from the collective motion to the
individual particles [19]. To study these resonances we, once again, appeal to the test particle model. The test particles
obey the equation of motion (162), with the magnetization determined by the envelope equation, Me(t). Fig. 43 shows the
Poincaré sections of test particle dynamics – the phase space of the test particles plotted when Me(t) is at its minimum –
compared with the phase space of the HMF, obtained using MD simulation. Two cases are shown: top panels correspond
to the initial conditions that obey the GVC (point B of Fig. 41), while the bottom panels correspond to the initial conditions
slightly off the GVC (point T of Fig. 41). For the initial distribution satisfying the GVC, the test particle dynamics is regular
and no halo is formed. On the other hand, for the non-virial initial distributions (off the GVC), we see resonances which lead
to the halo formation in the HMF.

The mechanism of core–halo formation in the HMF is the same as was discussed for gravitational and plasma systems.
The parametric resonances transfer the energy from the collective motion to the individual particles. This, in turn, dampens
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Fig. 43. Right column: Poincaré sections of test particle dynamics. Left column: phase space of molecular dynamics of N = 105 particles. Top row: initial
conditions on the generalized virial curve (M0 = 0.8, E = 0.3297) — point B of Fig. 41. Bottom row: initial conditions off the generalized virial curve
(M0 = 0.8, E = 0.4) — point T of Fig. 41.

the collective oscillations, forcing the core particles into low energy orbits. Once the oscillations die out completely, the
dynamics of all the particles becomes integrable, and the ergodicity is irreversibly broken. The high energy particles become
trapped inside a halo, while the low energy particles form a degenerate core. The LB theory, which relies on the assumptions
of ergodicity and efficient mixing [104], is not able to describe such qSSs [19].

8.6. The core–halo distribution

The core–halo distribution for the HMF model is [25]

f̄ch(θ, p) = ηΘ(ϵF − ϵ(θ, p))+ χΘ(ϵ(θ, p)− ϵF )Θ(ϵh − ϵ(θ, p)), (172)

with the one-particle energy given by ϵ(θ, p) =
p2

2 + 1 − M cos(θ). To calculate this distribution we need to determine ϵh,
ϵF , Ms and χ . The parameters ϵF and χ are calculated using the conservation of energy and norm, respectively,

E =
1
2


p2fch(θ, p)dpdθ +

1
2
(1 − M2

s ), (173)

1 =


fch(θ, p)dpdθ, (174)

and Ms is given by

Ms =


cos θ fch(θ, p)dθdp. (175)

To calculate ϵh for gravitational systems and plasmas we have used the test particle dynamics to locate precisely the
resonant orbit. However, there is an inherent difficulty in using this approach for the HMF model. The interaction potential
for HMF particles is bounded from above. Depending on the initial conditions, some particles can gain enough energy to
completely escape the confining potential, and start moving in rotating orbits. This makes it difficult to pinpoint the highest
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Fig. 44. qSS magnetization according to the core–halo theory (black dots), LB theory (red line), and as determined by MD simulations with N = 2 × 106

particles (blue squares), averaged over 200 dynamical times in the qSS. For the core–halo theory, ϵh was determined by test particle dynamics. The shaded
region shows where the first order transition predicted by the core–halo theory will occur. Error bars of the MD simulation results are comparable to the
symbol size.

possible energy of the resonant particle. In this sense, the HMF model is similar to 3d self-gravitating systems, for which
particles can escape the gravitational potential of the cluster. Another difficulty with the test particle dynamics is that while
the system is spatially periodic, the envelope equation (165) is not. The oscillations of the envelope may be so large that
the envelope surpasses θe = π , in which case an artificial periodicity must be introduced into the test particle dynamics.
In spite of these difficulties, we can still attempt to use the core–halo distribution with the approximate values of ϵh to
locate the order–disorder transition in this model. Fig. 44 shows the qSS magnetization Ms as determined by the core–halo
theory and the test particle dynamics for various values of E at fixed initial magnetization M0 = 0.4. The core–halo theory
predicts a first order phase transition between the paramagnetic and ferromagnetic phases. In the same figure we also plot
the prediction of LB theory. Although the distribution functions of LB theory deviate significantly from the results of MD
simulations, far from the transition point the theory accounts quite accurately for the values of Ms. LB theory, however,
incorrectly predicts that the phase transition between the qSSs forM0 = 0.4 is of second order [216], while the simulations
find it to be of first order, Fig. 44. Numerical resolution of the Vlasov equation, which may be used to study the dynamics of
the HMF model [221], also shows only first-order transitions in the HMF [217].

