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In this paper, a simplified theoretical model that allows prediction of the final stationary state attained

by an initially mismatched beam is presented. The proposed stationary state has a core-halo distribution.

Based on the incompressibility of the Vlasov phase-space dynamics, the core behaves as a completely

degenerate Fermi gas, where the particles occupy the lowest possible energy states accessible to them. On

the other hand, the halo is given by a tenuous uniform distribution that extends up to a maximum energy

determined by the core-particle resonance. This leads to a self-consistent model in which the beam density

and self-fields can be determined analytically. The theory allows one to estimate the emittance growth and

the fraction of particles that evaporate to the halo in the relaxation process. Self-consistent N-particle

simulation results are also presented and are used to verify the theory.
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I. INTRODUCTION

In experiments that require the transport of intense
beams, space-charge forces make it virtually impossible
to launch a beam with a distribution that corresponds to an
exact equilibrium state. As a consequence, as the particles
are transported the beam will tend to relax towards a sta-
tionary state [1,2]. Along this process, effects such as
emittance growth and halo formation are expected to occur.
These effects are very detrimental because they limit beam
efficiency and may be responsible for particle losses which
can cause wall damage and activation. Therefore, a quan-
tification of the amount of emittance growth and halo
formation that can be expected becomes an important issue
in the design of such systems. In order to estimate these, a
good knowledge of the mechanisms that lead to beam
relaxation and, especially, of the final stationary state
reached by the beam is necessary.

In general, injected beams may deviate from the equi-
librium state because of various effects, such as envelope
mismatches [3–9], off-axis motion [8,10–13], nonuniform-
ities in the beam distribution [14–20], and forces due to the
surrounding conductors [21–23]. Among all these effects,
the one that has attracted most of the attention is the
envelope mismatch because it is believed to be a major
cause of emittance growth and halo formation. For mis-
matched beams, an unbalance between the focusing force
due to the external applied field and the defocusing forces
due to space charge and thermal effects, causes the whole
beam to oscillate in a coherent breathing mode. Some
single beam particle trajectories resonate with this mode,
gaining a lot of energy to form the halo. Based on a low
dimensional particle-core model it is possible to observe

this resonance process and to determine the maximum
range of halo particles [3–5]. Because of conservation of
energy, as the halo is being formed the particles that remain
in the core lose energy and the amplitude of the breathing
mode decreases. Eventually, halo formation ceases and the
stationary state is reached. Thewhole scenario is analogous
to an evaporative cooling process where the core particles
cool down via evaporation of hot, energetic halo particles.
The thermodynamic equilibrium that corresponds to the
Maxwell-Boltzmann distribution [24,25] is not expected to
be attained in this process because the beam dynamics is
collisionless [26–29]. In fact, in the particular case of an
initially mismatched high-intensity cold beam, it has been
shown that the final stationary state can be very well
modeled by a completely cold dense core surrounded by
a cloud of energetic particles that carry all the beam
emittance [8,9]. From this model, one can successfully
determine the total emittance growth and the fraction of
particles that form the halo in the stationary state.
In the case of beams with a finite initial emittance,

however, the assumption of a completely cold core for
the relaxed state is no longer correct. The existence of
emittance in the initial distribution indicates that the
beam occupies a finite volume in the phase space.
Because the Vlasov dynamics that governs beam evolution
is incompressible, this volume has to be preserved. Hence,
the occupation of low-energy regions of the phase space by
the particles as the core progressively cools down is limited
by the finite density of the initial distribution in phase
space, which is not compatible with a completely cold
core. In other words, although we are dealing with purely
classical particles, the conservation of volume in the phase
space imposed by the Vlasov equation leads to a Pauli-like
exclusion principle for the beam particles. Taking this into
account, in this paper we propose that the stationary state
for the core corresponds to a completely degenerate Fermi
gas, where the particles occupy the lowest possible energy
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states accessible to them. This leads to a self-contained
model where the beam density and self-fields can be de-
termined analytically as a function of two parameters—the
core size and the halo density. These parameters are, in
turn, readily obtained by numerically solving two algebraic
equations that correspond to the conservation of the total
number of particles and the energy of the system. The
results are compared with self-consistent N-particle simu-
lations and a good agreement is found for the density of the
stationary state and the emittance growth. In the simula-
tions, the emittance growth is shown to be weakly depen-
dent on the details of the initial beam distribution. The
model is also used to estimate the fraction of particles that
will evaporate to form the halo. It is worth noting that a
more detailed analysis shows that the core distribution is
indeed not fully degenerate, but more closely represented
by a series of low temperature Fermi-Dirac distributions
[26,30]. If on one hand such a representation is capable of
describing the stationary state in great detail, on the other
hand it demands more involved computation and requires
an equally detailed knowledge of the initial distribution. In
this regard, the model proposed here is a simplification
which, however, provides a fair description of the station-
ary state and that is only based on the knowledge of rms
quantities of the initial distribution.

