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We consider a Hamiltonian for a complex fluid. The linear excess bulk viscosity due to a 
spatially varying order parameter is investigated. We calculate the dependence of the excess 
viscosity AT, on the fundamental parameters d and g, everywhere within the disordered 
phase (d being the domain size of water or oil and ,$ being the correlation length between 
domains). It is found that there is a crossover region in the isotropic disordered phase 
of this model. More specifically, in the structured region of the isotropic disordered phase A7 
grows as c” in the vicinity of disordered-lamellar transition, This is quite distinct from the 
behavior of the excess viscosity in the unstructured region where AT grows as g in the vicin- 
ity of the order-disorder transition. 

1. INTRODUCTION 

Self-assembled fluids (mixtures of oil, water, and sur- 
factant) have been a recent topic of considerable interest 
by theorists and experimentalists. A number of quite suc- 
cessful models have been proposed to explain the rich va- 
riety of novel phenomena that occur in these systems. One 
of the earliest models was introduced by Widom.’ He pro- 
posed an extended Ising Hamiltonian in which there are 
competing interactions between the nearest neighbors and 
the next nearest neighbors on the lattice. This, in turn, 
causes spatial frustration which is an essential ingredient in 
modeling complex fluids. One can also study a continuous 
version of the Widom Hamiltonian. In fact, one can con- 
struct an effective Landau-Ginzburg-Wilson (LGW) 
Hamiltonian from a lattice model Hamiltonian by intro- 
ducing an order parameter field Q). Retaining terms up to 
quadratic order in p, the following Hamiltonian is ob- 
tained: 

H= d3~~C[V2~(~)12+~tV~(~)12+c~(x)2}. (1) 
s 

Hamiltonian ( 1) is precisely the phenomenological Hamil- 
tonian proposed by Teubner and Strey.3 For the present 
paper b and c should be thought of as purely phenomeno- 
logical coefficients such that Hamiltonian ( 1) is dimen- 
sionless. It can be shown that one can relate the parameters 
b and c to the lattice model parameters.2 Teubner and 
Strey found that Hamiltonian ( 1) describes the structural 
properties of a class of self-assembled fluids called micro- 
emulsion quite well. 

Microemulsion is a thermodynamically stable phase of 
oil, water, and surfactant. Many experiments have been 
performed yielding phase diagrams and structure factors to 
aid in the understanding of this system.4 In fact, one of the 
successes of Hamiltonian (1) is that it predicts a Fourier 
transform of a structure factor to have the form 

1 
S(q) = q4+bq2+c ’ (2) 

This is the structure factor first introduced by Teubner and 
Strey to fit the scattering data in the isotropic microemul- 
sion phase.3 Thus, if c - ( b2/4) > 0, and c > 0 Teubner and 
Strey found the real-space correlation function to be of the 
form 

td exp(-IrIG) . 27rlrl 
g(r)=iG Irj sm d . (3) 

Here g and d are the two fundamental length scales of the 
theory; d being the domain size of water or oil and c being 
the correlation between domains. The length scales d and E 
can be related to the parameters b and c by 

k=( ( &,2)+$)“2 

$=( ( JG2q2. 

(4) 

(5) 

When c - ( b2/4) < 0, c > 0, and b > 0, the real-space corre- 
lation function assumes the usual Ornstein-Zernike form 

g(r) = 
exp(- IrlK) 

Irl ’ 
where c- is distinct from c. 

One can also get a sense of topology of the phase dia- 
gram for these self-assembled systems. The phase diagram 
arising from Hamiltonian ( 1) is given in Fig. 1. Special 
attention should be given to the dashed curve in Fig. 1. 
This is the curve described by c- ( b2/4) = 0, and is known 
as the disorder curve.2’5 The disorder curve is not a phase 
boundary but it separates two distinct regions of paramag- 
netic phase. To its left the correlation function takes the 
form given by Eq. (3) while to the right Eq. (6) applies. 
The two regions are known, respectively, as structured and 
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FIG. 1. Phase diagram of Hamiltonian ( 1) in the parameter space of b 
and c. It should be noted that without the inclusion of higher-order non- 
linearities of the order parameter field, Hamiltonian ( 1) will only describe 
the paramagnetic phase. Here we have included the mean-field phase 
diagram which has been derived in a previous paper (Ref. 2). Special 
attention should be brought to the dashed line in the paramagnetic phase 
which is known as the disorder line. The phase transitions between 
isotropic-disordered phase and the ordered phases are predicted to be 
second order within mean-field theory. 

