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We introduce a generalized Hamiltonian mean field model—an XY model with both linear and

quadratic coupling between spins and explicit Hamiltonian dynamics. In addition to the usual paramag-

netic and ferromagnetic phases, this model also possesses a nematic phase. The generalized Hamiltonian

mean field model can be solved explicitly using Boltzmann-Gibbs statistical mechanics, in both canonical

and microcanonical ensembles. However, when the resulting microcanonical phase diagram is compared

with the one obtained using molecular dynamics simulations, it is found that the two are very different. We

will present a dynamical theory which allows us to explicitly calculate the phase diagram obtained using

molecular dynamics simulations without any adjustable parameters. The model illustrates the fundamental

role played by dynamics as well the inadequacy of Boltzmann-Gibbs statistics for systems with long-range

forces in the thermodynamic limit.
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A fundamental concept in statistical mechanics, taught
in a typical course, is the equivalence of ensembles [1].
One also learns that mean field theory becomes exact for
systems with long-range (LR) interactions [2,3]. However,
in order to have a well-defined thermodynamic limit, in this
case, special care must be taken. The usual approach is to
scale the strength of the two-body interaction potential
with the number of particles in the system, N. This is
the, so-called, Kac prescription—it makes the infinitely
long-range two-body interaction infinitesimally weak [2].
The thermodynamic limit becomes well-defined, since
both the kinetic and the potential contributions to the total
energy now scale linearly with N, making the energy
extensive. Over the last decade, however, it has become
clear that both the ensemble equivalence and the exactness
of mean field theory may fail for systems with LR
interactions [4–6]. The phase-diagrams calculated using
Boltzmann-Gibbs (BG) statistics in canonical and micro-
canonical ensembles do not always coincide [4].
Furthermore, molecular dynamics simulations, show that
isolated LR interacting systems become trapped in quasi-
stationary states (qSS), the lifetime of which diverges with
the number of particles [7–15]. These qSS depend explic-
itly on the initial particle distribution.

The inapplicability of BG statistics to systems with LR
forces in thermodynamic limit is a consequence of the
ergodicity breaking. Scaling of two-body potentials with
the number of particles—essential for the existence of a
well-defined thermodynamic limit—destroys the correla-
tions (collisions) between the particles [16] that drive
normal short-range interacting systems towards the ther-
modynamic equilibrium. Relaxation to the stationary state
of an LR system is, therefore, fundamentally different from
the collisional (correlational) relaxation of normal gases
and fluids. Collisionless relaxation relies on the collective

excitations and evaporative cooling driven by Landau
damping [12,17]. The final stationary state reached by a
collisionless system is intrinsically nonergodic [13,18].
It does not correspond to the maximum of the Boltzmann
entropy. To exemplify this dichotomy, in this Letter, we
introduce a new generalized Hamiltonian mean field
model (GHMF)—a LR version of the model studied in
Refs. [19,20]—which can be solved exactly using BG
statistical mechanics. We will show that the equilibrium
phase diagram predicted by the BG statistics in the micro-
canonical ensemble is very different from the one obtained
using the molecular dynamics (MD) simulations. We will
then construct a dynamical theory that correctly predicts
the location and the order of the phase transitions observed
in MD simulations.
The GHMF is described by the Hamiltonian

Hð�i; piÞ ¼
XN
i¼1

p2
i

2
þ 1

2N

XN
i;j¼1

½1� �cosð�i � �jÞ

� ð1� �Þ cosð2�i � 2�jÞ�; (1)

where � 2 ½0; 1�. The model can be thought of as either
XY spins confined to a line, or as particles restricted
to move on a circle. The latter interpretation is perhaps
more convenient when discussing MD simulations with
equations of motion given by: _�i ¼ @H=@pi and
_pi ¼ �@H=@�i.
We define the ferromagnetic and nematic order parame-

ters as m1 ¼ 1
N

P
N
i¼1 cos�i and m2 ¼ 1

N

P
N
i¼1 cos2�i,

respectively. Using the usual statistical mechanics
approach [5], we first calculate the microcanonical entropy
for the GHMF.
Within BG statistical mechanics, all the thermodynamic

information is encoded in the phase space volume acces-
sible to the system with the total energy E
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�ðE;NÞ ¼
Z �

