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Euler fluid in two dimensions: Statistical approach
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We use Kirchhoff’s vortex formulation of 2D Euler fluid equations to explore the equilibrium state to
which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton’s
equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid
can, therefore, be expressed in terms of an infinite number of infinitesimal vortices. If the vortex dynamics is
mixing, the final equilibrium state of the fluid should correspond to the maximum of Boltzmann entropy, with
the constraint that all the Casimir invariants of the fluid must be preserved. This is the fundamental assumption
of Lynden-Bell’s theory of collisionless relaxation. In this paper, we will present a Monte Carlo method which
allows us to find the maximum entropy state of the fluid starting from an arbitrary initial condition. We will then
compare this prediction with the results of molecular dynamics simulation and demonstrate that the final state
to which the fluid evolves is, actually, very different from that corresponding to the maximum of entropy. This
indicates that the mixing assumption is not correct. We will then present a different approach based on core-halo
distribution which allows us to accurately predict the final state to which the fluid will relax, starting from an
arbitrary initial condition.

DOI: 10.1103/PhysRevE.107.024115

I. INTRODUCTION

Dynamics of inviscid 2D fluids has a long history. The fluid
equations of motion were written by Euler and studied in great
detail by Kirchhoff and others. Of particular interest are large
vortex structures to which sheared 2D fluids are observed to
evolve. The giant vortices, such as Jupiter’s Red Spot are
of great importance in atmospheric science. To explain the
formation of these large-scale structures, Onsager appealed to
statistical mechanics [1]. In particular, he showed that if one
treats vortices as particles and invokes Boltzmann’s statistical
mechanics, the maximum entropy state will have negative ab-
solute temperature. The reason for such a population-inverted
state is that, at variance with particle systems, for fluid con-
fined within a finite area—such as a planetary surface—the
accessible phase space has finite volume. The compact phase
space will result in entropy having two branches, one in which
it increases with energy similar to normal particle systems,
and a branch in which entropy decreases with energy. This
second branch will lead to negative absolute temperature,
if one applies the usual rules of thermodynamics to define
temperature. The existence of a negative temperature state
would lead to a population inversion in which microscopic
vortices bunch together, resulting in a giant vortex. In practice,
one does not need to have fluid confined in finite space to
meet the conditions for the existence of a negative temperature
state—conservation of angular momentum results in an effec-
tive confining potential, which also leads to self-confinement
and population inversion [2].

One problem with Onsager’s approach is that it uses clas-
sical statistical mechanics to treat microscopic vortices inside
Euler fluid. Indeed, one can write 2D Euler equations [3] in
terms of vortex density �(r, t ) = (∇ × u(r, t )) · k̂, where u

is the fluid velocity, k̂ is a unit normal to the fluid plane,
and r ≡ xı̂ + yĵ . The motion of the vortex density is then
governed by

∂�

∂t
+ (u · ∇)� = 0, (1)

∇ · u = 0. (2)

The incompressibility condition for u allows us to introduce
a stream function ψ , such that u(r, t ) = ∇ × ψ (r, t )k̂, which
using the definition of vortex density then satisfies the Poisson
equation

�ψ (r, t ) = −�(r, t ), (3)

the solution to which can be written in terms of a Green’s
function, which in open space takes the form G(ri, r j ) =
(−1/2π ) ln |ri − r j |,

ψ (r, t ) =
∫

�(r′, t ) G(r, r′) dr′, (4)

= − 1

2π

∫
�(r′, t ) ln |r − r′| dr′. (5)

The vortex density can be written in terms of individ-
ual vorticity of point vortices, �(r, t ) = ∑

i �iδ(r − ri(t )).
Since the velocity of point vortices must be the same as
of fluid at the same location, we conclude that ṙi = ∇i ×∑

j �=i � j G(ri, r j ) k̂ and we see that the vortex dynamics has
a Hamilton-like structure,

�iẋi = ∂H
∂yi

, �iẏi = −∂H
∂xi

, i ∈ {1, 2, . . . , N}, (6)
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FIG. 1. Phase-space evolution of the density levels: The left
panel shows the initial condition of a two-level distribution function
and the right panel shows an intermediary state at some later time.

where we have defined the Kirchhoff function as

H = 1

2

∑
i, j

�i� j G(ri, r j ), (7)

= − 1

4π

∑
i, j

�i� j ln |ri − r j |. (8)

A fundamental theorem of fluid dynamics [4,5] states that any
smooth solution of a 2D Euler equation can be approximated
over a finite time interval using N point vortices of vanishing
vorticity �i ∼ ±1/N in the limit N → ∞. This corresponds
precisely to the thermodynamic limit for systems with long-
range interactions [6–8]. It is well-known that in the limit
N → ∞, such systems do not relax to thermodynamic equi-
librium, precluding direct application of Boltzmann-Gibbs
statistical mechanics. This invalidates Onsager’s attempt to
apply standard statistical mechanics arguments to explain the
formation of large structures in 2D Euler fluids.