The paper is organized as follows. In Sec. II we present
the model for the space-charge beam transport and its
fundamental equations. In Sec. III, we introduce the pro-
posed final stationary distribution and analytically derive
its density and self-field functions. Based on the conserva-
tion of particles and energy in the beam transport, we find
two algebraic equations that have to be solved in order to
determine the stationary state without any adjustable pa-
rameter. The expressions for the emittance growth and the
halo fraction are obtained from the theory. In Sec. IV, we
present numerical results and test the theory against the
self-consistent N-particle simulations. Finally, in Sec. V,
we conclude the paper.

II. BEAM MODEL AND EQUATIONS

We consider an unbunched beam propagating with a
constant axial velocity �bc along the inner channel of a
circular grounded conducting pipe of radius rw; the beam is
focused by a uniform solenoidal magnetic field of magni-
tude Bz. Both the pipe and the focusing field are aligned
with the z axis. Given the uniform motion along z, we
define a longitudinal coordinate s ¼ �bct that plays the
role of time in the system. It is convenient to work in the
Larmor frame of Ref. [31], which rotates with respect to
the laboratory frame with the angular velocity �L ¼
qBo=2�bmc, where q, m, and �b ¼ ð1� �2

bÞ�1=2 are,

respectively, the charge, mass, and relativistic factor of
the beam particles. In the paraxial approximation, the
beam distribution function fðr; v; sÞ evolves according to
the Vlasov-Maxwell system [31],

@f

@s
þ v � rfþ ð�k20r�rc Þ � rvf ¼ 0; (1)

r2c ¼ � 2�K

N
nðr; sÞ; (2)

where nðr; sÞ ¼ R
fdv is the beam density profile, k0 ¼

qBz=2�b�bmc2 is the vacuum phase advance per unit axial
length which determines the focusing field strength, K ¼
2q2N=�3

b�
2
bmc2 is the beam perveance that is a measure of

the beam intensity, N ¼ R
fdrdv ¼ const is the conserved

number of particles per unit axial length, r is the position
vector in the transverse plane, and v � dr=ds. As dis-
cussed in the Introduction, it is exactly because the beam
evolves according to the Vlasov equation (1), that the total
phase-space volume occupied by the particles has to be
conserved. In Eqs. (1) and (2), c is a normalized potential
that incorporates both self-electric and self-magnetic field
interactions. Because of the presence of the pipe surround-
ing the beam, the self-field potential satisfies the boundary
condition c ðr ¼ rwÞ ¼ 0. In view of the axisymmetry of
the external focusing field and taking into consideration
only axisymmetric (breathing) envelope modes, we assume
that the beam distribution has no � dependence, so that f ¼
fðr; vr;v�; sÞ, where the angular velocity v� is a constant
of motion for the beam particles. For the Vlasov dynamics,
if the distribution function only depends on the phase-
space variables through the single particle energy, i.e.,
fðr; vÞ ¼ fð"Þ, where

"ðr; vÞ ¼ v2

2
þ k20r

2

2
þ c ðrÞ; (3)

it will be stationary. If it is not stationary, the distribution
will vary as a function of s, tending to relax to a stationary
state.

The beam envelope rb ¼ ½2hr2i�1=2 is a measure of the
transverse size of the beam and evolve according to [31]

r00b þ k20rb �
K

rb
� �2

r3b
¼ 0; (4)

where the emittance of the beam is defined as

� ¼ 2½hr2ihv2i � hrvri2�1=2; (5)

the prime denotes derivative with respect to s, the angled
brackets represent the average over the beam distribution,

and v ¼ ðv2
r þ v2

�Þ1=2. While for equilibrium beam distri-

butions the emittance is a conserved quantity, for a non-
stationary beam the emittance � ¼ �ðsÞ generally grows as
the beam relaxes towards the stationary state (although the
emittance can decrease as in the case of an initially
matched semi-Gaussian beam as in Ref. [24]). It is clear
from Eq. (4) that there is a competition between the
focusing force imposed by the external magnetic field
and the defocusing forces due to space charge and emit-
tance. For matched beams these forces are balanced in such
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a way that the beam envelope remains mostly constant
along the transport. Equating r00b ¼ 0 in Eq. (4) we obtain

the matched beam envelope,

r�b ¼
�
K þ ðK2 þ 4k20�

2Þ1=2
2k20

�
1=2

: (6)

