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We explore the effect of steric interaction on the ionic density distribution near a charged hard wall.
For weakly charged walls, small particles, and monovalent ions, the mean-field Poisson-Boltzmann
equation provides an excellent description of the density profiles. For large ions and large surface
charges, however, deviations appear. To explore these, we use the density functional theory. We find
that local density functionals are not able to account for steric interactions near a wall. Based on the
weighted density approximation, we derive a simple analytical expression for the contact electrostatic
potential, which allows us to analytically calculate the differential capacitance of the double layer.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761938]

I. INTRODUCTION

The standard Poisson-Boltzmann (PB) equation is accu-
rate for dilute aqueous solutions containing small monova-
lent ions. The first approximation of the PB theory is the
mean-field account of the electrostatic interactions, where the
discrete nature of ions is neglected and each ion interacts
with the mean-potential generated by the local charge den-
sity distribution ρc(r), according to the Coulomb law, ψ(r)
= (4πε)−1

∫
dr′ ρc(r′)/|r′ − r|, where ε is the dielectric con-

stant. This description clearly ignores ionic correlations. The
other approximation within the PB theory is the lack of inter-
nal structure of each ion: an ion is a point in space charac-
terized only by its charge. Under this reduced description, the
ions F−, Cl−, and NO−

3 are indistinguishable, although their
size1 and polarizability2 are obviously different. The PB de-
scription, therefore, breaks down when the above reductions
can no longer be justified. In the present work, we consider
the weakly correlated limit so that the mean-field descrip-
tion of electrostatics holds, but we go beyond the standard PB
equation by including the nonelectrostatic excluded volume
effects.1 In aqueous solutions, the excluded volume interac-
tions are further increased on account of hydration, the bind-
ing of water molecules to ions, so that the effective ionic radii
are larger than the crystallographic ones.3–5 Another effect
of hydration, related directly to electrostatics, is the dielec-
tric decrement6–8 associated with the decrease of the medium
dielectric constant on account of polarization saturation of a
solvent constituting the hydration shell. In the present work,
we do not consider this effect and focus strictly on the non-
electrostatic excluded volume effects.

The excluded volume effects reorganize the double layer
so that a density profile is no longer monotonically decreas-
ing, but it acquires oscillatory structure reflecting the molecu-
lar composition of an electrolyte.9 Clearly, the modifications
of the density profile lead to modified electrostatic proper-
ties. In the present study, we take a close look into the ex-
cluded volume effects where ions are represented as hard
spheres with the same diameter, the so-called, restricted prim-
itive model. Not only do we investigate how the ionic sys-

tem responds to these effects under various conditions, but
also how well various theories reproduce this behavior. The
hard-sphere interactions lead to the nonlocal effects, demand-
ing nonlocal functionals to account for the oscillatory struc-
ture in the density profile. The nonlocal treatments, such as
the density functional theory (DFT), can be computationally
demanding if the system is sufficiently complex. Frequently,
in electrostatics, a variant of the local density approximation
(LDA) is used, where the ideal gas entropy is substituted
by that of the lattice-gas leading to the modified Poisson-
Boltzmann (MPB) equation.10, 11 With the growing popular-
ity of the MPB as a simple and tractable model, we feel that
a careful and systematic study of this method is still lacking.
First of all, the MPB is a local theory inappropriate for mod-
erately and highly inhomogeneous fluids. Furthermore, even
as a theory of a homogeneous fluid it already fails at pre-
dicting the correct second virial term. We consider another
variant of the LDA based on the scaled particle theory (SPT).
Surprisingly, although highly accurate for treating homoge-
neous fluids, it is less accurate than the MPB, which is un-
reliable for homogeneous fluids. We compare all the results
against the nonlocal fundamental measure density functional
theory.12 Our main focus is the region near and at the con-
tact with the wall, where exact thermodynamic relations are
known. We investigate the scaling properties of the contact
quantities and propose an analytical fit to the DFT data that
permits an accurate prediction of these quantities, without re-
sorting to numerical computations involving the entire region.