In this paper, we will restrict our attention to flows with
circulation of only one sign, however, the theoretical discus-
sion presented below can be easily extended to arbitrary flows
containing both clockwise and counterclockwise vortices. If
all vortices have the same vorticity �i = �T /N , where �T

is the total vorticity, the vortex equations of motion can be
further simplified to read

dxi

dt
= ∂ψ

∂y
,

dyi

dt
= −∂ψ

∂x
. (9)

Defining the vortex distribution function f (r, t ), the vor-
tex density can be written as �(r, t ) ≡ �T f (r, t ), where we
have normalized the distribution function to unity. Since the
vortices are simply advected by the flow, as per Eq. (1),
the distribution function satisfies the collisionless Boltzmann
(Vlasov) equation:

∂ f

∂t
+ ∂ψ

∂y

∂ f

∂x
− ∂ψ

∂x

∂ f

∂y
= 0. (10)

This equation has an infinite number of conserved quantities,
which are known as the Casimir invariants. In particular,
volumes occupied by different levels of the distribution func-
tion are the Casimir invariants of the Vlasov equation. This
suggests that one can apply Lynden-Bell’s (LB’s) theory of
collisionless relaxation to Euler hydrodynamics of 2D inviscid
fluid.

II. LYNDEN-BELL THEORY

Lynden-Bell (LB) suggested that the equilibrium state re-
sulting from collisionless relaxation should correspond to the
maximum of Boltzmann entropy, under constraints that the
Casimir invariants of the Vlasov dynamics be preserved [9]. In
particular, volume occupied by different levels of the distribu-
tion function are Casimir invariants, as well as any functional
of the distribution function. LB then suggested that in addition
to the usual constraint of conservation of total energy and mo-
mentum, conservation of phase-space volume corresponding
to different phase space levels of the initial distribution must
be also taken into account. For an arbitrary initial flow, this
requires an infinite number of Lagrange multipliers, which
makes the solution of LB’s equations very difficult. Below
we provide a stochastic technique that allows us to easily find
LB’s equilibrium using a Monte Carlo (MC) approach.

According to LB’s idea, the initial continuous vortex dis-
tribution can be discretized in different levels. The phase
space—which in the case of vortex dynamics is simply the
configuration space (x, y)—is then divided into macrocells
that in turn are subdivided into microcells. All the macro-
scopic observables are defined on the level of macrocells,
while the incompressibility intrinsic to the Vlasov dynamics
prevents more than one level from occupying a given mi-
crocell. This is schematically demonstrated in Fig. 1. During
the evolution, the initial distribution function spreads over

FIG. 2. Snapshots of the phase space obtained using the SEMA. The left panel shows the initial condition of a one-level distribution func-
tion, f (x, y) = 0.5 �(1.0 − |x|) �(0.5 − |y|), normalized to unity. The central panel shows the steady state corresponding to LB equilibrium,
while the right panel shows the radial distribution.
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FIG. 3. Snapshots of the phase space obtained using the SEMA. The left panel shows the initial condition of a continuous distribution
function, f (x, y) = 0.7e−x4−16y4

�(1.0 − |x|) �(0.5 − |y|), normalized to unity. The central panel shows the steady state corresponding to LB
equilibrium, while the right panel shows the radial distribution.

the phase space until a state of maximum disorder (entropy),
consistent with all the conserved quantities, is reached.

To find the equilibrium distribution within LB theory, we
start by discretizing the initial vortex distribution function
f (x, y) into the discrete function f̄ (i, j) whose domain is
a regular lattice that corresponds to the macrocells’ centers.
This rectangular lattice is built from the tensor product of two
uniform grids of (−L, L):

{xi = (i − 0.5)hx − L, i = 1, . . . , M, hx = 2L/M},
(11)

{y j = ( j − 0.5)hy − L, j = 1, . . . , N, hy = 2L/N},
(12)

such that the coordinate (x, y) in the configuration space maps
to the center node of the i j cell in the Eulerian mesh, that is,
f (x, y) → f̄ (i, j), or f̄i j for short. Each of the lattice’s cells
contains ν microcells, for which the density of the microcell
of index k is ηk , and the density at coordinate (i, j) is simply
the arithmetic mean over all its microcells:

f̄i j = 1

ν

ν∑
k=1

ηi j,k . (13)