More generally, however, the initial distribution will have a
mismatched envelope. In this case, the envelope will start
to oscillate due to the unbalanced focusing and defocusing
forces, and will start to induce halo formation as described
by the particle-core model [3–5]. In order to quantify the
initial beam envelope mismatch, we define a mismatch
parameter as given by � � rbð0Þ=r�bð0Þ.

A quantity that plays a key role in the determination of
the final stationary state of the beam is its average energy
per particle. This is given by

E ¼ hv2i
2

þ k20hr2i
2

þ Ec ; (7)

and is conserved along the transport. In Eq. (7), Ec is the

beam self-field energy per particle given by [31]

E c ¼ 1

4�K

Z
jrc j2dr ¼ 1

2K

Z rw

0

�
@c

@r

�
2
rdr: (8)

The aim in the next sections is to determine the final
stationary state achieved by a beam of known initial
distribution.

III. DETERMINING THE FINAL
STATIONARY STATE

A. Initial beam with a waterbag distribution

We start our analysis by considering a beam whose
initial distribution corresponds to a phase-space waterbag.
That is, the particles are uniformly distributed up to a
maximum radius rm and a maximum speed vm [32],

f0ðr; vÞ ¼ N

�2�20
�ðrm � rÞ�ðvm � vÞ; (9)

where r is the radial coordinate in the transverse direction,

v ¼ ðv2
r þ v2

�Þ1=2 is the magnitude of the velocity in the

transverse direction, �ðxÞ is the Heaviside step function,
and �0 ¼ �ð0Þ ¼ rmvm is the initial beam emittance. This
distribution is represented in Fig. 1(a). Its energy per
particle can be readily computed by solving the Poisson
equation and using Eqs. (7) and (8) to give

E 0 ¼ v2
m

4
þ k20r

2
m

4
þ K

8
� K

2
log

�
rm
rw

�
: (10)

The waterbag distribution given by Eq. (9) is quite
convenient for our discussion because it has the property
that all the occupied regions in phase space have the same
density N=�2�20. Hence, as the beam relaxes, the incom-

pressibility of the Vlasov dynamics will limit the

occupation of the lower energy states available to the pro-
gressively colder core to this density value. In the final
stationary state, therefore, the core will resemble a degen-
erate Fermi gas of density N=�2�20 that extends up to a

Fermi energy "F in the phase space. Such a core distribu-
tion is equivalent to a waterbag distribution in energy [2,31]
that extends up to "F and has the prescribed occupation
density N=�2�20. The value of "F is yet unknown, but will

be determined self-consistently. As for the halo, the
particle-core model allows us to determine the maximum
radius that the halo particles can attain, rh [3,5]. Since the
particle located at rh represents the outermost one, we
can easily determine its energy as "h ¼ k20r

2
h=2�

K logðrh=rwÞ. While for initially cold beams it was found
that the halo particles tend to stay along the separatrix of

0 rm

vm

r

v

(a)

rw

0 rc rh
r

v

(b)
I II III

rw

FIG. 1. Beam distributions in phase space. In (a), the gray area
indicates the occupied regions for the initial waterbag distribu-
tion of Eq. (9) with maximum values for velocity vm and radius
rm. The density in phase space is uniform and equal to
N=�2r2mv

2
m inside the distribution. Part (b) shows the proposed

final stationary distribution formed by a dense core (dark gray)
and a tenuous halo (light gray). Because of the characteristics of
the Vlasov dynamics, the core density is assumed to be the same
as the initial waterbag distribution, whereas the halo has a small
fraction � of the core density. The blue and red lines limit the
core and the halo distributions and correspond to "ðr; vÞ ¼ "F
and "ðr; vÞ ¼ "h, respectively, where "ðr; vÞ is the single particle
energy given by Eq. (3). For future reference, regions I, II, and
III are presented and correspond, respectively, to r < rc, rc <
r < rh, and rh < r < rw.
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the particle-core model resonance [9], for finite emittance
beams it was observed that they typically spread uniformly
in phase space up to the energy "h [26,30]. Putting all this
information together, we write the final stationary distribu-
tion as

fsðr; vÞ ¼ N

�2�20
½�ð"F � "Þ þ ��ð"h � "Þ�ð"� "FÞ�;