At the moment, we lack a general method to calculate the halo energy ϵh for arbitrary values of M0 and E . The envelope
equation and the test particles dynamics allow us to make accurate predictions of ϵh for distributions close to the GVC.
To predict the final particle distributions in the qSS which are far from the GVC, we can use a short MD simulation of the
full HMF model with not too many particles. Since the formation of resonances is a fast process, the ϵh can be defined as
the highest energy achieved by any particle after a few oscillations of M(t). Fig. 45 shows that this procedure leads to an
excellent description of the final qSS.

8.7. Relaxation to equilibrium

For finite N , the lifespan of the qSS is finite, and eventually a crossover to thermodynamic equilibrium occurs [222]. In
equilibrium the particle distribution has the usual Maxwell–Boltzmann form, with the magnetization given by the solution
of Eq. (154) [7]. The relaxation to equilibrium is shown in Fig. 46, which demonstrates the evolution of M for different
values of N . The initial condition (M0 = 0.4 and E = 0.65) is such that the qSS is paramagnetic, while the equilibrium state
is ferromagnetic. For this energy, the equilibrium magnetization is Meq = 0.397, represented by the black dotted line in
Fig. 46. As the figure shows, the fewer particles in the system, the faster the magnetization relaxes to the equilibrium value.
Rescaling time with Nγ , with γ ≈ 1.7, all the curves collapse onto one universal curve. The lifespan of the qSS therefore
scales with τ× ∼ Nγ . The exponent γ ≈ 1.7 is the same as the value found in other studies of the HMF model [102].
However, recent large-scale MD simulations show that for large N , the exponent γ crosses over to γ = 2. This is consistent
with the arguments based on the Balescu–Lenard equation, which suggest that the crossover time from a paramagnetic
(homogeneous) qSS to a ferromagnetic equilibrium state should scale as N2 [223–225].

9. The generalized Hamiltonian mean field model

From the perspective of statistical mechanics, the HMF model is significantly richer than self-gravitating or plasma
systems. Unlike these systems, the HMF possesses a genuine nonequilibrium phase transition between qSSs. The structure
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Fig. 45. Comparison of MD simulation with N = 8 × 105 particles and predictions of the core–halo theory for (M0 = 0.8, E = 0.55). Panel (a) shows
the phase space at t = 10,000 (black dots) and the curves ϵ(θ, p) = ϵh (red line) and ϵ(θ, p) = ϵF (green line). Panel (b) shows the one-particle energy
ϵ(θ, p) (black dots) and the energies ϵh (red line) and ϵF (green line). Panels (c) and (d) show the distributions in θ and p, respectively, of molecular
dynamics (squares) and core–halo theory (lines). The halo energy ϵh was determined using a short MD simulation with N = 1000. The distributions of MD
simulations are averaged over 100 dynamical times in the qSS, and error bars are comparable to symbol size. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 46. Magnetization as a function of time for different values of N: N = 75 × 103 (blue), N = 125 × 103 (green), N = 150 × 103 (magenta)
and N = 175 × 103 (black). The results are from MD simulations with initial magnetization M0 = 0.4, and mean energy E = 0.65. For this energy,
the equilibrium state is ferromagnetic, while the qSS is paramagnetic. The black dotted line represents the equilibrium magnetization, Meq = 0.397,
corresponding to this energy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of the phase diagram of the HMF, however, is still relatively simple, since only paramagnetic and ferromagnetic phases exist.
To explore further the differences between equilibrium and nonequilibrium phase transitions, we introduce a Generalized
HamiltonianMean Field (GHMF)model. In addition to paramagnetic and ferromagnetic phases, thismodel also has a nematic
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phase. In this section we will compare the equilibrium and nonequilibrium phase diagrams of the GHMF and show that in
the new qSS nematic phase, particles are once again distributed in accordance with the core–halo distribution.