At the beginning, the density levels are set to a value
identical to the distribution function in the corresponding
coordinate, i.e., ηi j,k = f (xi, y j ) ∀ k ∈ {1, . . . , ν}, so all the
microcells within a macrocell (i, j) have exactly the same
density level. The potential (stream function, ψi j), produced

by the density distribution function, f̄i j , is computed on an
identical M × N Eulerian mesh (on the macrocells) using the
discrete Poisson equation

(�ψ )i j = −2π f̄i j,(
D2

xxψ
)

i j + (
D2

yyψ
)

i j = −2π
1

ν

ν∑
k=1

ηi j,k, (14)

where the second central difference operator is denoted by(
D2

xxψ
)

i j ≡ ψi+1, j − 2ψi, j + ψi−1, j

h2
x

and (15)

(
D2

yyψ
)

i j ≡ ψi, j+1 − 2ψi, j + ψi, j−1

h2
y

, (16)

with Dirichlet boundary conditions within a disk � of radius

L, ∂� = 0. The results shown in this paper were obtained
using a square grid of dimensions M, N equal to 512, the
number of microcells per macrocell ν = 32, and the length of
each macrocell is hx = hy = 0.0039L. The potential is com-
puted with the aid of the successive-over relaxation iterative
method [10]. The total energy and angular momentum of the
initial distribution are, respectively,

E0 = hxhy
1

2

∑
i, j

f̄i jψi j, (17)

L0 = hxhy

∑
i, j

f̄i j r
2
i j, (18)

FIG. 4. Snapshots of the phase space obtained using MD simulation. The figures show the evolution of the initial condition of Fig. 3 (left
panel). Note the rotation of the distribution function as it evolves. The vortices that are ejected from the core region move along the separatrix
orbit, resulting in a steady state different from LB distribution.
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FIG. 5. Snapshots of the phase space obtained using MD simu-
lation. The figures show the early stages of evolution of the initial
condition f (x, y) = (2.5/π ) �(1.0 − x2 − 6.25y2). Notice that even
without linear instabilities, vortices are ejected and concentrate in the
resonant region.

FIG. 6. Isolines of the potentials (thin lines) produced by a
Kirchhoff’s vortex (thick lines): The left panel shows the potential in
the laboratory reference frame, while the right panel shows the trans-
formed potential in the rotating reference frame. The transformed
potential exhibits a separatrix between high- and low-energy regions
(green lines).

and are conserved by the dynamics. To find the maximum
entropy state, we developed a stochastic entropy maximiza-
tion algorithm (SEMA) based on a canonical MC with two
Lagrange multipliers α and β—the first to conserve the total
angular momentum and the second the total energy inside the
system. The basic steps of SEMA are the following:

(1) Select two macrocells at random. The first macrocell
is selected and then removed from a list containing all macro-
cells of the grid.

(2) For each of the selected macrocells, select a microcell
at random. If a microcell is empty, its density level is zero.

(3) Compute the energy and angular momentum variation
for the attempted exchange,

δE = (ηA,1 − ηB,2) × (ψA − ψB), (19)

δL = (ηA,1 − ηB,2) × (
r2

A − r2
B

)
, (20)

where A and B refer to the macrocells containing microcells
1 and 2, respectively. r2 is the square distance from the center
to the macrocell and ψ is the stream function.

(4) The acceptance probability for the exchange of density
levels between the two microcells is given by the Metropolis
algorithm,

e−βδE−αδL > P(X ), (21)

where P(X) is a uniform random number between 0 and 1.
Starting with an initial guess, the Lagrange multipliers β and
α must be adjusted so the energy and angular momentum are
conserved.

(5) Perform steps 1 through 4 until all coordinates are
chosen exactly one time. This will define a one Monte
Carlo step (MCS). Then, reinitialize the list used in the first
step.

FIG. 7. Contour plots—in the rotating reference frame, with ω calculated using Eq. (32)—of the stream function (thin lines) and of
isodensities (points) obtained using MD simulation and Eqs. (28). The panels correspond to the contour plots in Fig. 4. The final steady
state (right panel) exhibits exact isopotentials, while the initial (left panel) and intermediary (central panel) states’ isopotential curves are
approximate, since the distribution functions undergoes distortion as it rotates. One can see that vortices rearrange themselves by spreading
along the equipotential lines.
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FIG. 8. Contour plot of the stream function and divisions of the phase space into distinct regions: The left panel shows isopotentials of the
stream function, including the separatrix εs and the Fermi energy εF . The uncolored region marks all outer isopotentials with energy greater
than the halo energy εh—the separatrix of the initial distribution; the central panel shows the division of the phase space into inner and outer
regions. The interface between them is delimited by the separatrix, while the outer region is also bounded externally by εh; the right panel
shows further division into core and halo regions. The core is defined as the inner region whose potential is above εF , while the halo is defined
as the inner region whose potential is below εF plus the outer region whose potential is between εh and εs.

