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The energy of interaction, W,,(R), of two ions at separation R in an ionic medium is considered 
using Debye-Hiickel (DH) theory for spheres of diameter ao. The ions are treated as spheres of 
dielectric constant D ’ which may differ from that of the medium, say D; they have radii b and carry 
equal or opposite point charges. The electrostatic potential cp(r) in the ionic medium satisfies the DH 
equation V’p=t?p. An exact, closed-form expression is obtained for WIz(R). In the limit of zero 
ionic strength (g-+0) previous asymptotic results for R--+m, indicating @JR4 
+Q,6/R6+‘&7/R7+... corrections to Coulomb’s law, are reproduced; by contrast for Kb>O the 
leading interaction term when R--+a varies, as expected, like emKRIDR but the first correction 
decays as K2e-2KR/DR2, i.e., with a squared screening factor, and can be stated for two ions 
differing in charge, radii, etc. The same calculations show that, within DH theory, modeling the ions 
with D ’ #D has no effects on the predicted thermodynamics. 

1. INTRODUCTION 

In the study of electrolytes and ionic solutions the influ- 
ence of the structure of an ion on the properties of the solu- 
tion and on its interactions with other ions is a long-standing 
theme. Thus in 1934 Kirkwood’ considered the thermody- 
namic influence of Zwitterions, i.e., hybrid ions with well 
localized charged centers but total zero charge. He modeled 
such compound ions as spheres of radius b and dielectric 
constant D’ differing, in general, from that, D, describing the 
solvent; within each sphere were situated M discrete point 
charges, ql, q2 ,..., at fixed positions. Kirkwood used 
Debye-Hiickel theory2 to compute the contributions of such 
ions to the chemical potential of a dilute solution. More re- 
cently two of u&4 have used the Kirkwood ion model (but 
with D’ = D) to explicitly estimate the contribution of Bjer- 
rum dipolar pairs to the low-temperature thermodynamics of 
ionic-driven phase separation in the restricted primitive 
model of an electrolyte solution.’ The approximation of a 
Bjerrum ion pair by two charges within a single sphere, 
rather than by charges residing in two distinct but closely 
associated spheres, is reasonable but not obviously satisfac- 
tory: one would like to do better. 

At the next level of detail the interaction energy W,,(R) 
of tn~ ions in a solution separated by distance R was dis- 
cussed in 1957-62 by Levine with Wrigley6 and with Be11.7 
Each ion was modeled as a dielectric sphere (with D’ dis- 
tinct from D) and nontrivial terms proportional to (D - 0’) 
and varying for large R as 1/R4, 1/R6, 1/R7, l/R*,... were 
identified in W,=(R). However, those authors considered 
only the case of zero ionic strength so that, essentially, they 
solved a problem in pure electrostatics. In this article we 
repair this deficiency in theory by computing W,,(R) for an 
electrolyte solution of finite, nonzero ionic strength.* 

Following Kirkwood’ we suppose that the electrostatic 
potential cp(r) within the ionic medium (external to the di- 
electric spheres representing the ions) satisfies the standard 
Debye-Hiickel equation2 

v2q= K=$D. (1.1) 

This may be derived in the usual way2V5 by linearizing the 
Poisson-Boltzmann equation; however, if K is chosen appro- 
priately it is expected to have a significantly wider range of 
validity. The technical problems in handling Eq. (1.1) prove 
quite severe but we have succeeded in deriving an exact, 
closed-form expression for W12(R): see Eqs. (3.34), (3&t), 
and subsequent text. In the limit of zero ionic strength, which 
corresponds simply to K-+O, the results of Levine ef uZ.~*~ 
can be recaptured. However, when R--tm withJixed positive 
K the behavior is quite different. If b t = b2 = b is the common 
radius of the two test ions and if b, is the radius of the ions 
constituting the ionic medium2Y5 it is convenient to define 
a=b,+b. Then for test charges ql=q, q2=fq we find 

W,=(R)- r 6=q= g 
e-2~R 

i- a2q2K2a3A m 

x[ l+~[~,K=CZ=)], (1.2) 

where the prefactors are 
ml 

+L 
3 

l+KU ’ 
A=;+= $ . 