Throughout the paper, we make frequent use of the ini-
tials: DFT, LDA, MPB, and SPT. To avoid confusion, we
give a quick account of each. DFT always refers to the fun-
damental measure density functional theory as originally de-
rived by Rosenfeld.12 This is the only nonlocal theory used in
this work. LDA refers to the general class of approximations,
where a density functional is defined locally based on a free
energy of a homogeneous fluid. MPB is the special example
of the LDA, when the excluded volume effects are represented
as that of a homogeneous lattice gas.11 And the SPT stands
for the scaled particle theory and refers to the theoretical
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approach based on scaling a particle size.13–16 We use SPT to
refer to another LDA approximation based on the SPT results
for a uniform fluid. In the paper, two LDA approximations
will be considered: the MPB and the SPT.

The paper is organized as follows. In Sec. II, we discuss
a reversible work of inserting a test particle into a hard sphere
fluid, Whs, and emphasize its nonlocal character by deriving
the exact result for inserting a point particle into a hard-sphere
fluid. We then introduce the fundamental density functional
theory as an accurate nonlocal treatment of the hard-sphere
interactions. In Sec. III, we review the contact value theo-
rem and explore its implications for the counterion distribu-
tion near a hard charged surface. We point out that the LDA
theories lead to contact relations different from the exact con-
tact value theorem. This is the result of representing the over-
crowding in the double-layer as the density “saturation.” In
Sec. IV, we investigate the scaling of the quantity �w, which
represents the reversible work of bringing the uncharged fluid
particle from the bulk into contact with the wall. We propose
the analytical formula for �w that fits the DFT data points. In
Sec. V, we apply this formula to calculate the surface poten-
tial and the differential capacitance. Section VI finalizes this
work with the concluding remarks.

II. PRELIMINARIES

We write the free energy functional as having three sepa-
rate contributions,

F = Fid + Fc + Fhs, (1)

the ideal gas contribution,

Fid = kBT

K∑
j=1

∫
dr ρj (r)(log ρj (r)�3 − 1), (2)

the mean-field electrostatic interactions,

Fc = 1

8πε

∫
dr

∫
dr′ [ρc(r) + ρf(r)][ρc(r′) + ρf(r′)]

|r′ − r| ,

(3)
and the excluded volume contributions, Fhs, where all ions are
taken to have the same diameter σ . ρf denotes a fixed charge
of a macromolecule and in the present work we consider a
charged wall, ρ f = σ cδ(x), where σ c is the surface charge.
ρc = ∑K

j=1 qjρj is the charge density of mobile ions, where
qj is the charge of an ion species j and K is the number of
all ionic species. Finally, � is the de Broglie wavelength. The
equilibrium density minimizes the grand potential functional,


 = F −
K∑

j=1

μj

∫
dr ρj (r), (4)

with respect to a density distribution, δ

δρj

= 0, and leads to

ρj (r) = ρb
j e

−β[qj ψ(r)+Whs(r)−Wb
hs], (5)

where ψ = δFc
δρj

/qj is the mean electrostatic potential, Whs

= δFhs
δρ

, and ρb
j is the bulk density of an ion species j.

Physically, Whs represents the reversible work of insert-
ing a test particle at position r into a hard-sphere fluid.13–16

If the system has a wall, the insertion performed far from
the wall, Whs(∞) = Wb

hs is identical with the excess (over the
ideal gas) chemical potential. Alternatively, Whs can be seen
as a depletion interaction: as a particle approaches a hard-
wall, it feels itself being pushed towards the wall by the other
particles. Application of the Poisson equation, ε∇2ψ = −ρc,
leads to a kind of modified Poisson-Boltzmann equation,

ε∇2ψ = −
K∑

j=1

ρb
j qj e

−β[qj ψ(r)+Whs(r)−Wb
hs], (6)

where the surface charge σ c is determined by the boundary
conditions at a charged wall,

ε
∂ψ

∂x
= −σc.

In order to obtain the potential, one still needs some kind
of closure for Whs that will determine the excluded volume
effects.