(6) After each MCS, the values of f̄ and ψ are updated.
The Lagrange multipliers are updated as

β (new) = β (old) + σE (E − E0)/E0, (22)

α(new) = α(old) + σL(L − L0)/L0, (23)

where E and L are, respectively, the energy and angular
momentum of the current iteration and E0 and L0 are the
conserved values of these quantities. The parameter σ controls
the speed of updates. The updates will stop when both en-
ergy and angular momentum converge to the target values E0

and L0.
For an initial-one level water-bag distribution of vortices,

the LB distribution corresponding to the maximum entropy
state can be calculated explicitly and is given by

fLB(r) = η

1 + eη(βψ (r)+αr2−μ)
, (24)

where η is the level density in the initial distribution, see Fig. 2
(left panel). Combining this with the Poisson equation for
the stream function ψ and taking into account the conserva-
tion of energy and angular momentum allows us to uniquely
determine the parameters α, β and the stream function ψ (r).
The radial vortex density distribution is plotted in Fig. 2 (right
panel), where we have also plotted the data points obtained
using SEMA. We see that the results of SEMA are in excellent
agreement with the numerical solution of LB theory. In Fig. 2
(center panel), we also show the equilibrium density distribu-
tion of vortices over the configuration space calculated using
SEMA.

TABLE I. Definition and update rules of pertinent parameters
for the phase space division into active and inactive regions. At the
beginning, εs = εh by definition, while εF = εs as the first guess.

Initial value Update rule

εh separatrix of initial condition εh = ψ̃ (x = 0, y = ym )
εs separatrix of initial condition recomputed as the separatrix

of current distribution
εF separatrix of initial condition updated according to Eq. (33)

The advantage of SEMA is that it automatically accounts
for different density levels of the initial distribution, while
if we attempt direct entropy maximization these must be
included as an infinite set of Lagrange multipliers. For ex-
ample, in Fig. 3 we study relaxation of the initial distribution
f (x, y) ∝ exp(−x4 − 16y4). The equilibrium density distribu-
tion calculated using SEMA is shown in Fig. 3 (center panel),
while the radial density distribution function is shown in Fig. 3
(right panel).

Although theoretically very appealing, comparing the
predictions of LB theory with molecular dynamics (MD)
simulation based on the equations of motion, Eqs. (9), we
see that the final state to which the system evolves is very
different than what is predicted by the LB theory. The MD
simulations were performed with 223 ≡ 8 388 608 vortices. To
minimize collisional effects, the density distribution function
was computed using a particle-in-cell technique [11] on a grid
identical to that used by the statistical approaches. The state
of the system was advanced using a fifth-order Runge-Kutta
algorithm with an error of order 10−6. Instead of a circularly
symmetric stationary solution predicted by LB and observed
in Figs. 2 and 3, we find a very complicated noncircular
core-halo structure undergoing rotation with constant angular
velocity ω [2], see Fig. 4. Clearly, another approach must be
taken to understand the complex relaxation observed in 2D
Euler fluids. We will do this in the next section by combining
the theory of core-halo with a SEMA-like algorithm.

III. THE CORE-HALO MODEL APPROACH

The core-halo theory was introduced to account for the
relaxation of an elliptical Kirchhoff vortex patch. It is well-
known that a highly eccentric elliptical vortex patch is
susceptible to linear instabilities [12,13], however, even low-
eccentricity elliptical Kirchhoff vortices are susceptible to
nonlinear instabilities in which the vortices close to the border
enter in resonance with the rotation of the patch and are
ejected from the macro vortex [2], see Fig. 5.