0 
(1.3) 

Apart from the solvation factors 6( KU), the leading term 
in this result for W,,(R) represents the expected, well- 
known screened Coulombic interaction. However, the lead- 
ing correction term shows no sign of the Levine et al. l/R4 
variation! Rather, that term becomes doubly screened’ by a 
factor e-2KR and the power of R changes to 1 lR2. Note also 
that this R--+m correction term does not reduce to the 1 lR4 
form when ~40: in fact, a quite subtle crossover occurs 
which is elucidated below: see, in particular, Eqs. (4.2) and 
(4.10)?(b) 

As explained elsewhere, 8(b) the strong screening of the 
1 lR4 interaction at positive ionic strengths proves significant 
in connection with the theory of liquid-liquid criticality in 
electrolyte systems.’ Certain systems discovered by Pitzer 
and co-workers” appear to display classical or van der 
Waals-like critical behavior (p= f, y= 1, etc.) in place of the 
expected Ising-like exponents, p-0.33, y-1.24,... . To ex- 
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plain this, Stell” suggests that effective long-range, 1 lR4 
ion-ion interactions, as found by Levine et al. when D’ f D, 
might play a crucial role. However, since the observed criti- 
cal points occur at ionic strengths corresponding to Ka= 1 
where Eq. (1.2) indicates strong screening, this proposal 
seems unconvincing. 8(b) [It also encounters other difficulties 
in light of recent scattering experimentst2: see Refs. 8(b) and 
W-9.1 

r 

“‘-.-~s-; D R 

The solvation factor G(Ka) which appears squared in the 
first term in the expression (1.2) for W,,(R) has been noted 
previously.13 Indeed Thirumalai’3 points out that this factor, 
which he calls a “geometric factor,” plays a crucially impor- 
tant role in determining the equation of state of monodis- 
perse charged colloidal particles: neglect of the finite diam- 
eter a leads to serious quantitative errors in estimating the 
liquid compressibility factor pVINk,T at quite moderate 
volume fractions. 

FIG. 1. Coordinates and dimensions for two test ions, ,2’, and 2’*, of radii 
b,=b*=b, dielectric constant D,=D*=D’, and charges q,=q and 
q2= tq, embedded in an ionic medium or sea of dielectric constant D. The 
radius a = b + b, represents the distance of closest approach to the test ions 
of ions of the sea which have radius b,, In the regions labeled I,..., V, the 
electrostatic potential cp(r) takes distinct analytic forms which match appro- 
priately across the boundaries. 

The remainder of this article is set out as follows. In Sec. 
II the systems considered are specified precisely with defini- 
tions of the primary dimensionless variables and parameters; 
in addition the basic electrostatic equations and boundary 
conditions are stated. The solution of these equations, which 
entails an apparently novel, two-center expansion involving 
the spherical Bessel functions, is developed in Sec. III. The 
derivation of an essential set of expansion polynomials is 
presented in the Appendix. The asymptotic analysis of the 
exact results for large R requires some delicacy: this is pre- 
sented in Sec. IV which contains our main conclusions. The 
solvation energy in the ionic medium of a pair of closely 
associated spherical ions, either ( + , - )4 forming a neutral 
dipole, or ( + , + )q, is addressed in Sec. V in order to im- 
prove on the Kirkwood effective-sphere model. The problem 
is solved formally; however, the sums in the requisite expres- 
sions may converge slowly and an efficient numerical 
method is not established. Section VI contains brief conclud- 
ing remarks. 

ters of the test ions .Yt and g2. We may suppose, again 
following DH, that the ions of the sea have a diameter 
a,=2b0. * in those circumstances one has 

a=b,+b. (2.3) 
If, as we may allow, the test ions are actually similar to those 
of the sea, one also has a = 2b, = 2b. Within DH theory the 
screening length UK is given by2*5 

(2.4) 
where p=p+ +p- is the overall number density of ions in the 
sea while their charges are ?qa. Clearly, however, this spe- 
cific form for K need play no role in our analysis. 