(11)

where � is the ratio between halo and core density in phase
space. The distribution is represented in Fig. 1(b). Note that
fs only depends on the phase-space coordinates through the
single particle energy ", defined in Eq. (3) and is conse-
quently an equilibrium distribution. It depends on two still
unknown parameters, "F and �. These parameters will be
determined self-consistently by imposing conservation of
the number of particles and energy in the beam transport.

B. Solving Poisson equation and conservation
of the number of particles

For the sake of calculations, we divide the space in three
regions, I, II, and III, that correspond, respectively, to r <
rc, rc < r < rh, and rh < r < rw [see Fig. 1(b)]. Here, rc is
the maximum radius attained by the core particles.
Integrating fðr; vÞ over the velocity space, we readily obtain
the particle density in the three different regions, namely,

nIðrÞ ¼ 2N

��20
½"F þ �ð"h � "FÞ � VIðrÞ�; (12)

nIIðrÞ ¼ 2N�

��20
½"h � VIIðrÞ�; (13)

and nIIIðrÞ ¼ 0, where ViðrÞ � c iðrÞ þ k20r
2=2, i ¼

I; II; III is the total potential that takes into account both
self-field and external focusing contributions, and rc and rh
can be determined by VðrcÞ ¼ "F andVðrhÞ ¼ "h. Because
of the continuity conditions on the self-fields, both c iðrÞ
and ViðrÞ and their first derivatives have to be continuous at
r ¼ rc and r ¼ rh.

Substituting niðrÞ in the Poisson equation (2) we obtain a
closed set of equations for the self-field potential in the
different regions. Let us start with region III which is free
of charges and the potential has a general solution of the
form c IIIðrÞ ¼ D logrþ E. The constants D and E can be
easily determined by imposing the boundary condition at
the wall, c ðrwÞ ¼ 0, and by noting that for any point
located outside of the beam distribution, the potential is
the same as if all the particles were concentrated in a line of
charges located at r ¼ 0, leading to

c IIIðrÞ ¼ �K logðr=rwÞ: (14)

It is worth noting that Eq. (14) is already consistent with
a normalized stationary distribution that satisfiesR
fsðr; vÞdrdv ¼ N.

Substituting nII, Eq. (13), and c II ¼ VIIðrÞ � k20r
2=2 in

the Poisson equation, we then obtain an inhomogeneous
modified Bessel equation for the total potential in region
II, whose general solution is

VIIðrÞ ¼ BI0ð�hrÞ þ CK0ð�hrÞ þ �; (15)

where Im and Km are the modified Bessel functions of mth

order, �h ¼ 2ð�KÞ1=2=�0, and

� ¼ k20
2�2

h

ð�2
hr

2
h � 4Þ þ K log

�
rw
rh

�
: (16)

The constants B and C can be determined by the continuity
of the total potential and its first derivative at r ¼ rh
leading to

B ¼ 2k20rh
�h

K1ð�hrhÞ � ðK � k20r
2
hÞK0ð�hrhÞ; (17)

C ¼ 2k20rh
�h

I1ð�hrhÞ þ ðK � k20r
2
hÞI0ð�hrhÞ: (18)

Substituting nI, Eq. (12), and c I ¼ VIðrÞ � k20r
2=2 in

the Poisson equation, we again obtain an inhomogeneous
modified Bessel equation for the total potential, whose
general solution can be cast in the form

VIðrÞ ¼ AI0ð�crÞ þ A

�
ð1� �ÞI0ð�crcÞ þ �; (19)

where �c ¼ 2K1=2=�0, � is given in Eq. (16), and we have
already used VðrcÞ ¼ "F in order to explicitly eliminate "F
from the expression. By imposing the continuity of the first
derivative of the total potential at r ¼ rc, we can express
the constant A as

A ¼ �1=2 BI1ð�hrcÞ � CK1ð�hrcÞ
I1ð�crcÞ : (20)

In order to complete the determination of the potential we
still need to impose its continuity at r ¼ rc, i.e.,

VIðrcÞ ¼ VIIðrcÞ: (21)

Equation (21) is a transcendental equation that along with
the conservation of energy, to be derived in the following
subsection, will be used to determine the two unknown
parameters rc and � of the model. The equation guarantees
that the self-field potential of the stationary distribution is
consistent with the beam normalization conditionR
fsðr; vÞdrdv ¼ N.