Since the Hamiltonian (Kirchhoff function) depends only
on x and y coordinates, the vortices that are ejected end
up with lower energy than vortices that are inside the core
region. The process of evaporative heating results in the
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FIG. 9. Subsequent stages of SCHA corresponding to the evolution of the distribution function shown in Fig. 4 with the contour plot of its
potential overlaid over the phase-space snapshots. Note that the vortices move from inactive regions according to the established criteria for
core and halo regions.

reorganization of the core region and formation of a core-halo
structure. The situation becomes clearer if we transform into
the reference frame that rotates together with the vortex patch:
(x, y) → (x̃, ỹ),

x̃ = +x cos(ωt ) + y sin(ωt ), (25)

ỹ = −x sin(ωt ) + y cos(ωt ), (26)

with angular velocity ω of the elliptical Kirchhoff vortex. The
canonical coordinate transformation can be described by the
generating function,

F (x, ỹ) = xỹ

cos(ωt )
+ x2 + ỹ2

2
tan(ωt ), (27)

such that x̃ = ∂F/∂ ỹ and y = ∂F/∂x. Since the generating
function has an explicit time dependence, the stream function
in the rotating reference frame will be

ψ̃ (x̃, ỹ) = ψ (x̃, ỹ) + ∂F
∂t

,
∂F
∂t

= ω

2
(x̃2 + ỹ2). (28)

In Fig. 6, we plot the equipotential curves corresponding
to the stream function in the laboratory and in the rotating
reference frame. We see that while in the laboratory frame
the surface of the ellipse is not an equipotential, in a rotating
reference frame with a specific value of ω the surface of the
ellipse becomes an equipotential. This means that it is possible
to write the distribution function in a way that the depen-

dence on coordinates appears only through ψ̃ (x, y), where to
simplify the notation we have removed the tilde over x and
y. This implies that rotating the Kirchhoff elliptical vortex
is a stationary solution (in the rotating reference frame) of
the Vlasov equation. In the thermodynamic limit, the Kirch-
hoff vortex would rotate forever. In practice, however, it is
susceptible to small perturbations which can lead to linear
and nonlinear instabilities [13–16]. The perturbed vortices are
caught by the separatrix isopotential trajectory, resulting in
vortex evaporation and halo formation, see Fig. 6.

The separatrix trajectory captures vortices that are close to
the border of the ellipse and moves them away to the low-
energy regions of phase space, forming a halo, while other
vortices compensate for this by moving into high-energy re-
gions inside the core. This results in the population inversion
in the core region. This process can continue until all the high-
energy levels inside the core are fully occupied up to the Fermi
energy, producing a fully degenerate cold core. In the present
case, we think of cold as T → 0−, which is consistent with
Onsager’s idea of negative temperature. The final state is a
characteristic core-halo structure with a population-inverted
core region.

In the laboratory frame, formation of the halo follows a
filamentation process, as can be seen in Fig. 4. As the original
vortex patch undergoes relaxation, vortices are captured by the
resonance and follow the separatrix orbit, which takes them
away from the core region. Evaporation perturbs the rotation

FIG. 10. Snapshots of the phase space obtained using SCHA and MD simulation. The left panel shows the initial condition of a one-
level rectangular distribution function, f (x, y) = 0.5 �(1.0 − |x|) �(0.5 − |y|), normalized to unity. The central panel shows the steady state
obtained using SCHA, while the right panel shows the steady state obtained using MD simulation. The MD simulation has a halo that extends
farther than predicted by the theory.
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FIG. 11. Comparison of the density distribution over the x and y
axes of the steady states obtained using SCHA and MD simulations.
These correspond to the steady states shown in Fig. 10.

of the core, affecting the resonant orbit (separatrix), which
moves inward toward the core. Since the ejected vortices go to
the low-energy region of the phase space, the vortices in the
core rearrange themselves so the total energy remains con-
served. However, because of the incompressibility constraint
imposed by Vlasov dynamics, the process cannot continue
indefinitely, and at some point the core will become frozen—
all the free energy liberated by the evaporated vortices will
result in a fully degenerate cold core in which all the highest
energy states up to the Fermi energy are occupied. At this
point, the process of evaporative heating must come to an end.
In practice, one often sees incomplete relaxation, in which the
core does not reach a fully degenerate frozen state.

To solve the core-halo model, we must self-consistently
calculate the stream function produced by the particle dis-
tribution with a core-halo structure. Inside the core, the
temperature is T → 0−, which requires the occupation of en-
ergy levels inside the stream function to follow a hierarchical
structure, where the higher density levels will be closer to the
center of the core than the low density levels. Simultaneously
with this, there is a process of vortex evaporation that leads
to formation of a halo. In principle, it is possible to write the
equations that will allow us to calculate the core-halo structure
self-consistently, accounting for the conservation of the total
energy and momentum, as well as the volume occupied by all
the density levels in the initial distribution function. In prac-
tice, however, it is easier to solve the core-halo theory using
a stochastic algorithm, similar to what we did for LB theory.

