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A theoretical framework is presented which allows us to quantitatively predict the final stationary state

achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application,

the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam

relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates,

parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the

density and the velocity distributions in the final stationary state.

DOI: 10.1103/PhysRevLett.100.040604 PACS numbers: 05.20.�y, 05.70.Ln, 41.85.Ja, 52.25.Dg

Relaxation to a final stationary state (SS) of particles in-

teracting through long-range forces, such as (unscreened)

Coulomb or gravitational, is intrinsically different than that

of systems with short-range interactions [1]. In the latter

case, the interparticle collisions drive the system to an

equilibrium state described by the Maxwell-Boltzmann

distribution. This distribution is unique, in the sense that

it is completely determined by the globally conserved

quantities such as the total energy, momentum, angular

momentum, etc.—and is otherwise independent of specific

initial conditions. The same is true for neutral plasmas for

which the bare Coulomb potential is dynamically screened

by the countercharges, leading to a well defined thermody-

namic limit and equilibrium [2]. Relaxation of particles

interacting by long-range (unscreened) potentials, on the

other hand, is very different. For these systems, the colli-

sion duration time diverges, and the state of thermody-

namic equilibrium is never reached. Instead, the dynamics

evolves to a stationary state in which distribution functions

appear to stop varying with time. Unlike thermodynamic

equilibrium, in SS, however, detailed balance is violated

[3] and neither equilibrium thermodynamics nor equilib-

rium statistical mechanics can be used.

In the limit in which the number of particles goes to

infinity �N ! 1� while the total mass and charge are fixed,

the non-neutral plasma is described exactly by the Vlasov

equation [4],

 

Df

Dt
� @f

@t
� v � rf� F � rvf � 0; (1)

where D is the advective derivative, f�t; r; v� is the one

particle distribution function, and F is the mean force felt

by particles at position r. For simplicity, we have set

particle mass to unity. Vlasov equation shows that the

distribution function evolves in time as an incompressible

fluid. If we now discretize the height of the initial distri-

bution function f0�r; v� into a set of levels �j, with j �
1 . . .p, the Vlasov dynamics of a d dimensional system

preserves each level’s hypervolume ���j��
R
��f�t;r;v��

�j�d
d
r
d
v. For a general distribution function, this condi-

tion is equivalent to existence of an infinite number of

dynamical invariants called the Casimir integrals or simply

the Casimirs [5]. One of the Casimirs is the Boltzmann

entropy which is, therefore, a constant of motion. While

the fine-grained distribution function f�t; r; v� never

reaches a stationary state—the evolution continues on

smaller and smaller length scales ad infinitum—Lynden-

Bell argued that the coarse-grained distribution function
�f�t; r; v; �, averaged on microscopic length scales, will

rapidly relax to a meta-equilibrium with �f�r; v�. For gravi-

tational systems, Lynden-Bell called this process ‘‘a vio-

lent relaxation’’ [6]. To obtain the stationary distribution
�f�r; v�, we divide the phase space into macrocells of vol-

ume ddrddv, which are in turn subdivided into � micro-

cells, each of volume hd. As a consequence of

incompressibility, each microcell can contain at most one

discretized level �j. The number density of the level j

inside a macrocell at (r, v)—number of microcells occu-

pied by the level j divided by �—will be denoted by

�j�r; v�. Note that by construction, the total number density

of all levels in a macrocell is restricted to be

 

X

j

�j�r; v� � 1: (2)

Using a standard combinatorial procedure [6], it is then

possible to associate a coarse-grained entropy with the

distribution of f�jg. The entropy is found to be that of a

p species lattice gas,
 

S � �kB
Z ddrddv

hd

�
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where kB is the Boltzmann constant. Lynden-Bell argued

that collisionless relaxation should lead to the density

distribution of levels which is the most likely, i.e., the

one that maximizes the coarse-grained entropy, consistent

with the conservation of all the dynamical invariants—

energy, momentum, angular momentum, and the hyper-
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volumes ���j�. In terms of the number densities f�jg
which maximize the coarse-grained entropy, the stationary

distribution function becomes �f�r; v� � P

j�j�j�r; v�. The

maximum entropy state, however, can only be achieved if

there is a sufficient ergodicity (mixing) in the phase space.