9.1. The model

The Hamiltonian of the GHMF model is given by

H =

N
i=1

p2i
2

+
1
2N

N
i,j=1


1 −∆ cos(θi − θj)− (1 −∆) cos(qθi − qθj)


, (176)

where q ∈ N and∆ ∈ [0, 1] [226]. This model is a long-range version of the models studied in Refs. [227,228]. Considering
the particles as a collection of spins, the generalized nematic coupling cos(qθi−qθj) favors either alignment ormisalignment
of spins. For example, for q = 2, it favors either parallel or antiparallel spins. From the perspective of the particle dynamics,
either homogeneous or bunched states are possible, with the number of bunches controlled by the parameter q.

The order parameters for the GHMF model are the generalized magnetizations

M1 =
1
N

N
i=1

cos θ (177)

and

Mq =
1
N

N
i=1

cos(qθ). (178)

Note that the full definition of themagnetizations should include ⟨sin θ⟩ and ⟨sin qθ⟩, analogous to theHMFmodel; however,
we neglect these terms because only initial distributions symmetric in θ will be considered.

The GHMF Hamiltonian (176) can be rewritten as

H =

N
i=1

p2i
2

+
1
2

−
1
2N
∆


N
i=1

cos θi

2

−
1
2N
(1 −∆)


N
i=1

cos(qθi)

2

.

The average energy per particle is

E =
⟨p2⟩
2

+
1 −∆M2

1 − (1 −∆)M2
q

2
(179)

and the one-particle energy is

ϵ(θ, p) =
p2

2
+ 1 −∆M1 cos θ − (1 −∆)Mq cos(qθ). (180)

9.2. Thermodynamic equilibrium

The procedure for obtaining the equilibrium values ofM1 andMq is the same as used for the HMFmodel. Here we present
only the final results; more details can be found in the Ref. [226]. The microcanonical entropy is given by

s(E) =
1
2
ln 2π +

1
2

+ sup
M1,Mq


1
2
ln

2E − 1 +∆M2

1 + (1 −∆)M2
q


− M1a(M1,Mq)

−Mq b(M1,Mq)+ ln


dθ exp[a(M1,Mq) cos θ + b(M1,Mq) cos qθ ]

. (181)

The equilibrium magnetizations correspond to the maximum of the entropy (181) and must satisfy the coupled equations

M1 =


dθ cos θ exp [a cos θ + b cos qθ ]

dθ exp [a cos θ + b cos qθ ]
(182)

and

Mq =


dθ cos qθ exp [a cos θ + b cos qθ ]

dθ exp [a cos θ + b cos qθ ]
, (183)
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Fig. 47. Equilibrium phase diagram (microcanonical ensemble) for q = 2. The transitions are second order (dashed lines), with the exception of a small
region in the center, between two tricritical points (solid circles), in which the transition is first order (solid line). On the right, the three panels show the
equilibrium (MB) angular distributions f (θ) for each phase: paramagnetic (a), nematic (b), and ferromagnetic (c).

where

a(M1,Mq) =
∆M1

2E − 1 +∆M2
1 + (1 −∆)M2

q
, (184)

b(M1,Mq) =
(1 −∆)Mq

2E − 1 +∆M2
1 + (1 −∆)M2

q
. (185)

The roots of Eqs. (182)–(185) determine the equilibrium magnetizations for a given E , q and∆. Fig. 47 shows the phase
diagram for q = 2 [226]. Most transitions are of second order (dashed lines), except for a small region near∆ = 0.5, where
the transition is of first order (solid line). The equilibrium distribution functions f (θ) for the three phases are illustrated in
the right-hand panels of Fig. 47:

(a) the paramagnetic phase (M1 = M2 = 0),
(b) the nematic phase (|M2| > |M1| ≥ 0) and
(c) the ferromagnetic phase (|M1| > 0, |M2| ≥ 0).

The generalizedmagnetizationsM1 (solid line) andM2 (dotted line) as a function of energy, for four values of∆, are shown
in Fig. 48: panels (a), (b) and (c) show second order transitions (nematic–paramagnetic, ferromagnetic–paramagnetic, and
ferromagnetic–nematic, respectively), and panel (d) shows a first order ferromagnetic–paramagnetic transition. In the latter
case, the critical energy is the energy for which the entropies of the ferromagnetic and paramagnetic phases are equal.