unstructured. The structured region is associated with bi- 
continuous microemulsion. It should also be pointed out 
that all phase transitions between the isotropic disordered 
phase to any other phase predicted within mean-field the- 
ory are second order. This is not the case in real systems 
and, in fact, the transition from the paramagnetic to the 
lamellar phase is weakly first order. The modification of 
the order of the transitions can be understood by studying 
the fluctuation effects beyond the mean-field leve1.6*2 

In the present paper we will consider the excess bulk 
viscosity due to the fluctuations in the order parameter. We 
will conduct this study using a dynamical mean-field the- 
ory in the structured and unstructured region of the iso- 
tropic disordered phase. In the past there have been at- 
tempts to measure the viscosity of microemulsion, but no 
fit to any theory which encompasses the viscosity across 
this disorder boundary is known.7 To derive the equations 
for the excess viscosity we will follow closely an approach 
first introduced by Fredrickson and Larson* and later gen- 
eralized by Onuki.’ 

Ii. DYNAMlCAL EQUATIONS 

We consider the set of stochastic hydrodynamic equa- 
tions that describe the evolution of the order parameter:” 

a? at=-v.(qv)+rv2~+e, 640 
av i aH 
at= -3 qv -&+pV2v+[. 

(7) 

(8) 

Here, v is the transverse velocity field and 8 and f are 
Gaussian noise terms related to the Onsager kinetic coef- 
ficient I’, and the viscosity 7, through Einstein relations. 
One will recognize Eq. (7) as the Langevin equation for 
the conserved order parameter with a convection term. 

Since we are interested in the disordered phase where 
(p> =0, we will use a linearized version of Eq. (7). If the 
velocity field is divergenceless, Eq. (7) becomes 

Mundy, Levin, and Dawson: Viscosity of self-assembled fluids 

(9) 

where u=(v). 
From Eq. (9) it is straightforward to write the equa- 

tion for the Fourier transform of the structure factor 
( I p(q,t) I 2, =S(q,t). Here the averages are taken with re- 
spect to the Gaussian random noise 6. In the presence of 
shear flow u = $? this equation becomes 

( ;+2rq2Kq-2qg 
aqJJ ) 

S(q,t) =2rq2, 

where 

K,=q4+bq2+c. (11) 

The approximation leading to Eq. (9) is not necessary 
and a more general study can be performed.” It should 
also be pointed out that the aforementioned analysis can be 
easily modified to introduce higher-order nonlinearities 
into Hamiltonian ( 1). However, such nonlinear interac- 
tions will not affect the results presented later. 

111. THE STRESS TENSOR 

In order to proceed, we derive an expression for the 
pressure tensor. This can be done in a variety of ways.‘2Y8T9 
The pressure tensor PG is defined by 

(12) 

Comparing Eq. (8) to Eq. (12) we obtain 

P+$+; 2 

i’ 

b(a6)2-i(aka~)2-a19)akaka~ s, 
V -m4+~) +add~~+44a~~p 

-?l(aiuj+ajUi), (13) 
where repeated index summation convention is used. It is 
also easy to verify that the term in the Hamiltonian ( 1) 
that contains no derivatives will contribute only to the 
pressureT. The gradient terms in Eq. (13) can be thought 
of as additional contributions to the bulk pressure p due to 
a spatially varying order parameter. 

Specifically, for shear flow u= ifi, the average shear 
stress can be written as 

(14) 

Equation ( 14) can be conveniently expressed in terms of 
the structure factor S(q,t) as a,.(t) =+b s B 9 S(q,fhMy-; s ml,th7x4yq2~ (15) 9 
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where 

s, ‘$7 J-dq- 
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AT= [ ;+$+; (-;+“:)I /norfir J(z+$)3’2. 
(24) 

At this point nothing has been said about the proximity to 
the disorder curve. In fact, Eq. (24) is valid in all regions 
of the isotropic phase and is analytic across the disorder 
curve. 

IV. THE STRUCTURE FACTOR UNDER OSCILLATORY 
SHEAR 

In this section we investigate the structure factor under 
oscillatory shear. We will be interested in small shear rate 
so that the system can be treated within linear response 
theory. Therefore, topics like shear thinning will not be 
discussed in this paper. 