If the initial distribution f0�r; v� is uniform (p � 1), the

maximization procedure is particularly simple, yielding a

Fermi-Dirac distribution,

 

�f�r; v� � �1��r; v� �
�1

e�	��r;v���
 � 1
; (4)

where � is the mean energy of particles with velocity v at

position r, and � and � are the two Lagrange multipliers

required by the conservations of energy and number of

particles,

 

Z

ddrddv��r;v� �f�r;v���0
Z

ddrddv �f�r;v��1: (5)

In the above formula, �0 is the energy per particle specified

by the original distribution f0. For an azimuthally sym-

metric system, the mean particle energy � is a function of

only the modulus r and v. By analogy with the usual

Fermi-Dirac statistics, we define � � 1=kBT, where T is

the effective temperature of the stationary state (not to be

confused with the usual definition of temperature in terms

of the average kinetic energy which is valid only for

classical systems in thermodynamic equilibrium) and �
is the effective plasma chemical potential.

In this Letter, we will show that when applied to non-

oscillating confined non-neutral plasmas, Eq. (4) describes

very accurately the final stationary state. On the other hand,

if during the relaxation dynamics plasma undergoes col-

lective oscillation, the theory of violent relaxation fails

dramatically. Instead, we observe that the system separates

into two coexisting phases—a cold core surrounded by a

halo of highly energetic particles. The relaxation process is

extremely slow, taking tens of thousands of plasma oscil-

lations to reach the stationary state. A new approach will

then be presented which quantitatively predicts the phase-

space distribution functions in the final relaxed state.

To illustrate the general theory, we will apply it to study

the transport of intense, continuous, charged-particles

beams through a uniform focusing magnetic field [7].

The beam is assumed to propagate with a constant axial

velocity vzêz, so that the axial coordinate s � z � vzt
plays the role of time. The external focusing field is given

by B � B0êz and is used to compensate the repulsive

Coulomb force between the beam particles. It is convenient

to work in the Larmor frame [7], which rotates with respect

to the laboratory frame with angular velocity �L �
qB0=2�bmc, where c is the speed of light in vacuo, and

q, m, and �b � 	1� �vz=c�2
�1=2 are the charge, mass,

and relativistic factor of the beam particles, respectively. In

this frame, the beam distribution function fb�s; r; v�
evolves according to the Vlasov-Poisson system [7]

 

@fb
@s

� v � rfb � ��	zr�r � � rvfb � 0; (6)

 r2 � ��2
K=Nb�nb�r; s�; (7)

where Nb is the number of particles per unit axial length, r

is the position vector in the transverse plane, v � dr=ds is

the transverse velocity, nb�r; s� � Nb
R
fbd

2
v is the trans-

verse beam density profile, 	z � q2B2
0
=4�2

bv
2
zm

2c2 is the

focusing field parameter, and K � 2q2Nb=�
3
bv

2
zmc

2 is the

beam perveance, which is a measure of the beam intensity.

In Eqs. (6) and (7),  is a scalar potential that incorporates

both self-electric and self-magnetic fields, Es and B
s. We

shall take zero of the scalar potential to be at rw, the

position of the conducting channel wall. The distribution

function is normalized so that
R

fbd
2
rd2v � 1. In the

Larmor frame, the system corresponds to a two dimen-

sional non-neutral plasma of pseudo particles of mass

mp � 1 and charge q �
�������������

K=Nb
p

interacting by a repulsive

logarithmic potential ’�r� � �q2 ln�r=rw�, confined in a

parabolic potential well of U�r� � 	zr
2=2. We will now

explore the relaxation of these particles from the initially

uniform distribution �p � 1�,
 f0�r; v� � �1��rm � r���vm � v� (8)

with �1 � 1=
2r2mv
2
m, to the final stationary state.