��

Y
d�i

Z 1

�1

Y
dpi�ðE�Hð�i; piÞÞ: (2)

The integral in Eq. (2) can be divided into two parts—
kinetic and configurational,

�ðE;NÞ ¼
Z

dK�kinðKÞ�confðE� KÞ; (3)

where

�kinðKÞ ¼
Z 1

�1

Y
dpi�

�
K �

P
p2
i

2

�
; (4)

�confðE� KÞ ¼
Z �

��

Y
d�i�ðE� K �Uðf�igÞÞ; (5)

and U is the potential energy, second term in Eq. (1).
Integrating over the momentum degrees of freedom, in
the thermodynamic limit we obtain

�kinðKÞ ¼ exp

�
N

2

�
ln�þ ln2K � ln

N

2
þ 1

��
: (6)

The microcanonical entropy per particle is sð"Þ ¼
1
N ln�ðE;NÞ,

sð"Þ¼1

2
ln2�þ1

2
þsup

�

�
1

2
ln2�þ 1

N
ln�confðNð"��ÞÞ

�
;

(7)

where � � K=N ¼ ðE�UÞ=N ¼ "� u. Since the poten-
tial energy depends only on m1 and m2, we define

�mðm1; m2Þ ¼
Z �

��

Y
d�i�

�X
cos�i � Nm1

�

� �
�X

cos2�i � Nm2

�
; (8)

which using the Fourier representation of the delta function
can be written as

�mðm1;m2Þ¼ 1

ð2�Þ2
Z 1

�1
dx

Z 1

�1
dyexp

�
N

�
�ixm1� iym2

þ ln

��Z
d�expðixcos�þ iycos2�Þ

����
:

(9)

The integral can be evaluated using the saddle-point
method. The extremum corresponds to (x?, y?), which
must satisfy

m1 ¼
R
d� cos� exp½ix cos�þ iy cos2��R

d� exp½ix cos�þ iy cos2�� ; (10)

m2 ¼
R
d� cos2� exp½ix cos�þ iy cos2��R

d� exp½ix cos�þ iy cos2�� : (11)

Defining a ¼ ix? and b ¼ iy? and neglecting terms of
order lower than N,

1

N
ln�mðm1;m2Þ ¼�m1aðm1;m2Þ�m2bðm1;m2Þ

þ ln

�Z
d�exp½aðm1;m2Þcos�þbðm1;m2Þcos2��

�
:

(12)

In the thermodynamic limit, we may replace
ln�confðE� KÞ by ln�mðm1; m2Þ in Eq. (7). Furthermore,
noting that � ¼ "� u, where u ¼ ð1� �m2

1 � ð1�
�Þm2

2Þ=2, the maximization can be taken with respect
to m1, m2 instead of �. The entropy per particle then
becomes

sð"Þ ¼ 1

2
ln2�þ 1

2
þ supm1;m2

�
1

2
ln½ð2"� 1þ �m2

1

þ ð1��Þm2
2Þ� �m1aðm1; m2Þ �m2bðm1; m2Þ

þ ln

�Z
d� expðaðm1; m2Þ cos�þ bðm1; m2Þ

� cos2�Þ
��
: (13)

with the equilibrium values of the order parameter
(m?