We will call this stochastic core-halo algorithm (SCHA). The
algorithm is based on the following subdivision of the phase
space: In the rotating reference frame, the configuration space
is divided into two active regions, namely, core and halo, in
which density levels are allowed to remain. The separatrix
then divides the configuration space into a high-energy inner
region and a low-energy outer region. The core corresponds
to an inner, maximally packed, cold region bounded by a
Fermi energy εF , and the halo corresponds to a low density
nonuniform region extending from the inner region to the
outer region, where it is bounded by the halo energy εh—the
halo energy is defined as the value of the isopotential corre-
sponding to the maximum ym of the separatrix of the initial
distribution, εh = ψ̃ (x = 0, y = ym) . The angular velocity of
the vortex patch (which is also the angular velocity of the
rotating reference frame) is calculated using the inertia tensor
of the distribution:

I =
[

〈x2〉 −〈xy〉
−〈xy〉 〈y2〉

]
. (29)

The angle, θ , between the x axis and the major principal axis
of the distribution can be found using the arctan function and
the components of one of the eigenvectors computed from the
inertia matrix, Eq. (29):

θ = arctan

(
2〈xy〉

〈y2〉 − 〈x2〉 −
√

4〈xy〉2 + (〈x2〉 − 〈y2〉)2

)
.

(30)

The instantaneous angular velocity can be calculated as the
time derivative of θ . Assuming that the distribution is axisym-
metric and that at the time of measurement the principal axis
coincides with x and y axis, so 〈xy〉 −→ 0, we obtain

ω = dθ

dt
= −

˙〈xy〉
〈x2〉 − 〈y2〉 = − 〈xẏ + yẋ〉

〈x2〉 − 〈y2〉 . (31)

The Eulerian mesh or discretized version of the above
equation can be written as

ω ≡ −
∑M

i=1

∑N
j=1 f̄i j (xiẏ j + y j ẋi )∑M

i=1

∑M
j=1 f̄i j

(
x2

i − y2
j

) , (32)

where M and N are the dimensions of the Eulerian mesh.

FIG. 12. Snapshots of the phase space obtained using SCHA and MD simulation. The left panel shows the initial condition of a continuous
rectangular distribution function, f (x, y) = 0.7 e−x4−16y4

�(1.0 − |x|) �(0.5 − |y|), normalized to unity. The central panel shows the steady
state obtained using SCHA, while the right panel shows the steady state obtained using MD simulation.
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FIG. 13. Comparison of the density distribution over the x and y
axes of the steady states obtained using SCHA and MD simulations.
These correspond to the steady states shown in Fig. 12.

Unlike for the Kirchhoff elliptical vortex patch, the steady-
state angular velocity of an arbitrary initial distribution is not
known a priori. For example, the isopotential lines shown
in Fig. 7 (left and center panels) are only approximations,
since in the early stages of evolution the rectangular vortex
patch is undergoing distortion and does not rotate as a rigid
body. The isopotentials were obtained using Eqs. (28) with
angular velocity ω computed from the actual particle distribu-
tion functions obtained from MD simulation using Eq. (32).
We see that the point vortices in the MD simulation clearly
follow the trajectories described by the isopotential lines.
Figure 7 (right panel) shows that even after the dynamics
has long stopped in the core region, the halo continues to
evolve through the process of filamentation. However, since
the halo is so tenuous and has a quasicircular symmetry
it does not contribute significantly to the resulting angular
velocity.

Following the structure of isopotentials, we see that while
the core exists only in the inner region, the halo extends
between the inner and outer regions. This is illustrated in
Fig. 8. The core is defined as the inner region whose potential
is above the Fermi energy εF , which will be calculated self-
consistently as will be described below. The halo region is
defined as the inner region whose potential is below εF plus
the outer region whose potential is between the halo energy
εh and the separatrix region εs, see Fig. 8 (right panel). Core
and halo belong to active regions, namely, the regions for
which exchange of density levels is allowed. Density levels

can also be found in the inactive regions—outside the core and
halo—due to the initial distribution or due to previously active
regions becoming inactive as the separatrix moves inward.
Therefore, transfer from inactive to active regions is allowed,
but not vice versa.

The rules of SCHA are very simple. Steps 1 to 3 and step 5
of SCHA are identical to those of the SEMA algorithm, while
steps 4 and 6 are modified as follows:

(4) Evaluate the acceptance of exchange of density levels
between the two microcells: The variation in energy must be
positive if the exchange involves a microcell within the core
region. Random exchange of levels within the halo region
is allowed. Additionally, the variation in angular momentum
must be kept very small, on the order of a single exchange,
i.e., with the exception of the first exchange, all exchanges
must compensate for the resulting difference, which means
that if the previous movement resulted in an excess of angular
momentum, only exchanges that decrease angular momen-
tum are accepted, and vice versa. This means that—apart
from small fluctuations—the angular momentum is always
conserved.