9.3. Nonequilibrium quasi-stationary states

Unlike the equilibrium states of the GHMF, which only depends on the initial energy, the qSSs depend explicitly on the
initial particle distribution. In this Report wewill explore how the ordered ferromagnetic and nematic phases arise from the
initially homogeneous particle distribution of the waterbag form,

f0(θ, p) =
1

4πpm
Θ(π − |θ |)Θ(pm − |p|). (186)

In MD simulations, N particles are distributed so that (−π,−pm) ≤ (θi, pi) ≤ (π, pm), where (θi, pi) is the position and
momentum of the ith particle. The average energy per particle is E = p2m/6. The equation of motion for the ith particle is
given by

θ̈i = −
∂H
∂θi

= −∆M1(t) sin θi − 2(1 −∆)M2(t) sin(2θi). (187)

In simulations we observe that the system quickly relaxes into a qSS in which M1(t) and M2(t) oscillate slightly around
their average values (M1 and M2), which depend on E and ∆. Phase transitions are located by performing a series of
simulations varying ∆, for a given value of E , and calculating the average value of M1(t) and M2(t) over a time interval
inside a qSS. The transitions are found to be of first order.
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Fig. 48. Equilibrium solutions of M1 (solid line) and M2 (dotted line) as a function of the mean energy E , exhibiting the (a) nematic–paramagnetic,
(b) ferromagnetic–paramagnetic, (c) ferromagnetic–nematic, and (d) ferromagnetic–paramagnetic phase transitions, at ∆ = 0.2, 0.8, 0.4 and 0.5,
respectively. The transitions shown in (a), (b) and (c) are second order, and the transition in (d) is first order.

9.4. Stability of the homogeneous state

The distribution given by Eq. (186) is a stationary solution of the Vlasov equation. Therefore, a transition between a
homogeneous state and a non-homogeneous state, either ferromagnetic or nematic, can occur only as a result of a dynamical
instability. Therefore, by studying the stability of the homogeneous solution, we should be able to gain an insight into the
structure of the phase diagram of the GHMF model. A similar approach has also been used to study the HMF model in an
external magnetic field [229] and was shown to agree with the predictions of the linear response theory [230].

To explore the stability of the distribution function Eq. (186), we perturb the upper momentum limit, pm, as

pm(t) = p0 +

∞
k=1

Ak(t) cos(kθ). (188)

We define the generalized magnetizationsMn as

Mn(t) = η


∞

−∞

dp
 π

−π

dθ cos(nθ)Θ(pm(t)− |p|)Θ(π − |θ |)

= 2η
 π

−π

dθpm(t) cos(nθ)

= 2η
 π

−π

dθp0 cos(nθ)+ 2η
∞
k=1

 π

−π

dθAk(t) cos(kθ) cos(nθ)

= 2πηAn(t)

=
An(t)
2p0

, (189)

where η = 1/4πp0. Differentiating the term ⟨cos(nθ)⟩ twice with respect to time, we find the equation of motion

M̈n(t) = −n⟨F(θ) sin(nθ)⟩ − n2
⟨p2 cos(nθ)⟩. (190)

The average values are calculated using the distribution function f (θ, p, t) = ηΘ(pm(t)−|p|)Θ(π−|θ |). Thus, the integral
above involves an infinite series of cosines. For our analysis, we consider the series up to k = 4, which will prove to
be sufficient to locate and determine the order of the phase transitions. Performing the averages, we obtain a system of
differential equations for the generalized magnetizations,

M̈1 +


12E − 6 −∆

2


M1 = f1(M1,M2,M3,M4) (191)
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M̈2 + 2 (12E +∆− 7)M2 = f2(M1,M2,M3,M4) (192)

M̈3 + 27(2E − 1)M3 = f3(M1,M2,M3,M4) (193)

M̈4 + 48(2E − 1)M4 = f4(M1,M2,M3,M4), (194)

where

f1 = M1M2


1 −

3∆
2


+ (∆− 1)M2M3 − 3(2E − 1){M3

1 + M2
1M3

+M3[M2(2 + M2)+ 2(1 + M2)M4] + 2M1[M2 + M2
2 + M2

3 + M2M4 + M2
4 ]}, (195)

f2 = ∆(M2
1 − M1M3 + 2M2M4)− 2M2M4 − 12(2E − 1)[M3

2 + M2
3M4

+ 2M1M3(1 + M2 + M4)+ M2
1 (1 + 2M2 + M4)+ 2M2(M2

3 + M4 + M4
2)], (196)

f3 =
3M1

2
[(2 −∆)M2 −∆M4] − 9(2E − 1){M3

1 + 6M2
1M3

+ 3M1[M2(2 + M2)+ 2(1 + M2)M4] + 3M3[M2
3 + 2(M2

2 + M2M4 + M2
4 )]} (197)

and

f4 = 2∆M1M3 − 4(∆− 1)M2
2 − 48(2E − 1)[2M1(1 + M2)M3 + M2(M2 + M2

3 )