A. Insertion of a point particle—the exact case

Whs is a nonlocal quantity. To see the origins of the non-
locality, we consider a simple case where the insertion work
can be expressed as an exact density functional. The case we
refer to is the reversible work of inserting a point test parti-
cle into a hard-sphere fluid, Wp. The range of the hard-core
interaction between the test point particle and the fluid hard-
spheres is half the diameter, σ /2. The reversible work is re-
lated to the insertion probability, 
p = e−βWp . For a given in-
stantaneous configuration of a hard sphere fluid, the space is
either occupied or is empty. The point particle can be inserted
into the empty space between the hard spheres. The instanta-
neous insertion probability, 
̂p, is either zero, if we hit on an
occupied space, or one, if a cavity is found,


̂p(r) = 1 −
N∑

i=1

θ

(
σ

2
− |ri − r|

)
,

= 1 −
∫

dr′ ρ̂(r′)θ
(

σ

2
− |r′ − r|

)
, (7)

where ρ̂(r) = ∑N
i=1 δ(ri − r) is the density operator, N is the

total number of fluid particles, and θ (x) is the Heaviside step
function. Averaging over all the configurations, we obtain

〈
̂p(r)〉 = 
p(r) = 1 −
∫

dr′ ρ(r′)θ
(

σ

2
− |r′ − r|

)
.

(8)
The reversible work of inserting a point particle at position r
is

βWp(r) = − log

[
1 −

∫
dr′ ρ(r′)θ

(
σ

2
− |r′ − r|

)]
. (9)

The non-locality of Wp is already evident in this simple ex-
ample and shows that the work of inserting a point particle
depends on the weighted average of the inhomogeneous den-
sity distribution. The extent of the nonlocality is determined
by the range of the hard-core interaction. To obtain an ex-
pression for Whs, a reversible work associated with expanding
a point particle to diameter σ has to be considered, and Wp
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constitutes only a part of the entire quantity Whs. For the ho-
mogeneous fluid, this procedure leads to the scaled particle
theory (SPT),13 in which the work of expansion to finite di-
ameter σ is interpolated between the two exact limits, λ = ∞
and λ = σ /2, where λ is the range of the hard sphere interac-
tion between a test and a fluid particle. For an inhomogeneous
fluid, the derivation is more involved.12

B. Density functional theory

The ideas of the SPT applied to inhomogeneous fluids
lead to the formulation of the fundamental measure density
functional theory (DFT).12 The DFT approximates the excess
free energy due to the hard-sphere interactions through the
free energy contribution, βFhs[ρ] = ∫

dr �hs, where

�hs= − ρ̄0 log(1−ρ̄3)+ ρ̄1ρ̄2 − ρ̄1 · ρ̄2

1 − ρ̄3
+ ρ̄2

24π

ρ̄2
2 − ρ̄2 · ρ̄2

(1 − ρ̄3)2
.

(10)
The hard sphere contributions are locally represented through
weighted densities, instead of a physical density, as is the case
for the LDA approximation,

ρ̄α(r) =
∫

dr′ ρ(r′)ωα(r − r′) (11)

with ωα(r − r′) denoting a weight function.12, 17 There are five
weight functions, which are obtained through decomposition
of the Mayer-f function into convolution products.18 The two
of the weight functions are vector quantities and represent a
distribution normal to the sphere surface vectors. In the uni-
form fluid, they have no contribution. The weight functions
are given below

ω2(r) = δ(R − r), ω3(r) = θ (R − r), ω2V (r) = r
r
δ(R − r),

(12)
and ω0(r) = ω2(r)/(4πR2), ω1(r) = ω2(r)/(4πR), and
ω1V (r) = ω2V (r)/(4πR), where R = σ /2. Since we assume
the size of all ions to be the same, the weight functions are
the same for all the ionic species. The insertion work Whs is
defined as the functional derivative of the excess part of the
free energy

βWhs(r) = δβFhs

δρ
=

∑
α

∫
dr′ ∂�hs(r′)

∂ρ̄α

ωα(r′ − r). (13)

The DFT theory presented above accurately captures the di-
mensional crossover when the 3d fluid is confined to a quasi-
2d space19—if a degree of freedom is completely eliminated
in the transverse direction, a 2d fluid is accurately recovered.