At time t � 0, the particles are uniformly distributed in

the phase space between r � rm and p � pm. The distri-

bution function Eq. (8), however, is not a stationary solu-

tion of the Vlasov-Poisson system, and for t > 0, the

system will start to evolve in time. It is possible to adjust

the values of rm and vm in such a way that during the

evolution, the beam envelope (rms particle position) oscil-

lates as little as possible. This corresponds to the so-called

matched beam condition—the beam relaxes to equilib-

rium, but without undergoing significant macroscopic os-

cillations. For the distribution function (8), the matching

condition can be determined using the beam envelope

equation [7,8]. It is possible to show that the beam will

oscillate only little if v2m � 	zr
2
m � K. When this condition

is met, we expect the mixing to be efficient and Lynden-

Bell theory to apply. The coarse-grained beam distribution

should then relax to Eq. (4), with ��r; v� � v2=2�U�r� �
 �r�, where the mean electrostatic potential  �r� is deter-

mined self-consistently by an iterative solution of Eq. (7),

subject to constraints of Eqs. (5) with energy per particle

given by

 �0 �
v2m
4

� 	zr
2
m

4
� 1

8
� K

2
ln

�
rm
rw

�

: (9)

To compare the theory with the simulations, we calculate

the number particles inside shells located between r and

r� dr, N�r�dr � 2
Nbrdr
R
d2v �f�r; v�, and the number

of particles with velocities between v and v� dv,

N�v�dv � 2
Nbvdv
R

d2r �f�r; v�. In Fig. 1, the solid lines

show the values of N�r�=Nb and N�v�=Nb obtained using
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the theory described above, while points are the result of a

self-consistent N-particle dynamics simulation [9]. In all

the figures, distances are measured in units of
������������

K=	z
p

and

velocities in units of
����

K
p

. Excellent agreement between the

theory and the simulation is found for both position and

velocity distributions without any fitting parameters. We

have checked that agreement persists for other values of rm
and vm, as long as the matching condition is satisfied. The

agreement, however, disappears as soon as the matching

condition is violated and the beam begins to oscillate,

Figs. 2 and 3.

Plasma oscillations lead to a number of important con-

sequences which are not taken into account in the theory of

violent relaxation. For space-charge dominated inhomoge-

neous beams, the oscillations result in propagating density

waves which eventually break, emitting high energy parti-

cle jets [10]. The oscillations also excite parametric reso-

nances [11] transferring large amounts of energy to some

particles at the expense of the rest [9], see Fig. 2. Both of

these mechanisms lead to inefficient phase space mixing

and nonergodicity.

As the relaxation proceeds, the oscillating beam core

becomes progressively colder, while a halo of highly en-

ergetic particles is created. Because of the incompressibil-

ity restriction imposed by the Vlasov dynamics, Eq. (2), the

core, however, can not freeze—collapse to the minimum

of the potential energy. Instead, the distribution function of

the core particles progressively approaches that of a fully

degenerate Fermi gas.

The extent of the halo is determined by the location of

the parametric resonance, and its range can be calculated

using the canonical perturbation theory [11]. In Fig. 2(a),

we show the Poincaré section of a test particle moving

under the action of an oscillating beam potential calculated

using the envelope equation [9,12]. The resonant orbit is

the outermost curve of the Poincaré plot. The first resonant

particles move in almost a simple harmonic motion with

energy �R � �K ln�rR=rw� � 	zr
2
R=2, where rR is the in-

tersection of the resonant trajectory with the v � 0 axis. As

more and more particles are ejected from the beam core,

their motion, however, becomes chaotic and a halo distri-

bution becomes smeared out. We find that the distribution

function of a completely relaxed halo is very well approxi-

mated by the Heaviside step function ���R � ��.
For an out of (thermodynamic) equilibrium system,

there are no clear parameters which will control the core-
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FIG. 1. Position and velocity distributions for a matched beam

with rm � 1:48
������������

K=	z
p

and vm � 1:1
����

K
p

. Solid line is the theo-

retical prediction obtained using distribution function of Eq. (4),

while points are the result of dynamics simulation with N �
5000 particles.
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FIG. 3. (a) Position and (b) velocity distributions. Points are

the result of dynamics simulations. Solid curves are the theo-

retical predictions obtained using the distribution function of

Eq. (10). Dotted curves are the predictions of the violent relaxa-

tion theory based on Eq. (4). The figure demonstrates that for

oscillating beams, mixing is inefficient and violent relaxation

theory does not apply. The initial distribution is uniform with

rm � 1:0
������������

K=	z
p

and vm � 2:4
����

K
p

.
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FIG. 2. (a) Poincaré section of a test particle moving in an