+ 2(M2
2 + M2

3 )M4 + M3
4 + M2

1 (M2 + 2M4)]. (198)

Eqs. (191)–(194) have been written so as to separate linear terms on the left hand side and the nonlinear terms on the right
hand side of the equality. To calculate the paramagnetic–ferromagnetic and paramagnetic–nematic phase boundaries, we
analyze the linear stability of M1(t) and M2(t). Neglecting the nonlinear terms (195)–(198), Eqs. (191) and (192) take the
form M̈1,2 = −κ1,2M1,2, whose solutions are exp(±i

√
κ1,2t). Thus, the magnetizations will remain stable only if κ1,2 ≥ 0.

If κ1,2 < 0, the exponents will become real and any infinitesimal fluctuation will experience an exponential growth,
destabilizing the paramagnetic phase. The phase boundary that separates the paramagnetic phase from the ferromagnetic
and nematic phases is, therefore, determined by the conditions κ1 = 0 and κ2 = 0, respectively. According to the Eqs. (191)
and (192), κ1 = (12E − 6 −∆)/2 and κ2 = 2(12E +∆− 7) = 0 and we find the phase boundaries to be

Epf
c (∆) =

6 +∆

12
(199)

and

Epn
c (∆) =

7 −∆

12
, (200)

where E
pf
c and E

pn
c are the boundaries for the paramagnetic–ferromagnetic and paramagnetic–nematic transitions,

respectively.
To determine the order of the phase transitions, we study the fixed points of the system of equations (191)–(194),

including the nonlinear terms (195)–(198). Although the equations are conservative, we expect that in the full GHMF,
the Landau damping will provide dissipation which will drive the system toward the qSS. The dissipation can be included
by adding terms proportional to Ṁn into Eqs. (191)–(194). This will make the system relax to the stable fixed points of
Eqs. (191)–(194), which will then correspond to the generalized magnetizations in the final qSS. We find that once the
paramagnetic–nematic boundary is crossed, the value ofM2 jumps discontinuously from zero to approximately 0.459, while
M1 remains zero. The jump in M2 is very close to the value observed in MD simulation, 0.450, independent of ∆. For the
paramagnetic–ferromagnetic transition, the twomagnetizations jump from zero to finite values which depend on∆. In this
case the theory is again consistent with the simulations predicting that when crossing the phase transition boundary,M2 is
always negative, whileM1 may be positive or negative.

The ferromagnetic–nematic phase boundary should be determined by the two growth rates (
√
κ1,2) ofM1(t) andM2(t).

If M1 grows faster than M2, the system will reach the ferromagnetic fixed point prior to reaching the nematic one, and vice
versa. Therefore, we expect that the ferromagnetic–nematic phase boundary should be close to the curve κ1 = κ2,

Enf
c = (22 − 5∆)/36. (201)

Fig. 49 show the nonequilibrium phase diagram for the GHMF model for an initially homogeneous particle distribution.
The theoretically calculated phase boundaries obtained using Eqs. (199)–(201) are shown as the solid lines. The results of
MD simulations are shown as symbols. The paramagnetic–nematic and the paramagnetic–ferromagnetic phase boundaries
predicted by the theory are in perfect agreement with the results of MD simulations. For the ferromagnetic–nematic
transition the simulations find an instability region in which either phase can occur with equal probability, Fig. 50. The
theoretically predicted phase boundary for the ferromagnetic–nematic transition Eq. (201) passes through the instability
region.
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Fig. 49. The nonequilibrium phase diagram of the GHMF model (q = 2). Lines are the phase transitions predicted by the linear stability analysis.
Squares and triangles are the results of MD simulations and represent the paramagnetic–nematic and the paramagnetic–ferromagnetic phase boundaries,
respectively. Solid circles show the limits of the nematic–ferromagnetic transition region. Error bars are smaller than the size of the symbols. The gray area,
between the circles, is an unstable region where MD simulations find both nematic and ferromagnetic phases, with almost equal probability, see Fig. 50.
The right hand panels show examples of the phase space distributions obtained using the MD simulations for each of the three phases: (a) paramagnetic,
(b) ferromagnetic, and (c) nematic.