C. Local density approximation (LDA)

Although highly accurate, see Fig. 1, the numerical im-
plementation of the fundamental measure density functional
theory is quite involved. To simplify the calculations, lo-
cal density approximations (LDA) have often been invoked.
Within the LDA, the thermodynamic relations derived for a
homogeneous fluid are applied locally to an inhomogeneous
situation. For example, within the LDA the insertion prob-
ability Whs is supposed to be a function of the local den-

0 1 2 3
x/σ

0

10

20

30

40

50

 ρ +
 [

nm
-3

]

DFT
simulation

cs = 9.5M, σc = 0.1C/m2, σ = 0.2nm, λB   = 1nm

FIG. 1. The distribution of counterions near a wall. The points are the re-
sults of the Monte Carlo simulation of 1:1 electrolyte between two parallel
charged walls with the surface charge σ c = 0.1 C/m2 and the separation L
= 3.52 nm. The remaining parameters are: the particle diameter σ = 0.4 nm,
the salt concentration cs = 9.5 M, and the Bjerrum length λB = e2/εσkBT
= 1 nm, where e is the elementary charge. The solid line is the DFT predic-
tion. For technical details regarding the simulation, see the Ref. 20.

sity ρ(r) and is identified with the “local” excess chemical
potential, Whs(r) = Whs(ρ(r)). Clearly, the specific form of
the LDA will depend on the approximate form of Whs. The
MPB11 relies on Whs derived from the lattice-gas description
of electrolyte, βWhs = −log(1 − η), where η = πσ 3ρ/6 is the
packing fraction. The SPT expression is βWhs = −log(1 − η)
+ 14η−13η2+5η3

2(1−η)3 .

III. THE CONTACT VALUE THEOREM

In this work, we focus on the region at a contact with
a charged wall. In this region, the excluded volume effects
are most pronounced since the ion concentration is highest,
and for many problems the contact quantities are of primary
interest. This is the case for calculation of the differential
capacitance,21 or the estimation of the strength of the electro-
static interactions between colloids trapped at an interface.22

The theoretical investigation in this region is facilitated by
the existence of exact thermodynamic relations. This section
reviews some analytical results valid at a contact with a wall.
Throughout the paper, we make frequent use of either the sub-
script or the superscript w to indicate that a quantity is taken at
contact with the wall. In the same way, we use b to indicates
bulk values. We remind that the charge and number density
are ρc = ∑K

j=1 qjρj and ρ = ∑K
j=1 ρj , respectively. Conse-

quently, the bulk and contact value of the number density is
ρb = ∑K

j=1 ρb
j and ρw = ∑K

j=1 ρw
j , respectively.

A. Exact results

The simplest expression of the contact value theorem re-
lates the bulk pressure P to the average momentum transferred
at the uncharged hard-wall: kBTρw = P , where ρw is the fluid
density at the contact with the wall. If the hard-wall has a sur-
face charge σ c and the particles are hard-spheres with a cen-
tral charge, then the contact value theorem takes the form,23

kBTρw = P + σ 2
c

2ε
. (14)
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Within the DFT formalism the pressure is given accord-
ing to the scaled particle theory, P = kBTρb(1 + ηb + η2

b)/
(1 − ηb)3. This result is a highly accurate approximation and
the contact value theorem according to the DFT is essentially
exact. The contact value relation is the result of the mechani-
cal force balance condition,

−ρ∇[kBT log ρ] = ρc∇ψ + ρ∇Whs, (15)

where the thermodynamic force on the left-hand side is coun-
terbalanced by the electrostatic force and the depletion force
due to the collisions with other fluid particles on the right-
hand side (Ref. 24).

The explicit expression for the contact density, using
Eq. (5), is

ρw =
[ K∑

j=1

ρb
j e

−βqj ψw

]
e−�w, (16)

where we have introduced the quantity

�w = β
(
Ww

hs − Wb
hs

) = −β

∫ ∞

0
dx

∂Whs

∂x
, (17)

representing the reversible work expanded to bringing a hard-
sphere particle (with no electric charge) from the bulk elec-
trolyte to the wall. This is not to say that �w is indepen-
dent of electrostatic properties. The work of bringing an un-
charged hard-sphere to the wall depends on the ionic distribu-
tion within the double-layer that depends on the electrostatic
interactions. Substituting the density in Eq. (16) into the con-
tact value theorem gives

kBT

[ K∑
j=1

ρb
j e

−βqj ψw

]
e−�w = P + σ 2

c

2ε
. (18)

