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Abstract

A comparison between the Kosterlitz–Thouless theory of metal–insulator transition in a two
dimensional plasma and a counterion condensation in a polyelectrolyte solution is made. It is
demonstrated that, unlike some of the recent suggestions, the counterion condensation and the
Kosterlitz–Thouless transition are distinct. c© 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The polyelectrolyte solutions present one of the outstanding problems in the �eld of
physical chemistry. Although the work of Debye and H�uckel [1] shed some light on the
unusual behavior of simple symmetric electrolytes, the properties of the polyelectrolyte
solutions still remain to large extent ununderstood. In general a polyion can be a
exible polymer chain or a rigid molecule of speci�c shape some of whose monomers
are ionized. For now, we shall con�ne our discussion to rigid polyelectrolytes whose
polyions can be modeled as cylinders or spheres, since as the reader will see, even
these signi�cantly simpler systems already present more than enough complications.
In particular even such basic question, as what is the form of electrostatic interaction
between two polyions, still remains controversial. A prototypical molecule whose shape
can be modeled as a cylinder is a DNA. It should be noted, however, that even in this
case the approximation of replacing a long molecule by an in�nite cylinder will only
be valid if the persistence length is su�ciently greater than the Debye screening length
inside the solution. As an example of spherical polyions, one can consider various
colloidal suspensions, for example the ones made of latex or polystyrene particles.
In this note we shall con�ne our attention to the case of rigid cylindrical polyions.

In particular, our discussion is motivated by the recent observation of Kholodenko and
Beyerlein [2] that the commonly observed counterion condensation during which a �nite
fraction of disassociated counterions recondenses onto polyions, is a “special case of
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the Kosterlitz–Thouless [3] (KT)-like phase transition” [2]. Here we shall demonstrate
that the KT transition and the Manning’s counterion condensation [4] have nothing in
common. The erroneous conclusion reached by the above authors can be attributed to
the confusion over the system of units used in the original KT theory.
To begin our discussion let us �rst de�ne the Primitive Model of Polyelectrolyte

(PMP) [5]. It consists of N cylindrical polyions of a cross-sectional diameter ap and
length L, each carrying P ionized groups of charge −q spaced uniformly, with a
separation b, along the axis of a cylinder. A total of PN counterions are present to
preserve the overall charge neutrality of the system. The counterions are assumed to be
spherical in shape with a diameter ac, each carrying a charge q. The whole system is
con�ned inside a region of volume V . It will prove convenient to de�ne the distance of
closest approach between the centers of a polyion and a counterion, a=(ap+ac)=2. The
solvent is modeled as a uniform medium of a dielectric constant D. The bare interaction
between a su�ciently long polyion and a counterion can then be approximated by

�(r)=
{
+∞; r¡a ;
−2q(�=D) ln(r=a); r¿a ;

(1)

where �=−Pq=L=−q=b. If we make the replacement �→−q (or b→ 1), the loga-
rithmic potential which appears in the above expression is exactly the same as for two
oppositely charged hard disks in two dimensions (assuming we keep the same Poisson
equation, ∇2�=−4��q=D, as in three dimensions). Furthermore, it is well known that
when the temperature of a two dimensional plasma is lowered below a certain value,
all the ions associate into dipolar pairs, changing the properties of plasma from being
a conductor to an insulator [3]. This is a continuous thermodynamic transition, which
happens to be of in�nite order. Is it possible that the counterion condensation observed
in polyelectrolytes is a realization of this transition? In order to answer this question
we shall present two simple mean-�eld theories, one for a two dimensional Coulomb
gas and another for a polyelectrolyte solution in three dimensions.

2. 2D Coulomb gas

Our system will consist of hard disks of diameter a, half of which carry the charge
+q, while the other half carry the charge −q. As is usual for the restricted primitive
model (RPM), the solvent is modeled as a uniform medium of a dielectric constant D.
Due to strong electrostatic interactions we expect that some of the ions will associate
forming dipolar pairs [6]. The total density of hard spheres is �= �++�−+2�2, where
�+ = �− ≡ �1=2 is the density of free unassociated ions, while the �2 is the density
of dipolar pairs. In order to explore the thermodynamic properties of this plasma, we
need the free energy for the system. We shall construct this free energy out of two
parts: the entropic free energy associated with the momentum degrees of freedom in
the partition function, and the electrostatic free energy due to the interactions between
the ions. It is a simple matter to write the expression for the entropic part of the free
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energy, since it corresponds to that of an ideal gas. De�ning the Helmholtz free energy
density as f=−F=V we have

�fent =
∑
s

�s[1− ln(�s�d|s|s =�s)] ; (2)

where d is the dimensionality, �=1=kBT; �s is the de Broglie thermal wavelength, �s
is the internal partition function for species s=+;−; 2; and |s| is how many particles
constitute a specie, i.e. | + |= |−|=1; |2|=2. The electrostatic free energy is easily
calculated in the spirit of the original Debye-H�uckel theory [6]. We �nd