The charges of the ionic sea cannot penetrate inside the 
spheres of radius a surrounding each test ion so we require 

V2q=0 for rl or r2<a. (2.5) 
In the notation of Fig. I, this applies within regions I, II, IV, 
and V, while Eq. (2.2) applies in region III. If we denote the 
solutions in the various regions by e(r), *t(r), etc., the ap- 
propriate boundary conditions are 

II. IONIC MODEL, BASIC EQUATIONS, AND 
PARAMETERS 

III: q&r)+0 as rlrr2+m, (2.6) 

We consider two ions, .?‘i and Y2, of radii bi (i= 1,2) 
and dielectric constants Di , that carry centrally located point 
charges qi and are immersed in an “ionic sea,” i.e., an elec- 
trolyte solution, of dielectric constant D at separation R. For 
mathematical simplicity, we will focus on the two symmetric 
cases: 

WI1 III-II: rpnr=a, 7 =9 on rl=a, (2.7) 
1 1 

II-I: cpII=PI, D $ =D’ F on r,=b, (2.8) 
1 1 

together with corresponding conditions at r2= a and at 
r2=b. 

b,=b2=b, D,=D2=D’, ql=q, q2=Zq. 
’ (2.1) 

see Fig. 1. However, when R--+m the leading results can be 
stated for the general case: see Eq. (4.11) below.8(b) 

The electrostatic potential cp(r) in the (d=3)- 
dimensional medium is, following Debye-Hiickel (DH) 
theory,‘72’5 supposed to satisfy 

V*q= ~*cp for r, ,r2>a, (2.2) 
where the radial coordinates rl and r2 are defined in Fig. 1 
while a Z= b represents the distance of closest approach of the 
centers of the ions G constituting the ionic sea, to the cen- 

If we choose q=qO and 2b=a=a0 and let R+w we 
are left with the original DH problem2,5 of one ion in a sea of 
similar ions. Now, however, the model is extended in that 
each ion is represented by a sphere of dielectric constant D’ 
not necessarily equal to D, as is implicitly supposed in the 
usual theory. Our analysis will, therefore, provide the input 
for a theory of this extended restrictive primitive model at the 
DH level. [See also Footnote 15 in Ref. 8(b).] 

It is convenient to introduce here, for later reference, 
scaled forms of the basic variables and various dimension- 
less parameters. Accordingly, we set 

x= Ka, y=Rla, (2.9) 
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z”xy= KR, w= e-=/y, 

and, for n = 1, 2, 3 ,..., define 

(2.10) 

b 2n+1 

4t= ; RI, 0 n(D-D’) 
““=(n+ l)D+nD’ ’ 

(2.11) 

Evidently R, and S, vanish if D = D’. One may also mea- 
sure the dielectric mismatch via 

2ns D-D’ 
R,= 2n+l+S wi* s=D+D’* (2.12) 

Now within region I (i.e., rl <b: see Fig. 1) the electro- 
static potential clearly has the form 

501(r) = & +B,tx,y;G,alb)+Otrl), 
1 

(2.13) 

where, here and below, t refers to q2= t q. In the limit 
Rmy-+m the constant term B,(x)=B%(x,m;&a/b) repre- 
sents the average electrostatic potential at the test ion ~?‘t due 
to all the charges of the ionic sea. Following DH,2*5 the cor- 
responding electrostatic energy is 

W,(x)=dL(x) (2.14) 

and by employing the usual charging process2,5 one com- 
putes the corresponding electrostatic free energy. When 
.I,=.$, say, i.e., 4 t = qo, a =uo, this leads directly to the 
free energy of the full electrolyte (within DH theory). 