C. Conservation of energy

In order to calculate the average energy per particle of the
stationary beam, we start by determining its envelope
squared r2bs ¼ 2hr2i ¼ 2

R
r2nðrÞrdr. Using Eqs. (12),

(13), (15), and (19), we obtain
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r2bs ¼
�
2þ k20ð8� �2

hr
2
hÞ

�2
hK

�
r2h �

8Ar2c
K

�ð1� �ÞI0ð�crcÞ
2�

þ I1ð�crcÞ
�crc

�

þ 8rc½BI1ð�hrcÞ � CK1ð�hrcÞ� � 8rh½BI1ð�hrhÞ � CK1ð�hrhÞ�
�hK

: (22)

To determine the beam self-field energy for the station-
ary distribution, we need to perform the integral in Eq. (8).
Although this integral can be calculated analytically, in
order to simplify the result we can perform an approxima-
tion. Namely, because the halo distribution is tenuous, we
can disregard the detailed distribution of halo particles in
the region rc < r < rh and assume, for instance, that they
are all at r ¼ rc. With that, the whole region rc < r < rw is
free of charge with a self-field potential given by Eq. (14).
The self-field energy of the stationary state is then given by

E c s ¼ r2c
8K

fk40r2c þ 2A2�2
cI

2
1ð�crcÞ � 2A½4k20

þ A�2
cI0ð�crcÞ�I2ð�crcÞg � K log

�
rc
rw

�
; (23)

where use has been made of c I ¼ VIðrÞ � k20r
2=2 and

Eq. (19) for r < rc. Expression (23) has been tested against
the exact value of the self-energy and for the cases ana-
lyzed here represented a variation of the order of 1% or less
in the total energy of the beam (see caption of Fig. 3).
Anyway, for largely mismatched beams as well as very
space-charge dominated beams, one should consider using
the exact self-energy expression to guarantee accuracy.

To complete the determination of the average energy per
particle given by Eq. (7), we also need to compute hv2i for
the stationary distribution. However, if we notice that fs is
an equilibrium distribution then its envelope must corre-
spond to a matched envelope. Substituting Eq. (5) in (6),
we can conveniently write the matching condition as

2hv2i ¼ k20r
2
b � K; (24)

valid for any equilibrium distribution. Note that the term
hrvri in Eq. (5) is proportional to the derivative of the
envelope with respect to s and therefore vanishes for a
stationary beam. Using this in the expression for the aver-
age energy per particle for the stationary distribution and
imposing conservation of energy leads to

k20r
2
bs

2
� K

4
þ Ec s ¼ E0; (25)

where rbs, Ec s, and E0 are given, respectively, by Eqs. (22),

(23), and (10). Equation (25) is another transcendental
equation that has to be solved numerically. Solving
Eqs. (21) and (25) for the unknown parameters rc and �
completely determines the final stationary state.

D. Emittance growth and halo fraction

Once the final stationary state has been determined, we
can compute the total emittance growth that occurs in the
beam relaxation process. Substituting Eq. (24) in Eq. (5),
we obtain for the final stationary emittance

�s ¼ rbs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20r

2
bs � K

q
; (26)

where rbs is given in Eq. (22). The emittance growth is
given by �s=�0.
Regarding the halo formation, an important quantity is

the fraction of particles that evaporate to the halo during
the relaxation process. Taking into account the stationary
distribution in Eq. (11), this quantity corresponds to the
fraction of particles with energies between �F and �h
[see Fig. 1(b)], i.e., F h ¼ ð�=�2�20Þ

R
�ð"h � "Þ�ð"�

"FÞdrdv. Performing the integral we find

F h ¼ 1� 2Ar2cI2ð�crcÞ
�20

: (27)

E. Beams with different initial distributions

So far, we have only considered the relaxation of beams
with an initial distribution given by the waterbag distribu-
tion, in Eq. (9). In general, however, we may expect initial
distributions that present a nonuniform density in phase
space. In order to handle such cases, we can discretize
the nonuniform distribution into p levels [30]. While this
procedure allows for a very detailed description of the
beam, it demands an equally detailed knowledge of the
beam initial distribution. In many practical situations,
however, there is no such knowledge and all that is known
from the initial beam are the rms quantities, like the
envelope and the emittance. Taking this into consideration,
we take the lowest order p ¼ 1 and approximate any given
initial distribution by Eq. (9) with the envelope rm and
emittance �0 corresponding to the actual beam. With this,
we can estimate the final stationary state, the emittance
growth, and the halo fraction for any beam, just based on its
initial envelope and emittance. Self-consistent simulations
are presented in the next section to verify the validity of
this approximation.