oscillating potential controlled by the envelope equation. The

outermost curve shows the resonance which determines the

halo’s range. (b) A snapshot of the phase space particle distri-

bution obtained using dynamics simulations with N � 5000,

after 40 thousand beam envelope oscillations. The halo’s range

rR is determined by the original parametric resonance, see panel

(a). (c) Position and (d) velocity distributions. Solid curves are

the theoretical predictions obtained using the distribution func-

tion of Eq. (10), and points are the results of dynamics simula-

tions. The initial distribution is uniform with rm �
1:98

������������

K=	z
p

and vm � 0:24
����

K
p

. It has exactly the same energy

as the fully matched distribution of Fig. 1, showing that SS

depends explicitly on the initial distribution.
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halo coexistence—such as pressure, temperature, and

chemical potentials for usual thermodynamic systems in

coexistence. We can not, therefore, a priori say when the

halo formation will stop and a stationary state be estab-

lished. Empirically, however, we have observed that this

happens when the core temperature becomes sufficiently

low. In all cases studied, we find that the core-halo equi-

librium is achieved when the ratio between the core tem-

perature and the corresponding Fermi temperature is

T=TF � 1=40—i.e., when �� � 40. The distribution

function for the core-halo system, then, takes a very simple

form

 fb�r; v� �
�1

e���r;v��40 � 1
� ����R � ��: (10)

Since all the dependence on r and v enters only implicitly

through �, fb automatically satisfies the Vlasov-Poisson

system. The value of �1 � 1=
2r2mv
2
m is determined by the

initial distribution f0, while the value of �R is calculated

from the location of the parametric resonance, Fig. 2(a).

This leaves one to determine self-consistently, using

Eqs. (5) and (7), the mean electrostatic potential  �r�, the

inverse temperature �, and the amplitude � which will

determine the fraction of particles inside the halo. These

can, once again, be obtained iteratively.

In Figs. 2 and 3, we plot N�r�=Nb and N�v�=Nb, ob-

tained using the theory presented above for two core-halo

systems characterized by different values of initial rm and

vm, and compare these distributions with the ones obtained

using the dynamics simulations. Excellent agreement is

found in all cases. In Fig. 3, we also present the distribution

functions obtained using the violent relaxation theory,

Eq. (4). It is clear that this theory is unable to describe

relaxation of oscillating plasmas.

Up to now, we have considered plasmas which at t � 0

were uniformly distributed. This, however, is not very

usual in practice and more realistically one might expect

a initially thermalized distribution of the form

 f0�r; v� �
1

2
2�2r2m
��rm � r�e��v2=2�2�: (11)

The procedure is then to discretize the Gaussian part of this

distribution into p levels. At the lowest order, we can take

p � 1 and approximate Eq. (11) by Eq. (8). To have equal

energy, both distributions must have the same values of

hv2i. This requires that vm � 2�. The final relaxed distri-

bution of this core-halo system should then be given by

Eq. (10) with �1 � 1=4
2r2m�
2. In Fig. 4, we plot

N�r�=Nb and N�v�=Nb and compare these distributions

with the ones obtained using the dynamics simulation in

which the initial particle positions and velocities were

distributed according to Eq. (11). In spite of the crudeness

of the one level approximation, an amazingly good agree-

ment between the theory and the simulations is obtained

without any adjustable parameters. We have checked that

this good agreement persists for other values of � and rm.

In this Letter, we have studied confined one component

plasmas of charges interacting by unscreened Coulomb

potential. Unlike normal gases with short-range forces,

non-neutral plasmas do not evolve to the state of thermo-

dynamic equilibrium. Instead collisionless relaxation cul-

minates in a stationary state in which the detailed balance

is violated. Using a combination of nonequilibrium statis-

tical mechanics and the theory of parametric resonances, it

is nevertheless possible to a priori predict the distribution

functions for the final stationary state. Unlike the normal

thermodynamic equilibrium, this state, however, explicitly

depends on the initial distribution of particle velocities and

positions.
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