(6) After one MCS, the stream function and angular ve-
locity are recalculated. Finally, the Fermi energy is updated,

ε
(new)
F = ε

(old)
F + σE (E − E0)/E0, (33)

where E is the current iteration energy and E0 is the energy
of the initial distribution that must be conserved.

In the present paper, we used σE = 1 for the speed of
updates and εF is initially set to εs, so the core region is
defined as the inner region. In SCHA, the Fermi energy acts
as a Lagrange multiplier which is adjusted so the total energy
inside the system is conserved—when the resulting energy E
is larger than E0, the Fermi energy increases, making the core
region smaller, so the vortices that were part of the core are
scattered into the halo region and the total energy decreases.
If the resulting energy E is smaller than E0, then the Fermi
energy decreases, making the core region larger and allowing
more vortices to migrate into the central region, increasing the
energy. The updates in Eq. (33) will end when the distribution
converges to the final stationary state with energy E = E0.
Note that the total energy is computed in the laboratory frame.
This is necessary because the rotational velocity changes with
each iteration until a stationary state is reached. The initial

FIG. 14. Snapshots of the phase space obtained using SCHA and MD simulations. The left panel shows the initial condition of a continuous
distribution function, f (x, y) = 1.0 e−x2−4y2

�(1.0 − x2 − 4y2), normalized to unity. The central panel shows the steady state obtained using
SCHA, while the right panel shows the steady state obtained using MD simulation.
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FIG. 15. Comparison of the density distribution over the x and y
axes of the steady states obtained using SCHA and MD simulations.
These correspond to the steady states shown in Fig. 14.

value and the update rules of εh, εs, and εF are shown in
Table I.

The different stages of SCHA are illustrated in Fig. 9. It
shows the early stages of the distribution function overlaid by
the isopotential levels of the stream function as the calculation
progresses. The vortices move from inactive regions into the
core and the halo regions, according to the established rules.

Starting from a continuous vortex distribution, SCHA con-
verges to a highly nontrivial distribution function that rotates
in the laboratory frame with a constant angular velocity ω =
0.85 and has a high-density elliptical core surrounded by a
low-density halo, see Fig. 9. The final steady state is shown
in Fig. 12 (center panel). In MD simulations, the rotational
velocity is found to be ω = 0.95. This happens because the ex-
pression for the angular velocity—as per Eq. (32)—depends
on the distribution of vortices and the result of the MD is
somewhat more elliptical than the one calculated by the sta-
tistical method, compare Fig. 12 center and right panels. In
Figs. 10–19, we consider more complex continuous initial
distributions and also compare the resulting stationary (in
the rotating frame) density profiles with the results of MD
simulations.

One flaw of the core-halo theory is that the maximum
extent of the halo is calculated from the separatrix of the initial
vortex distribution function. If such a distribution function is
linearly unstable, which is the case for high aspect ratios, the
resulting instability can expel vortices farther than the extent

FIG. 17. Comparison of the vortex density distribution along the
x and y axes in the steady state predicted using SCHA and compared
with MD simulations. These correspond to the steady state shown in
Fig. 16.

of the separatrix [16]. Figures 10, 12, 14, and 16 show the
stationary solutions (in rotating frame) compared with MD
simulations for various initial distributions. One can see that
for these initial distributions, the halos extend farther than
what is predicted by the theory. Nevertheless, since the halo
density is so small, this has only a very minor effect on the
density distribution and the shape of the core region, which are
very accurately described by the core-halo theory. To obtain
a more quantitative comparison of theory with simulations,
Figs. 11, 13, 15, and 17 present the vortex density distributions
along the principal axis, showing that the theory quantitatively
accounts for the density distribution within the core and semi-
quantitatively inside the halo. What is even more impressive
is that theory predicts that one-level rectangular distribution
with the aspect ratio larger than ∼6.3 will break up into two
identical distorted elliptical vortex patches of complex shape
surrounded by a halo which will rotate around their center of
mass. This is quantitatively verified using MD simulations,
which shows that the breakup into two identical vortex patches
occurs for an aspect ratio of ∼6.1 or greater. Figures 18 and 19
compare the steady state obtained from SCHA and MD simu-
lation for an aspect ratio of 6.5, showing excellent agreement.
Furthermore, the theory predicts that the two-blob core will
rotate around its center of mass with ω = 0.944, while MD
finds ω = 0.939.