1 , m
?
2 ) given by

�m?
1

2"� 1þ�m?2
1 þ ð1� �Þm?2

2

¼ aðm?
1 ; m

?
2 Þ; (14)

ð1� �Þm?
2

2"� 1þ�m?2
1 þ ð1� �Þm?2

2

¼ bðm?
1 ; m

?
2 Þ: (15)

Substituting these expressions into Eqs. (10) and (11),
we find the equilibrium values of the order parameters

m1 ¼
R
�
�� d� cos� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i
R
�
�� d� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i ; (16)

m2 ¼
R
�
�� d� cos2� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1
þð1��Þm2

2

i
R
�
�� d� exp

h
�m1 cos�þð1��Þm2 cos2�
2"�1þ�m2

1þð1��Þm2
2

i ; (17)

where for notational simplicity, we have dropped ?. In
the case of a first order phase transition—more than one
solution of Eqs. (16) and (17)—the equilibrium values
of m1 and m2 will correspond to the ones that lead to the
maximum entropy. The resulting microcanonical phase
diagram is shown in Fig. 1.
Equation (2) requires that the system described by the

Hamiltonian [Eq. (1)] is ergodic—has equal probability of
visiting all possible microstates. To see if this is the case,
we use MD simulations to study its dynamics. For the
GHMF, we are interested to understand how an ordered
(ferromagnetic or nematic) state can arise from an origi-
nally disordered homogeneous (paramagnetic) particle
distribution f0ð�; pÞ ¼ 1

4�p0
�ð�� j�jÞ�ðp0 � jpjÞ. The
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Hamilton’s equations of motion reduce to a second order
differential equation for �i,

€� i ¼ Fð�iÞ
� ��m1ðtÞ sin�iðtÞ � 2ð1��Þm2ðtÞ sin2�iðtÞ; (18)

where Fð�Þ is the force acting on a particle located at �,
and where we have used the fact that hsin�ðtÞi ¼
hsin2�ðtÞi ¼ 0, throughout the dynamical evolution
[15,21]. Comparing the phase diagram obtained using
MD simulations, we see that it is very different from the
prediction of the microcanonical BG statistical mechanics,
see Fig. 2.

Besides occurring in different regions of the (", �)
plane, the phase transitions predicted by the BG statistics
are of the wrong order. While the transitions from para-
magnetic to ferromagnetic or nematic phases are found to
be of second order, MD simulations show that these tran-
sitions are of first order. Furthermore, the second order
phase transition line between the nematic and the ferro-
magnetic phase disappears completely and is replaced by a
region of instability in which either phase can occur with
equal probability.

To understand the results of MD simulations, one must
forget equilibrium statistical mechanics and return to ki-
netic theory. In the thermodynamic limit, the dynamical
evolution of the one-particle distribution function fð�; p; tÞ
of a system with long-range interactions is governed
exactly by the Vlasov equation [22]. Vlasov dynamics is
collisionless—the relaxation to equilibrium comes from
Landau damping, a dynamical process in which individual
particles gain energy from collective oscillations, while
the oscillations are damped out. The one-particle
energy of the GHMF is � ¼ p2=2þ 1� �m1 cosð�Þ �
ð1� �Þm2 cosð2�Þ. Note that the initial particle distribu-
tion f0ð�; pÞ has m1 ¼ m2 ¼ 0, so that it can be expressed
as a function of �. This means that f0ð�; pÞ is a stationary

solution of the Vlasov equation. A phase transition in
GHMF, therefore, can occur only after a dynamical insta-
bility. To explore the nonlinear stability of the GHMF,
we consider a perturbation of the initial distribution,
such that the maximum momentum p0 ! pmðtÞ ¼ p0 þP1

n¼0 AnðtÞ cosðn�Þ. We define the generalized order pa-

rameters as

mnðtÞ � hcosðn�Þi �
Z

fð�; p; tÞ cosðn�Þdpd�; (19)

where fð�; p; tÞ ¼ 1
4�p0

�ð�� j�jÞ�ðpmðtÞ � jpjÞ. Note

that this distribution preserves the phase space density, as
is required by the Vlasov equation. Performing the inte-
gration in Eq. (19), we find that mnðtÞ ¼ AnðTÞ=2p0.
Taking two temporal derivatives of mnðtÞ, we obtain,