�fel=
1

2�a2
ln[�aK1(�a)] ; (3)

where K1 is the modi�ed Bessel function of �rst order, (�a)2 = 4��∗1 =T
∗, and the

reduced density and temperature are respectively �∗= �a2 and T ∗= kBT=q2. The den-
sities of the free and the associated ions are related through the law of mass ac-
tion �+ = �−= �2, where the chemical potentials are determined from the free energy
�s=−@f=@�s. We �nd

�2 =
1
4
K(T )�21e

2�ex ; (4)

where the excess chemical potential is �ex =−@fel=@�1 and the equilibrium constant
K(T )= �2(T )=�+�−. For the purpose of the present exposition it is su�cient to know
that the equilibrium constant remains �nite in the limit �1→ 0, for further discussion
we refer the interested reader to [6]. In the limit of small densities the excess chemical
potential can be expanded in powers of �1; �ex =−[E + ln(�a=2)]=T ∗ + O(�1). Sub-
stituting this expression into Eq. (4), we observe that �∗2 ≈ �∗21 e− ln(�∗1 )=T

∗
= �∗(2−1=T

∗)
1

[6,7]. In particular, we see that for a �xed density �, as the temperature is reduced to
T ∗ → T ∗

KT =1=2 the density of free ions, �1→ 0. This is exactly the Kosterlitz–Thouless
metal insulator transition. Since the Debye screening length is inversely proportional
to

√
�1, we see that it will diverge as T→ T+KT .

Let us now take a look at what happens in the case of cylindrical polyelectrolytes [5].

3. Polyelectrolyte solution

We shall work in the context of the PMP de�ned above. Just as in the case of simple
electrolyte addressed in the previous section, we expect that the strong electrostatic
interaction between the polyions and the counterions will result in formation of clusters
composed of one polyion and 16n6Z condensed counterions. We are then lead to
two conservation laws:

�=
P∑
n=0

�n ; (5)
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P�= �+ +
P∑
n=0

n�n ; (6)

where � is the total density of the polyions, �0 is the density of free polyions, �n
is the density of the clusters of size n, and �+ is the density of free, unassociated,
counterions. In order to explore the thermodynamic properties of the PMP we require
the free energy. As in the case of simple electrolyte, this can be constructed as a
sum of the entropic and the electrostatic contributions. The entropic part of the free
energy is given by the Eq. (2) with s= {+; 06n6Z}. The electrostatic contribution,
however, is signi�cantly more complex than for simple electrolyte. It consists of the free
energies due to the polyion–counterion, polyion–polyion, and the counterion–counterion
interactions. In general it is quite di�cult to take a full account of all these e�ects. The
condensation phenomena that we are interested in studying, however, already occurs
in the limit of vanishingly small densities, �→ 0. In this limit, it is possible to show
that the polyion–polyion and the counterion–counterion interactions are small and the
main contribution to the electrostatic free energy comes from the polyion–counterion
interaction [5]. This contribution can be calculated in the spirit of the Debye–H�uckel
theory and we �nd [5]

�fel=
P∑
n=0

�∗n(P − n)2
La2T ∗

[
ln
(�a
2

)
+ O(�0+)

]
; (7)

where (�a)2 = 4��∗+=T
∗ and the reduced density and temperature are now �∗= �a3

and T ∗= kBTDa=q2, respectively. The distribution of cluster sizes can be found from
the law of mass-action, �n= �0 + n�+, which reduces to

�∗n =Kn(T )�
∗
0 (�

∗
+)
ne��

ex
0 +n��

ex
+−��exn ; (8)

where the excess chemical potentials, �exs =−@fel=@�s, are ��exn =− (P−n)2a
PT∗b [ln(

�a
2 ) +

O(�0+)] and ��
ex
+ =O(�

0
+). The equilibrium constant, K(T )= �s(T )=�

n
+, as in the case of

simple electrolyte will remain �nite in the limit �→ 0. Substituting the expressions for
the excess chemical potential into Eq. (8) we �nd that �∗n ≈ �∗0�∗

g(n)

+ , where g(n)= n−
na=T ∗b+ n2a=2PT ∗b. In the limit �→ 0 the only possible cluster has the size n∗, for
which the function g(n) attains its minimum. In particular we see that for T ∗¡T ∗

M ≡ a=b
the minimum is attained when n∗=P(1 − T ∗b=a) counterions are associated with a
polyion, while for T ∗¿T ∗

M no clusters form and the minimum is at n∗=0. In the
limit �→ 0, the formation of clusters is a continuous transition which occurs when the
temperature is lowered below T ∗= T ∗

M = a=b.

4. Conclusion

As was discussed following Eq. (1) the isomorphism between 2D Coulomb law and
the interaction potential between a polyion and a counterion is valid if b→ 1 (�→−q).
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In these units TM = q2=kBD, while the Kosterlitz–Thouless transition occurs at TKT = q2=
2kBD, which is half the value of the equivalent Manning temperature. Furthermore, we
would like to stress that while at KT transition all the ions associate into dipolar pairs,
thus leading to a divergent Debye screening length, nothing like this happens in the
case of polyelectrolytes. Quite on the contrary, all the way down to zero temperature
there remain some free counterions, producing a �nite screening length. Finally, while
the KT transition is found at non-zero density, the sharpness (discontinuity in slope
as a function of temperature) of the counterion condensation transition will disappear
with an increase of density [8].
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