On the other hand, for finite R the mutual interaction 
energy of .7, and :Y2 is given by”7 

Wf2(R)=qB,(x,y;6,a/b)-qB,(x,m;S,a/b). (2.15) 

Consequently, the aim of our calculation is to find an exact 
expression for B? and then to study its behavior for large y. 

Ill. ANALYSIS OF THE DEBYE-HlkKEL EQUATIONS 

A. Form of regional solutions 

To solve Eqs. (2.2) and (2.5) subject to Eqs. (2.6)-(2.8) 
we suppose, as illustrated in Fig. 1, that R>2a: the case 
R< 2a, when the exclusion spheres of radius a overlap, will 
be considered in Sec. V below. The linearity of Eqs. (2.2) 
and (2.5), the cylindrical symmetry about the line through 
the centers of .;71 and g2, and the reflection symmetry/ 
antisymmetry (?) about the plane bisecting the line joining 
the charge centers, enables us to write the required solutions 
in the form 

m 

5od r) = &- +Bo+ 2 B,,d’P,tcos 61, 
1 m=l 

(3.1) 

cPdr)= E (C,rY+D,jP,tcos 61, 
m=O \ ‘1 I 

cs 

Sodr) = c A,[k,(Krl)P,(cos 
m=O 

(3.2) 

4) 

(3.3) 

together with symmetrically related expressions for m(r) 
and e(r), where 13~ and 19, are defined in Fig. 1. 

We employ the spherical Bessel functions k,(x) and, 
below, i,(x) .14 These may be defined by 

~ l/2 

i i 

X2j+m 

i,(x)= 5 L+u,W=i 
j=o 

2jj!(2m+2j+l),, ; . . 

(3.4) 
see E7.11 (16), (20), and E7.2 (12),14 and note 

(2n-1)!!=(2n)!/2”n!, O!=l, (-l)!!=l; (3.5) 

and, using E7.2 (40) and (43),t4 
l/2 

K,,~,(x,=$ 5 qmr/xl, 
l=O 

(3.6) 

where the polynomial coefficients, important for us, are 

T(m+Z+ 1) m-I-1 
4ml=211!r(m-l+l) =(21-l)!! 21 ( 1 * (3.7) 

For concreteness and convenience we record 

ko(x) = emx/x, kt(x)=(l+x)e-‘/x2, . . . , 

io(x) = (sinh x)/x, 

(3.8) 

it(x)=(cosh x)/x-(sinh x)/x2, . . . , (3.9) 

k,(x)=(2rn-l)!!~-~-~[l+O(x~)], (3.10) 

for m 3 1 as x + 0, and note the recursion relations 

k,-l(x)-k,+l(x)= -(2m+ l)k,(x)/x, (3.11) 

k~(x)=(mlx)k,(x)-k,+,tx), (3.12) 

i,(x) = - gk,( -x) + (- )“k,(x)]. (3.13) 

Now the expansion coefficients A,,, , B,, C, , and D, 
for ma0 are to be determined by matching solutions on 
rt = a and rl = b. Using Eq. (2.8) leads directly to 

4 4 4 
Bo=% - ~‘b +C,, Do=E, (3.14) 

and, recalling the definition (2.11), to 

B,=(l+R,)C,, D,=Q,,b2”+1C,,, (3.15) 

for m > 1. Evidently, the B, and D, for m 2 1 can be elimi- 
nated in favor of the C, . 