€mn ¼ �n2hp2 cosðn�Þi � nhFð�Þ sinðn�Þi; (20)

where we have used the equation of motion, Eq. (18).
Performing the averages using the distribution function
fð�; p; tÞ, we obtain the equations of motion for the gen-
eralized order parameters,

€m 1 þ
�
12"� 6� �

2

�
m1 ¼ f1ðm1; m2; m3; m4Þ; (21)
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FIG. 1. Microcanonical phase diagram obtained using BG
statistics. Solid circles are the two tricritical points.
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FIG. 2 (color online). The out-of-equilibrium phase diagram
of the GHMF. The squares and triangles are simulation results
for the qSS nematic-paramagnetic and para-ferromagnetic phase
transitions, respectively. The shaded area represents the nematic-
ferromagnetic transition region in which either phase occurs with
equal probability. To the right of this region, the order is
ferromagnetic, and to the left, nematic. Black solid lines are
the theoretical predictions for the transitions. All transitions are
first order. Insets show the phase space particle distribution in
different phases. Notice the characteristic core-halo structure
[15] inside both nematic and ferromagnetic phases. The simu-
lations were performed with 2� 106 particles for the
paramagnetic-nematic and paramagnetic-ferromagnetic transi-
tion, and with 2� 107 particles to locate the instability region
between the nematic and ferromagnetic phases.
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€m 2 þ 2ð12"þ�� 7Þm2 ¼ f2ðm1; m2; m3; m4Þ; (22)

€m 3 þ 27ð2"� 1Þm3 ¼ f3ðm1; m2; m3; m4Þ; (23)

€m 4 þ 48ð2"� 1Þm4 ¼ f4ðm1; m2; m3; m4Þ; (24)

where

f1 ¼ m1m2

�
1� 3�

2

�
þ ð�� 1Þm2m3 � 3ð2"� 1Þ

� fm3
1 þm2

1m3 þm3½m2ð2þm2Þ þ 2ð1þm2Þm4�
þ 2m1½m2 þm2

2 þm2
3 þm2m4 þm2

4�g; (25)

f2 ¼ �ðm2
1 �m1m3 þ 2m2m4Þ � 2m2m4

� 12ð2"� 1Þ½m3
2 þm2

3m4 þ 2m1m3ð1þm2 þm4Þ
þm2

1ð1þ 2m2 þm4Þ þ 2m2ðm2
3 þm4 þm2

4Þ�;
(26)

f3 ¼ 3m1

2
½ð2� �Þm2 ��m4� � 9ð2"� 1Þfm3

1 þ 6m2
1m3

þ 3m1½m2ð2þm2Þ þ 2ð1þm2Þm4�
þ 3m3½m2

3 þ 2ðm2
2 þm2m4 þm2

4Þ�g; (27)

f4¼2�m1m3�4ð��1Þm2
2�48ð2"�1Þ½2m1ð1þm2Þm3

þm2ðm2þm2
3Þþ2ðm2

2þm2
3Þm4þm3

4

þm2
1ðm2þ2m4Þ�: (28)

We have restricted ourselves to the first four generalized
order parameters, since these are already sufficient to under-
stand the phase diagram obtained using MD simulations.
Note that the right hand sides of Eqs. (21)–(24) are nonlinear
functions, so that the transition from paramagnetic-to-
ferromagnetic or paramagnetic-to-nematic phases is deter-
mined by the linear stability of these equations. Furthermore,
all the order parameters with n > 2 are linearly stable.
Equations (21) and (22) show that the paramagnetic
phase becomes unstable to ferromagnetic ordering when
12"� 6� �< 0 and tonematic orderingwhen12"þ��
7< 0. The two stability lines agree perfectly with the results
of MD simulations, see Fig. 2. It is important to note thatm3

andm4 always remain linearly stable (recall that " > 0:5 for
the initial distribution).