IV. NUMERICAL RESULTS

In order to test the theory presented, we perform
N-particle self-consistent simulations. The simulations
are based on Gauss’s law where the field at a certain radial
coordinate r depends on the total number of particles with
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coordinates smaller than r [4]. This method precludes the
effects of collisions between individual particles and is
convenient because instabilities and profile distortions
around the round shape are not expected here [33,34]. In
the simulations we launch N ¼ 5000 macroparticles ac-
cording to a prescribed distribution and evolve them
through long axial distances of the order of 103–104 beta-
tron oscillations. When the emittance of the beam reaches a
plateau, we consider that the beam has reached its sta-
tionary state. We consider three different initial beam
distributions, namely, a waterbag given by Eq. (9), a
semi-Gaussian distribution, and a full Gaussian distribu-
tion both in space and velocity. The analysis is simplified if
we measure longitudinal and transverse coordinates in

units of k�1
0 and ð�0=k0Þ1=2, respectively. Then, the initial

beam is characterized by two parameters only: K=k0�0 and
the mismatch parameter �. In the results presented below,
the halo size used in the theory is not directly obtained by
the particle-core model, but rather, the one approximated
by the empirical formula proposed by Ref. [5], namely,
rh ¼ 2r�bð0Þð1þ log�Þ, where r�bð0Þ is the initial matched

beam envelope obtained from Eq. (6) with " ¼ "0.
In Fig. 2, we compare the final stationary particle distri-

bution obtained from the theory (solid lines) and the
N-particle simulation (dots) for three different cases. In
panel (a) we present the results for an initial waterbag
distribution withK=k0�0 ¼ 0:1 and� ¼ 1:5. This parame-
ter set corresponds to a mildly space-charge dominated
beam that is comparable to that found in the experiments
of Ref. [7]. Despite the small space-charge forces a large
halo is apparent. Clearly, the model agrees very well with
the simulation results, describing very closely both the core
and the halo particle distributions. In panel (b), we consider
a beam with the same initial distribution as in (a), but with
larger space-charge forces corresponding toK=k0�0 ¼ 1:0.
Again, a very good agreement is found. In panel (c), we
present an example with a different initial distribution. In
particular, we consider the same parameters as in panel (b),
namely K=k0�0 ¼ 1:0 and � ¼ 1:5, but now for a fully
Gaussian distribution. As expected, because the initial
distribution is nonuniform both in the configuration and
the velocity space, the final agreement between the final
stationary state reached in the simulation and the theory is
not as impressive as in the previous cases. Nevertheless,
taking into consideration the crudeness and simplicity of
the model, the results are still quite satisfactory, particu-
larly concerning the halo distribution which is reasonably
close to the actual one. For the sake of comparison, we also
present in Fig. 2 the respective initial normalized charge
distributions (dashed curves).

Next, we compare the emittance growth calculated from
the model and obtained from the simulations with different
initial conditions. These results are presented in Fig. 3 as a
function of the mismatch parameter for K=k0�0 ¼ 0:1 (a)
and K=k0�0 ¼ 1:0 (b). The theoretical results are found to

be in good agreement with the numerical results. The
agreement is better for the less space-charge dominated
case. As the space charge is increased, the emittance seems
to become more sensitive to the details of the stationary
distribution, requiring a more involved description of the
stationary state if a more accurate prediction of the emit-
tance growth is required [30]. Nevertheless, as seen in
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FIG. 2. Comparison of the normalized charge as a function of
radius obtained from the theory (solid curve) and the N-particle
simulation (red dots). The space-charge parameter and the initial
distributions considered are: K=k0�0 ¼ 0:1 and waterbag in (a),
K=k0�0 ¼ 1:0 and waterbag in (b), and K=k0�0 ¼ 1:0 and fully
Gaussian in (c). In all the cases, � ¼ 1:5, r is measured in units
of ð�0=k0Þ1=2, and the charge is normalized to the total charge N
in the beam. For the sake of comparison, we also present the
respective initial normalized charge distributions (dashed
curves). The inset in (a) presents the normalized charge in log
form, showing that despite the large difference in core and halo
density, the theory agrees well with the simulation.
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Fig. 3, the simplified model presented here already pro-
vides a good estimate of the emittance growth. Another
interesting feature seen in Fig. 3 is that the emittance
growth is rather independent of the initial beam distribu-
tion. This may be credited to the fact that the emittance
value is more affected by the halo particles than the core
distribution. And, as indicated in Fig. 2, changes in the
initial distribution of mismatched beams seem to affect
more the stationary core distribution than the halo.