FIG. 16. Snapshots of the phase space obtained using SCHA and MD simulations. The left panel shows the initial condition of a one-level
rhombic distribution function, f (x, y) = �(1.0 − |x| − 2|y|), normalized to unity. The central panel shows the steady state obtained using
SCHA, while the right panel shows the steady state obtained using MD simulation. As in the other simulations, the MD simulation exhibits a
thicker halo, but the core predicted by SCHA is very similar to the core observed in the MD simulation.
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FIG. 18. Snapshots of the phase space obtained using SCHA and MD simulations. The left panel shows the initial condition of a one-level
rectangular distribution function, f (x, y) = 1.625 �(1.0 − |x|) �(1/6.5 − |y|), normalized to unity. The central panel shows the steady state
obtained using SCHA, while the right panel shows the steady state obtained using MD simulation. As in the other simulations, the MD
simulation exhibits a thicker halo.

IV. CONCLUSION

We have used Kirchhoff’s vortex formalism to explore
stationary solutions of 2D Euler fluid equations. The vortex
dynamics obeys Hamilton’s equations of motion with x and
y coordinates of vortex position forming a conjugate pair. A
state of fluid can, therefore, be expressed in terms of infinite
number of infinitesimal vortices.

The Hamiltonian structure of the vortex dynamics natu-
rally draws an analogy with short-range interacting particles
systems. Specifically, we know that the equilibrium state
to which a many-body system—such as a gas or an elec-
trolyte solution or a colloidal suspension—will evolve from
an arbitrary initial distribution can be calculated using MD
simulations. On the other hand, we know that this is not nec-
essary, since Boltzmann-Gibbs statistical mechanics allows
us to predict the final thermodynamic equilibrium without
performing explicit MD simulations. Based on this, we can
calculate the final distribution functions inside a liquid, solid,
electrolyte, etc. using equilibrium statistical mechanics. In
practice, it is often impossible to calculate the partition func-
tion except for very simple systems. A practical solution is
to use MC simulations to obtain the equilibrium state of a
system. MC dynamics has nothing to do with the dynamics

FIG. 19. Comparison of the density distribution over the x
axis and radial distribution of the steady states obtained using
SCHA and MD simulations. These correspond to the steady states
shown in Fig. 18. The radial distribution is defined as �(r) =
(2π )−1

∫ 2π

0 �(r, θ )dθ.

of MD simulations, which relies on solution of Newton’s
equations of motion. It is just a statistical tool to numer-
ically perform entropy maximization. The difficulty is that
for systems with long-range interactions—such a vortices
in Euler fluid, gravitational systems, and magnetically con-
fined plasmas—one cannot use Boltzmann-Gibbs statistical
mechanics. These systems do not evolve to thermodynamic
equilibrium but become trapped in nonequilibrium steady
states [8].

If the vortex dynamics would be mixing, the final equi-
librium state of the fluid would correspond to the maximum
of the Boltzmann entropy, with the constraint that all the
Casimir invariants of the fluid are conserved. This is the basic
assumption of LB’s theory of collisionless relaxation. In this
paper, we have presented a stochastic method that allows us
to find the maximum entropy state of the fluid starting from
an arbitrary initial distribution of vortices. We then compared
the predicted stationary distributions for various initial con-
ditions with the results of MD simulations and demonstrated
that the final state to which the fluid evolves is indeed very
different from that of maximum entropy. This indicates that
the mixing assumption is not valid. We then presented a
core-halo theory which allows us to semiquantitatively predict
the final state to which the fluid will relax. In practice, the
core-halo equations are very difficult to solve except for very
simple water-bag initial distributions. In the present paper, we
showed how these equations can be solved using a stochastic
method similar to MC simulations for systems with short-
range interactions. We then applied the theory to predict the
final stationary state to which various vortex patches will
evolve. We find that, in general, the vortex distributions are
only stationary in a rotating reference frame, while in the
laboratory frame they rotate with a constant angular velocity,
which the theory allows us to predict explicitly. If the starting
vortex distribution has a large aspect ratio, we find that in
the stationary state it will split into two distorted elliptical
vortex patches which rotate around their center of mass and
are surrounded by a tenuous halo. The theory allows us to
accurately predict the bifurcation point and the final station-
ary vortex distribution. All the theoretical predictions were
compared with the explicit MD simulations and were found to
be in good agreement. In future work, we intend to apply the
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theory developed here to predict the stationary flows that re-
sult from Kelvin-Helmholtz instabilities of sheared 2D Euler
fluid flows.
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