For the case �w = 0, ψw is known exactly and is determined
by the bulk quantities and the surface charge. The standard
PB equation describes this scenario. A finite �w modifies the
contact potential. �w > 0 signifies that it is easier to insert a
particle far away from the wall than at the contact. This is in-
tuitive because near the wall counterions are in excess. Conse-
quently, the contact potential is larger than that obtained from
the standard PB equation—steric interactions deplete some
ions from the first layer making it more difficult to neutralize
the wall charge. On the other hand, �w < 0 signifies that it is
easier to insert a particle at the wall than far from it. Although
this seems counterintuitive, it can occur at low values of the
surface charge σ c and/or large ηb. To see this, we consider the
limit σ c → 0,

lim
σc→0

�w = −log

(
P

kBTρb

)
. (19)

In this limit, �w is always negative (since P ≥ kBTρb), and
the larger the bulk packing fraction ηb, the larger will be the
modulus of �w. At large ionic concentrations—such as, for
example, found in ionic liquids—the range of σ c where �w is
negative can be significant. In Fig. 2, we plot �w as a function
of ηb for different values of the surface charge. The crossover
where �w changes sign to negative is pushed to larger ηb as
σ c becomes larger. Eventually, the crossover is suppressed as
ηb passes the freezing transition (at ηb ≈ 0.49).

0 0.1 0.2 0.3 0.4
ηb

-2

-1

0

1

2

3

Δ w

σc = 0
σc = 0.1 C/m2

σc = 0.2 C/m2

FIG. 2. The reversible work of dragging an uncharged test particle from bulk
to the wall plotted as a function of the bulk packing fraction. The data points
are from the numerical DFT calculations for a symmetric salt 1:1. The bulk
ion concentration is ρb = 2cs, the bulk packing fraction ηb = πσ 3cs/3, where
cs is the bulk salt concentration. The parameters are: the particle diameter
σ = 0.8 nm, the Bjerrum length λB = 0.8 nm, and the bulk salt concentra-
tion cs = 0.1 M. Negative �w signifies a favorable gain in free energy when
bringing a hard sphere from the bulk to the wall.

B. Local density approximation (LDA)

Within the local density approximation, the insertion
work is a local quantity,

Whs = ∂�hs

∂ρ

∣∣∣
ρ=ρ(r)

, (20)

and the force density due to the hard-sphere interactions can
be related to the gradient of a local pressure,

−ρ∇Whs = −∇
[
ρ

∂�hs

∂ρ
− �hs

]
= −∇[P − kBTρb].

(21)
The force balance equation in Eq. (15) becomes

ρc∇ψ = −∇P, (22)

leading, after integrating over a half-space, to the contact
relation,

Pw = P + σ 2
c

2ε
, (23)

where Pw is the local pressure at contact with the wall. The
notion of a local pressure can be somewhat misleading, since
the pressure is normally associated with bulk properties. It is
only sensible to talk about a local pressure within the frame-
work of a local density approximation.

Going back to the exact contact value theorem in Eq. (14)
shows that the correct thermodynamic result is obtained only
if P = Pid = kBTρb. Paradoxically, if one tries to improve
on this result and go beyond the PB description by includ-
ing an excess free energy due to electrostatic or steric cor-
relations using a LDA formalism, one obtains less accurate
contact value density than if the correlations are neglected al-
together. The unphysical contact value relation for the LDA
treatment is a consequence of an unphysical density profile.
The LDA approximation fails to capture the oscillating dis-
crete structure of a fluid, see Fig. 3. As seen in that figure,
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FIG. 3. The density profiles near a hard charged wall obtained using the
DFT and the two LDA methods: the MPB and the SPT. The parameters are:
cs = 0.1 M, σ c = 0.4 C/m2, λB = 0.72 nm, and σ = 0.8 nm. The system
represents a symmetric 1:1 salt.

the LDA approximations account for overcrowding through
“density saturation,” while a realistic description shows over-
crowding as layering of a fluid near a wall. It is tempting to as-
sume that the “saturation” observed in a density for the LDA
models represents a weighted rather than a physical density
profile,

ρLDA →
∫ ∞

0
dx ′ρ(x ′) ω(x ′ − x) , (24)

where ω(x′ − x) is some weight function, so that oscilla-
tions are completely smoothed out. Such conjecture, however,
entails that ψ obtained from the LDA is also not physical
but only a weighted quantity. We, therefore, consider that all
quantities produced by the LDA are what they are, and that
the saturation of a density profile is an artifact of the LDA
treatment. To test the accuracy of the LDA, one should rather
consider other quantities such as ψ , which is of direct interest
to most problems of electrostatics.