Fig. 50. The probability of finding a ferromagnetic phase, within the instability region of Fig. 49, at energy E = 0.5 for various values of ∆. To calculate
the probability for N = 50,000, we have used ntotal = 100 different initial conditions drawn from the same waterbag distribution, Eq. (186), and observed
how many of these (nferro) evolved into a ferromagnetic phase. For N = 500,000, we have used ntotal = 300 different initial conditions for each value of∆.

9.5. The core–halo distribution

The particle distributions in the ferromagnetic and nematic phases are, once again, of the core–halo form, Eq. (172), with
the one-particle energy given by Eq. (180). In Fig. 51 we plot a snapshot of the phase space of the GHMF and the energy of
each particle once the system has relaxed into a nematic qSS. In both panels of Fig. 51 a core–halo structure can be clearly
seen. In the nematic phase it actually appears that there are two cores. This happens because M1 = 0 and the one-particle
energy has two minimums at θ = 0 and θ = π . Both cores, however, appear in the core–halo distribution function, given
by

fch(θ, p) = ηΘ(ϵF − ϵ(θ, p))+ χΘ(ϵh − ϵ(θ, p))Θ(ϵ(θ, p)− ϵF ), (202)

where η and χ are the phase space densities of the core and halo, respectively; ϵF and ϵh are the maximum energies of the
core and halo, respectively; and the one-particle energy ϵ(θ, p) is given by Eq. (180).

In Fig. 52 we plot the marginal distributions calculated using the core–halo theory,

N(θ) =


fch(θ, p) dp (203)

and

N(p) =


fch(θ, p) dθ (204)



Y. Levin et al. / Physics Reports 535 (2014) 1–60 53

Fig. 51. (a) Phase space particle distribution and (b) one-particle energy obtained using MD simulation for GHMF with∆ = 0.2 and N = 105 particles. In
panel (a) the blue line shows the orbit corresponding to energy ϵh and the red line to the orbit with energy ϵF . In panel (b) the same color lines show the
halo and Fermi energies. The initial distribution was homogeneous (paramagnetic) waterbag of energy E = 0.55. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 52. Marginal distributions N(θ), Eq. (203), and N(p), Eq. (204), for a nematic qSS of the GHMF model. All the parameters are the same as in Fig. 51.

with fch(θ, p) given by Eq. (202), and compare them with the results of MD simulations. The halo energy ϵh (blue line in
Fig. 51(b)) was obtained using a short simulation with N = 1000 particles, which ran for only 10 dynamical times. The
Fermi energy ϵF and the halo phase space density χ were calculated using the conservation of energy and of norm. The
predicted value for the Fermi energy ϵF is the red line in Fig. 51(b). In panel (a) of the same figure we show the orbit of a
particle with energy equal to ϵF (red line). This orbit perfectly encloses the core. In the same panel, the blue line represents
an orbit of a particle with energy ϵh.

As with other long-range systems, eventually the GHMF will relax to thermodynamic equilibrium described by the
Boltzmann–Gibbs statistical mechanics. The resultant phase diagram will then change to the one shown in Fig. 47. In the
thermodynamic limit N → ∞, this relaxation, however, will never occur and the systemwill remain trapped forever in one
of the qSSs.

10. Conclusions and perspectives

In this Review we have explored statistical mechanics of systems with long-range interactions. A number of different
examples have been considered, ranging from plasmas and self-gravitating systems to the kinetic spin models. In the
thermodynamic limit, these systems do not relax to the Boltzmann–Gibbs equilibrium, but become trapped in the qSSs, the
life time of which diverges with the number of particles N . If N is small, after staying in the qSS for a time of approximately
τ× ∼ Nγ , where γ is usually larger or equal to one, a system relaxes to the thermodynamic equilibrium described by the
usual Boltzmann–Gibbs statistical mechanics. This is what has been observed for all the models studied so far — after a
time τ×, they all (with the exception of 3D gravity, which always remains out of equilibrium) relaxed to thermodynamic
equilibrium. In this respect, speculations that long-ranged systems should be described by the non-extensive Tsallis statistics
are unfounded [231].