Linear stability analysis, however, is not sufficient to
determine the order of the phase transitions for which the
full nonlinear equations must be considered. We first note
that Eqs. (21)–(24) are conservative, they do not account
for the Landau damping that is responsible for the relaxa-
tion to equilibrium and formation of the core-halo struc-
tures [15], like the ones shown in the insets of Fig. 2.
Phenomenologically, Landau damping can be included in

Eqs. (21)–(24) by introducing terms linear in _mn. The
relaxation will then proceed towards the fixed points of
Eqs. (21)–(24) which can be calculated explicitly. We find
that when either transition line is crossed, the system
evolves either to nematic (m1 ¼ 0, m2 � 0) or ferromag-
netic (m1 � 0, m2 � 0) fixed points. When crossing the
paramagnetic-nematic phase transition line, (�< 0:5), the
order parameter m1 remains zero, while m2 jumps byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
ffiffiffiffi
43

p
18 � 29

18

q
� 0:459, independent of �. This theoretical

prediction is in excellent agreement with the results of
MD simulation which see a jump in the nematic order
parameter of 0.45, characterizing a strong first-order
phase transition, see Fig. 3. When the paramagnetic-
ferromagnetic line is crossed (�> 0:5), both m1 and m2

experience a jump. For � ¼ 0:6, the theory predicts the
jumps to be 0.5102 and�0:1861, for the ferromagnetic and
nematic parameters, respectively, while the simulations
find 0.41 and �0:10. For � ¼ 1, the theory predicts the
respective jumps to be 0.555391 and �0:1129, while the
simulations find 0.45 and �0:07. It is interesting to note
that while for the nematic transition the jump in m2 is
universal—independent of �—for the ferromagnetic tran-
sition, this is not the case.
What will determine the transition between nematic and

ferromagnetic phases? Deep inside the nematic and ferro-
magnetic phases, Eqs. (21)–(24) possess both stable ne-
matic (m1 ¼ 0, m2 � 0) and ferromagnetic fixed points
(m1 � 0, m2 � 0). Which of these fixed points is reached
first will depend on the initial condition. Starting from a
paramagnetic distribution f0, in the unstable region of the
phase diagram, both m1 and m2 will grow with time.
Equations (21) and (22) show that the rate of growth of
the two order parameters are, in general, very different,

while m1 � e�1t, where �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið6þ �� 12"Þ=2p

, the ne-

matic order parameter grows as m2 � e�2t, with �2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14� 24"� 2�

p
. If the nematic order parameter first
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FIG. 3 (color online). Panel (a) shows the growth and satura-
tion of the order parameter m2 across the paramagnetic-nematic
transition obtained using MD simulations. The predicted theo-
retical value ism2 ¼ 0:459, which is in excellent agreement with
the simulations. In panel (b), the symbols are the momentum
distribution in the qSS obtained using MD, while the solid line
depicts the corresponding Maxwell—Boltzmann distribution to
which the systems should relax in the infinite time limit. The
parameters are � ¼ 0:2 and u ¼ 0:567.

PRL 109, 230601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

230601-4



reaches the value characteristic of the nematic fixed point,
then nematic order will be established, otherwise the phase
will be ferromagnetic. Therefore, we expect that the
nematic-ferromagnetic transition line should be given by
�1 ¼ �2 (solid line between nematic and ferromagnetic
phases in Fig. 2). This is indeed where the instability
characterizing nematic-to-ferromagnetic region is found
to be, see Fig. 2.

We have introduced a generalized Hamiltonian mean
field model. In addition to the usual paramagnetic and
ferromagnetic phases, this model also possesses a nematic
phase. We have obtained the phase diagram of the GHMF
using three different methods: BG statistical mechanics,
MD simulations, and a new dynamical theory introduced in
this Letter. The model exemplifies the failure of BG sta-
tistics to describe isolated systems with LR interactions, in
the thermodynamic limit. This is the first time that a
complex (multiphase) out-of-equilibrium phase diagram
for quasistationary states has been calculated analytically
for a system with LR interactions.
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