We next apply the theory to estimate the fraction of
particles that evaporate from the core to form the halo. In
Fig. 4, we show F h as a function of the mismatch parame-
ter � obtained from the theory, Eq. (27), for K=k0�0 ¼ 0:1
(solid line) and K=k0�0 ¼ 1:0 (dashed line). A nearly
linear dependence of the halo fraction with the mismatch
parameter is observed. The figure also indicates that the
halo fraction decreases as the space charge is increased. In
fact, this trend is verified by computingF h as a function of
K=k0�0 for fixed� (not shown). We note that, although the
halo fraction is a decreasing function of K=k0�0, the total

charge in the halo, given by KF h, grows as the beam
becomes more intense. The halo fraction was not compared
to numerical results from the simulations because there is
no satisfactory criteria to separate halo and core particles in
the simulation.
As far as emittance growth is concerned, the results

presented in Fig. 3(a) for a low space-charge beam are
very similar to those obtained from the free-energy model
described in Ref. [1]. Thus, our emittance growth estimates
should also agree very well with the experimental results
presented in Ref. [7]. Nevertheless, in contrast to the free-
energy model [1], the theory derived here not only allows
for emittance growth estimates, but also provides a good
description of the final stationary distribution attained by
the beam, including halo density and fraction. Therefore, it
would be interesting to validate the model against experi-
mental results of halo formation in mismatched space-
charge dominated beams [7,35–37].

V. CONCLUSION

A simplified theoretical model that allows one to predict
the final stationary state attained by an initially mis-
matched beam is presented. The proposed stationary state
is described by a core-halo distribution. Based on the
incompressibility of the Vlasov dynamics which governs
the beam evolution, the core is assumed to be a fully
degenerate Fermi-Dirac distribution, where the particles
occupy the lowest possible energy states accessible to
them. The halo, on the other hand, is given by a tenuous
uniform distribution that extends up to a maximum energy
determined by the core-particle resonance. This leads to a
self-consistent model for which the beam density and self-
fields can be determined analytically as a function of two
parameters—the core size and the halo density. This pa-
rameters are in turn determined by numerically solving two
algebraic equations that correspond to the conservation of
the total number of particles and the energy of the system.
The theory allows one to estimate important quantities,
such as the emittance growth and the fraction of particles
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FIG. 4. Halo fraction F h as a function of the mismatch pa-
rameter � obtained from the theory, Eq. (27), for K=k0�0 ¼ 0:1
(solid line) and K=k0�0 ¼ 1:0 (dashed line).
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FIG. 3. Emittance growth �s=�0 as a function of the mismatch
parameter � obtained from the theory (solid curve) and the
N-particle simulations (symbols) for K=k0�0 ¼ 0:1 in (a) and
K=k0�0 ¼ 1:0 in (b). The symbols correspond to the different
initial distribution in the simulation: waterbag (circle), semi-
Gaussian (square), and Gaussian beam (diamond). The dashed
line in panel (b) corresponds to the emittance obtained using the
exact form of the self-energy instead of the approximation given
by Eq. (23). It shows that an improved estimate can be obtained
by using the exact self-energy expression for larger mismatches
and more space-charge dominated beams.
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that evaporate to the halo in the relaxation process. In
particular, regarding the halo fraction, the model foresees
a nearly linear increase with the mismatch amplitude, as
well as an inverse dependence with the space-charge pa-
rameter K=k0�0. Self-consistent N-particle simulations
were performed to verify the predictions of the theory.
The simulations show that the emittance growth is rather
independent of the details of the initial distribution, being
well characterized by the initial rms quantities of the beam,
namely, the envelope and initial emittance. Moreover, good
agreement is found between the particle distributions pre-
dicted by the model and obtained in the simulations, par-
ticularly regarding the halo description. The predicted
emittance growths are also found to agree with the
simulations.
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