In the case of plasmas and elliptical galaxies, the number of ‘‘particles’’ is so large that the state of thermodynamic
equilibrium cannot be reached within the life time of the universe. Furthermore, for 3D gravity, we saw that there is an
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Fig. 53. Comparison of theoretical (lines) and N-body MD simulation (dots) results for the 1D self-gravitating system that initially satisfies the virial
condition (R0 = 1). In panels (a) and (b), the theoretical distribution corresponds to LB theory, and in panels (c) and (d) corresponding to core–halo
theory.

additional problem related to the bounded (from above) nature of Newton’s gravitational potential and the resulting flux of
evaporating particles. For 1D and 2D gravitational systems, on the other hand, there is no problemwith particle evaporation.
After a short time, these systems relax to qSSswhich have a characteristic core–halo structure. The distribution function that
describes qSSs of self-gravitating systems is the same as the one that describes the qSS of magnetically confined plasmas
and of spin systems. The ubiquity of core–halo distributions, observed in so many different contexts, suggests that there
is a significant degree of universality to the process of collisionless relaxation. The core–halo distribution appears to be a
universal attractor – in a coarse-grained sense – analogous to the Maxwell–Boltzmann distribution for systems with short-
range forces.

A qSS reached by a long-range interacting system depends explicitly on the initial particle distribution. In this Report
we have considered only the initial conditions of the waterbag form. In the future, it will be important to extend the
theory to more complex initial conditions. Preliminary work in this direction indicates that multilevel distributions lead
to significantly more complex qSSs, with very interesting topological structure which, nevertheless, preserves some of the
core–halo characteristics [212]. Curiously, for such initial distributions, the LB theory fails to describe the qSSs, even when
initial conditions satisfy the virial theorem. This indicates that formultilevel distributionsmixing is even poorer than it is for
one level waterbags. Furthermore, even for one-level waterbag distributions satisfying the virial condition, there are small
deviations between the results of simulations and the LB theory, and some halo formation may be observed. This suggests
that the core–halo distribution may also be relevant for predicting the qSS of initially virialized waterbag distributions.
Since for R0 = 1 the parametric resonances are not excited, the halo energy in this case should be the same as the energy
of the most energetic particle of the initial distribution. In Fig. 53 we compare the predictions of the core–halo and the LB
theories with the results of MD simulations for 1D self-gravitating system with R0 = 1. It appears that even in this case
the core–halo theory agrees better with the results of simulations than does the LB approach. This suggests that mixing
and ergodicity are not perfect even for initially virialized distributions. This, however, should be tested for other models
discussed in this Review.

A trapping of a system in a qSS is a consequence of the ergodicity breaking. The process of Landau damping decreases
the amplitude of collective oscillations which are responsible for the energy transfer between the particles. For long-range
systems, there are no collisions (correlations) between the particles, and the only mechanism of energy transfer is the
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wave–particle interaction. Therefore, once the oscillations have completely died out, each particles will move in a static
mean-field potential and the ergodicity of the system will be broken. All the systems that have been considered so far had
either spherical (in 3D) or polar (in 2D) symmetry. The equations ofmotion for a particle inside such potentials are integrable.
This, in general, is not true for asymmetric potentials for which particle trajectories can become chaotic. It should be of great
interest to explore if the chaotic dynamics in the qSS can lead to a faster relaxation to the Boltzmann–Gibbs equilibrium and
a shorter lifetime of a qSS.

There are a number of outstanding open question which remain to be addressed. Can the core–halo theory developed
above be extended to study 3D self-gravitating systems? For such systems the halo will extend all the way to infinity. At the
momentwe do not have an understanding of the structure of such halos. Furthermore, both 2D and 3D gravitational systems
are susceptible to symmetry breaking instabilities [232]. The simulationmethods used in the present work, which primarily
relied on the Gauss’s law, do not allowus to study such instabilities. The theoretical understanding of the symmetry breaking
mechanism that leads to asymmetric QSS is still lacking and it is not clear how to extend the core–halo theory to describe the
asymmetric stationary states. Finally, in the future it will be important to move beyond the waterbag initial distributions.
As discussed above, multilevel initial distributions appear to exhibit ergodicity breaking and poor mixing even when they
are virialized. This makes the study of such initial conditions very challenging [212]. Nevertheless, it has been observed that
even such complex initial distributions also relax to core–halo QSS, with the particle distribution in the core well fitted by
polytropic distributions [213].

In spite of their ubiquity, long-range interacting systems are still poorly understood. They are the unexplored frontier of
statistical physics. We hope that the present Report helps to attract the attention of the statistical mechanics community to
this fascinating field.
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