The shear rate for oscillatory shear is given by 

j(t) =f(J cos(wt). (16) 

If the shear rate is small we can solve Eq. (10) in the 
vicinity of the equilibrium structure factor 

A(w) =S(w) 4, (91, (17) 

where S, (q) is the equilibrium structure factor. Assuming 
that A is of order pc, substituting Eq. (16) into Eq. (10) 
and collecting terms to 0( A2), we obtain 

(18) 
sible parameters d and <. The other point of great interest 
is that the excess viscosity is predicted to diverge as a third 
power of correlation length in the vicinity of disordered- 
lamellar transition. Since in reality this phase transition is 
first order, we do not expect to see such a sharp divergence 
in viscosity. Nevertheless, since the phase transition is only 
weakly first order there should be a large region of a cross- 
over behavior were a sharp rise in the viscosity should be 
observed. 

Equation (18) can be easily solved to yield a particular 
solution 

A(q,t) =Re 
2q,jo(as,/aq,)exp(iot) 

iw + 2l?q*K, ’ (19) 

where Re( *e*) denotes the real part of the expression. 
The shear stress can also be written in terms of the 

stress relaxation function Gc(w):13 

a,,(r) =Re 
c*(o)jo exp(iot) 

io (20) 

Combining Eqs. (15), (17), and (19) and comparing the 
result to Eq. (20), we can derive an expression for the 
stress relaxation function. After angular integrals have 
been performed the expression is 

G‘r(,) 1 
-=)1+p302 ds s 

16q6h4+h2+ (b2/4) 1 
io Ki(io+2rq2K,) * (21) 

The total bulk viscosity is related to the imaginary part 
of the stress relaxation function by13 

where 

lim Im[c*(w)l 
=77t* 

0-O w 

f=(( &/2)+;)1’2-(;--( &,2))1’2, (28) 

(22) 

We first consider the excess viscosity in the structured 
region of disordered phase (microemulsion). It has already 
been discussed that in this region there are two dominant 
length scales given by Eqs. (4) and (5). The excess vis- 
cosity can now be expressed in terms of 

where 

(25) 

(26) 

The most salient feature of this expression is that the excess 
viscosity can be written in terms of experimentally acces- 

We now turn our attention to the paramagnetic- 
unstructured region of the phase diagram. Here the corre- 
lation function takes the usual Ornstein-Zernike form 
given by Eq. (6). To see how this comes about we analyt- 
ically continue Eq. (3) into the region 6> 0, and c- (b2/ 
4) ~0. We obtain: 

1 
g(r) = 

exp(- Irl/&-) 
2r( b2 -4~) 1’2 2lrl 

(27) 

Taking the imaginary part of Eq. (20), we obtain the fol- 
lowing expression for the excess viscosity AT: 

s 

co 
s-v=-b=& o 

q4h4+6q2+ (b2/4>] 
3 

% 
dq- 

(23) 

The aforementioned integral can be done analytically and 
the excess viscosity can be computed in terms of the pa- 
rameters of Hamiltonian ( 1) : 

;=( ( &,2,+;)“2+(&,2))1’2. (29) 

It is easy to see that 0 < l/c- < l/c+, and the second term 
in Eq. (27) decays much faster giving the single length 
scale behavior. In the vicinity of the transition from un- 
structured paramagnetic to a ferromagnetic phase (c=O) 
the excess viscosity behaves as 

AC zc-. (30) 
5--m 
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We observe that there exists a distinct change in the 
behavior of the viscosity as one moves from one side of the 
disorder curve to the other. For low surfactant concentra- 
tion the excess viscosity is proportional to the cube of the 
correlation length inside the structured paramagnetic 
phase (microemulsion), while in the unstructured para- 
magnetic phase the excess viscosity increases linearly with 
the correlation length. 

We now present a simple physical argument to explain 
the behavior of viscosity in the unstructured paramagnetic 
phase. Unfortunately, no such simple argument has been 
found so far to understand the behavior in the structured 
phase where there are two dominant length scales. 

Consider an object of characteristic size c diffusing 
through a liquid of viscosity 77 the diffusion constant is 
given by14 

1 
OS-,, . (31) 

This is a well-known Einstein-Stokes relation. If the mean 
free path is of the order c, then the mean free time is of the 
order 

c2 T-- . 
-D (32) 

Combining Eqs. (32) and (31) we obtain 

T3g3B. (33) 

On the other hand, each mode q, in the case of the con- 
served order parameter, relaxes with a characteristic time 
given by a dynamical scaling hypothesis,” 

(34) 

with the dynamical exponent z=4. On physical grounds 
the mode, q for the length scale that we are interested in is 
on the order of the inverse length of the correlated region 
l/c. Using this fact, and substituting Eq. (34) back into 
Eq. (33), we have an expression for the scaling of the 
viscosity in the vicinity of a critical point: 

rl,“G (35) 

This is the same result as the one given by Eq. (30). 
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