Below we look into details of two LDA models. As men-
tioned earlier, the SPT results are highly accurate for homo-
geneous fluids, producing the exact second virial coefficient.
Furthermore, the third and higher order virial coefficients are
very accurate,

βPspt = ρ(1 + η + η2)

(1 − η)3
= ρ[1 + 4η + · · ·] . (25)

On the other hand, the lattice-gas model (from which the MPB
is derived) already fails at the second virial coefficient,

βPlg = − 6

πσ 3
log(1 − η) = ρ

[
1 + 1

2
η + · · ·

]
, (26)

and is unfit for treating homogeneous fluids.
On the other hand, when the LDA is applied to inho-

mogeneous fluids, it is hard to predict what will happen. In
Fig. 4, we plot the contact potential for various models. First,
we note that the difference between the PB and the DFT re-
sults. The finite size effects lead to an increase of the sur-
face potential, and the larger the surface charge, the larger
the discrepancy, since more counterions are crowded into the
double-layer. Next, we discuss the LDA models. The MPB

0 0.1 0.2 0.3 0.4

σc[C/m2] 

0

5

10

15

20

eβ
ψ

w

DFT
PB
MPB
SPT

FIG. 4. The contact potential as a function of the surface charge. The param-
eters are: cs = 0.1 M, λB = 0.72 nm, and σ = 0.8 nm. The system represents
a symmetric 1:1 salt.

model underestimates while the LDA based on the SPT over-
estimates the DFT result.

We next consider the quantity �w as defined in Eq. (17).
As shown in Fig. 5, the MPB reproduces this quantity better
than the STP. The advantage of the MPB model is its analyti-
cal tractability, and according to this model, �w yields a very
simple expression,

�w = βπσ 2
c σ 3

12ε
, (27)

with �w parabolic in σ c.

IV. SCALING OF THE QUANTITY �w

All the calculations in this work are carried out for the
1:1 symmetric salt, so that the bulk number density is ρb

= 2cs, where cs denotes the bulk salt concentration. In this
part of the study, we investigate the scaling of the quan-
tity �w. �w is a function of three dimensionless variables:
ηb = πσ 3ρb/6, σ ∗

c = πσcσ
2/(4e2), and λ∗

B = λB/σ , corre-
sponding to volume, surface, and length, respectively. σ ∗

c rep-
resents the packing fraction of counterions projected on a 2d

0 0.2 0.4

σc[C/m2]

0

5

10

15

Δ w

DFT
MPB
SPT

FIG. 5. The reversible work of bringing an uncharged test particle from the
bulk to the wall as a function of the surface charge. The parameters are:
cs = 0.1 M, λB = 0.72 nm, and σ = 0.8 nm. The system represents a sym-
metric 1:1 salt.
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plane. The 2d solid phase transition is at η2d > 0.72, and
the maximum possible packing fraction is at η2d = 0.90. If
σ ∗

c < 0.90, potentially all the counterions can collapse onto
the charged surface, if attraction is sufficiently strong (al-
though σ ∗

c > 0.72 would involve a phase transition as well).
If, on the other hand, σ ∗

c > 0.9, collapse onto a single plane is
prevented and a second fluid layer must form. In the reduced
units, the contact value theorem is

βνP + 16

3
λ∗

Bσ ∗2
c = ηb cosh φwe−�w, (28)

where φ = eβψ is the reduced potential, and ν = πσ 3/6 is
the volume of a single fluid particle.

According to the LDA, �w is a function of two indepen-
dent parameters, ηb and λ∗

Bσ ∗2
c . Later, as we investigate �w

for various parameters using the DFT, we do not find this re-
duced description to be confirmed, and we conclude that it
is an artifact of the LDA. Furthermore, this implies that the
scaling of the contact potential ψw according to the LDA de-
scription is described by two independent parameters. The
two parameter scaling of the LDA can be ascertained from
the contact relation in Eq. (23).

A. Dilute limit

To simplify things, we first consider the dilute limit, so
as to suppress the contributions from the bulk eliminating
the dependence on ηb, limηb→0 �w = �0

w ≡ �0
w(σ ∗

c , λ∗
B). The

main results are in Figs. 6 and 7. The figures show the scaling
behavior of �w. The general observation is that the scaling
with the surface charge is stronger than that with the Bjer-
rum length. This can be understood since the surface charge
controls both the interactions between the surface and counter
charges and the counterion concentration. On the other hand,
the Bjerrum length regulates only the strength of the ionic in-
teractions.

Our aim is to propose a fit, which reproduces the scal-
ing of �w. The desirable procedure would be to suggest an
expression based on a physically motivated model. Unfor-
tunately, an accurate physically motivated fit could only be
found for a limited range. To accurately parametrize the en-

0 0.5 1 1.5
σc

*

0

5

10

15

20

Δ w

λB
*  =  1.5, 1, 0.5, 0.25, 0.1

ηb = 0.0040

FIG. 6. �w as a function of the surface charge. The packing fraction is fixed
at ηb = 0.0040 (the dilute limit). The points are the DFT results and the lines
are given by Eq. (29).

0 0.5 1 1.5

λB
*

0

5

10

15

20

Δ w

σc
* = 1.41, 1.26, 1.10, 0.94, 0.78, 0.63

ηb = 0.0040

FIG. 7. �w as a function of the Bjerrum length. The packing fraction is
fixed at ηb = 0.0040 and represents (the dilute limit). The points are the DFT
results and the lines are given by Eq. (29).

tire range, we had to resort to a fitting procedure where the
choice of a functional form was based on simplicity and con-
venience. The following functional form was found conve-
nient, �̃0

w = a(σ ∗){λ∗
B/[1 + b(σ ∗)λ∗

B]}α . Fully parametrized,
this form reads

�0
w = (

2.28σ ∗
c + 5.53σ ∗2

c

)

×
[

λ∗
B

1 + (1 − 1.21σ ∗
c + 0.375σ ∗2

c )λ∗
B

]3/4

. (29)

The accuracy of this fit is demonstrated in Figs. 6 and 7 in
comparison to the DFT data points. We also compare this
formula with the simple expression from the MPB model in
Eq. (27), which in reduced units reads

�w = 16

3
σ ∗2

c λ∗
B. (30)

There is a curious similarity between the square term in our
fit = 5.53 and the coefficient 16/3 in the MPB expression. If
this similarity is more than coincidental, it would suggest that
although reduced, the MPB description accurately captures
some aspects of the hard-sphere interactions.

B. Finite concentrations

We now turn to investigate the contributions of finite con-
centrations. We suggest the following formula:

�̃w = �w + log

(
P

kBTρb

)
= �0

w − θ (ηb, λ
∗
B), (31)

so that �w as a function of σ ∗
c is merely shifted by the quantity

θ . This fit is suggested by Fig. 8, where we compare �w for
finite ηb with that for a dilute limit. In the relevant regime, �w

as a function of σ ∗
c is offset by a value independent of σ ∗

c . We
find the following accurate fit to the function θ :

θ (ηb, λ
∗
B) = 1.75ηb + η2

b

[
10.8λ∗

B − 1

0.21 + λ∗
B

]
. (32)

We subtract −log (P/kBTρb) from �w so that the quantity �̃w

is always positive, see Eq. (19) and Fig. 2. To ensure that
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0 0.5 1
σc

*

0

5

10

15

~ Δ w

ηb = 0.0040
ηb = 0.16

λB
* = 1.25

λB
* = 0.5

FIG. 8. �̃w as a function of the surface charge for different Bjerrum lengths
and packing fractions.

θ < �0
w, so that �̃w > 0 for all values of ηb, we apply the

form

�̃w = �0
we−θ/�0

w . (33)

V. APPLICATIONS

We now have the complete expression for �w,

�w = −log

(
βP

ρb

)
+ �̃w, (34)

where �̃w is given in Eq. (33). To obtain the contact potential,
we insert �w into Eq. (28) to get

cosh φw = e�̃w

(
1 + 16

3

λ∗
Bσ ∗2

c

νβP

)
. (35)

In Figs. 9 and 10, we compare the exact DFT results for the
contact potential with the ones obtained using the analytical
scaling function Eq. (35) and with the predictions of the MPB
model. The scaling form derived in the present paper agrees
very well with the contact potential obtained using the exact
DFT, even at densities all the way to the solid phase transi-

0 0.1 0.2 0.3 0.4

σc[C/m2] 

0

5

10

15

20

φ w

cs = 0.01M
cs = 0.1M
cs = 0.5M
cs = 1M

FIG. 9. Surface potential as a function of the surface charge. The parameters
are: λB = 0.72 nm and σ = 0.8 nm. The solid lines correspond to the analyti-
cal expression based on Eq. (35) and the dashed lines to the MPB model.

0 0.5 1 1.5
σ[nm]

0

5

10

15

20

25

φ w

cs = 0.01M
cs = 0.1M
cs = 0.5M

FIG. 10. Surface potential as a function of the particle diameter. The param-
eters are: σ c = 0.2 C/m2 and λB = 0.72 nm. The solid lines correspond to our
analytical expression and the dashed lines to the MPB model. Since the hard
sphere fluid freezes at ηb � 0.49, we interrupt the curve for cs = 0.5 M.

tion. For largest particle sizes, Fig. 10 shows that the scaling
function slightly disagrees with the DFT results. This happens
when σ ∗

c > 2 and a third layer of condensed counterions starts
to form.

A quantity that is of particular interest for electrochem-
istry is the differential capacitance of the double-layer,21

C = ∂σc

∂ψw

.

The standard PB result gives

CGC = εκ cosh
(φw

2

)
,

which is the, so-called, Gouy-Chapman capacitance. κ

= √
8πλBcs is the inverse Debye length. At low φw, this for-

mula works well, but as φw increases, steric repulsion lowers
the capacitance as counterions are prevented from accumu-
lating near the electrode, leading to a “camel-shaped” curve
of Fig. 11. The scaling function derived in the present paper

0 5 10 15 20
φw

0

1

2

C
 / 

ε 
[n

m
-1

]

cs = 0.01M
cs = 0.1M

FIG. 11. Capacitance versus the surface potential. The parameters are:
λB = 0.72 nm and σ = 0.8 nm. The solid lines correspond to the analyti-
cal expression, the dashed lines are the result of the MPB model, the symbols
are the DFT data points, and the dotted lines are the PB results, CGC. The
agreement between the DFT and the simulation for C was also confirmed in
Ref. 25.
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allows us to easily calculate the differential capacitances,
which once again are in a very good agreement with the DFT.

VI. CONCLUSION

We have investigated the effects of steric interactions
on the ionic distribution and electrostatic properties near a
charged hard wall. We have specifically focused on the re-
versible work required to bring a hard spherical particle (with
no electric charge) from the bulk to the wall, �w. The quantity
�w is nonlocal and it controls the steric effects in the double-
layer. Typically, �w > 0. This implies that the overcrowding
near a wall causes the depletion of counterions away from
the wall, leading to the increased contact potential. The less
common case, �w < 0, represents the situation where coun-
terions are forced from the dense bulk toward the wall. This
effect decreases the value of the contact potential.

We have also studied the scaling behavior of �w calcu-
lated using the nonlocal DFT theory. We expected that the
careful look into the scaling behavior can reveal a simple un-
derlying mechanism. Unfortunately, no simple model could
cover the entire domain. Instead, we proposed a functional
form to fit the DFT data points for �w. Such a fit allows for
simple and accurate calculation of electrostatic properties at
contact with the wall without resorting to numerical schemes
of an entire region.

Finally, we have explored the discrepancies between the
LDA and exact description. The LDA description shows that
�w depends on two free parameters, in comparison to the
three parameters given by full physical description (DFT).
Another artifact of the LDA is the “saturation” seen in a den-
sity profile rather than oscillations due to layering. This satu-
ration effect leads to unphysical contact value relation. For
various LDA models, we find that the MPB based on the
lattice-gas model is more accurate than the LDA based on the
SPT theory, which, for treating a uniform fluid, is extremely
accurate. This indicates that some cancellation of errors is at
work.

We remind that our analysis is limited to the weak-
coupling limit, where electrostatic interactions are accurately
captured by the mean-field treatment. To accurately account
for the correlations together with the hard-sphere interactions

remains a great challenge. It is our hope to treat the strong-
coupling limit of the hard-sphere ions in the future.
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