B. Two-center expansion 

To find the C, one must match on rl = a using Eq. (2.7): 
the difficulty in doing so arises from the second set of terms 
in Eq. (3.3) which entail the angle 82=sin-1[(rt/r2)sin e,] 
and, with s = Kr t , the scaled radial coordinate 

Kr2=s(S,z)=(Z2-2ZS cos eI+S2)1/2, (3.16) 

where z = KR. To overcome this problem we advance the 
expansion 

k,(S)P,(cos e,)= 2 (2n+ l)i,(s)P,(cos e,) 
n=O 
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Xe,,(z)e-z/z, (3.17) 

valid for s<z, i.e., r,<R. To justify this, first note that the 
left-hand side is a solution of the DH equation (2.2) which is 
regular at s = rl = 0. Hence it has an expansion in terms of 
the i,(s). Further, since S(s,z) depends parametrically on z, 
the expansion coefficients must be functions of z. We choose 
to write them in the special form appearing in Eq. (3.17) 
because it transpires that the e,,(z) are simply polynomials 
of degree m  + n in z- ’ satisfying 

mfn 

emnt4= C emnrlzr= e,,(z); (3.18) 
r=O 

compare with Eq. (3.6). The proof of this fact together with 
the evaluation of the coefficients emnr is presented in the 
Appendix. We note that Eq. (3.17) is similar to a well-known 
expansion for P,(cos e,)lrl;l’ ’ which was invoked by LX- 
vine and Bell7 to treat the case of zero ionic strength; that 
corresponds to ~a-+0 and in this limit Eq. (3.17) will, of 
course, reduce to the simpler expansion. However, the more 
general (K>O) result we need seems not to be known. 

From the explicit results for the emnr in the Appendix we 
find the particular values 

emno= 1, e,,,=i(m*+n*+m+n), (3.19) 

e,n2=3(m~2)+2(m~‘)(n~1)+3[n~2), (3.20) 

valid for all m, n>O with the convention (j) = 0 if i< j, and, 
recalling Eq. (3.5), 

m-l-n 
em,n,m+n= em,n,m+n- I =(2m- 1)!!(2n- l)!! 

l 1; n 
(3.21) 

see Eq. (All) and the recursion relations (A3) for e,,(z) in 
terms of em,n-21(z). 

C. Matching equations 

On using the expansion (3.17) in Eqs. (3.3) and (2.7) the 
matching at rl = a can be performed straightforwardly elimi- 
nating the {C,} in favor of the set {A,}. To express the 
resulting infinite set of equations in compact form some fur- 
ther notation is helpful. First we put 

An=AO(x,y)x”pn(x,y) for n>O, with po= 1. 
(3.22) 

Then we introduce alternate forms of the basic polynomials 
via 

fmntz)=zm+nemntz) ami hmn(x,y)=xm’nem,txy), 
(3.23) 

so that f,, is polynomial in z of degree m  + n while h,, is a 
homogeneous polynomial of degree m  + n in x and y - r . The 
leading and trailing coefficients in these polynomials follow 
from Eqs. (3.19)-(3.21). The set of unknown coefficients 
{P~}~~, appear naturally in the generating functions 

m  

~,tx7Y)=fmow+c f*l(Z)Pl(X,Y)~Y'7 
I=1 

(3.24) 
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m  ~0. For brevity from here on we take 

kmEkm(x= KU) and im=im(x= Ku), (3.25) 

and for ma 1 introduce the coefficients 

2m+l (l+S,)xi,+I+(2m+l)S,i, 
om(x’S,u’b)=X2mfl (1+ &)xk,+,--(2mS 1)&k, ’ 

(3.26) 
which embody the basic parameters of the system: see Eq. 
(2.11). When x = KU +O one finds, for all S 2 0, 

%b) = 
&+x2/(2m+3)(2m+ 1) 

[(2m- l)!!]* [ 1+0(x2)]. 
(3.27) 

With these conventions matching yields 

Bo=f ($--A)-& +A,( ko+ioUo T), (3.28) 

(3.29) 

which, since B,=B, in Eq. (2.13), represents the desired 
answer, together with the infinite set of simultaneous linear 
equations 

pm(x,y)= +w,(x)U,(x,y)e-Zlym+‘. (3.30) 

These must be solved to yield pm (m 2 1) which, via Eq. 
(3.24), can then be used to evaluate U,(x,y) and thence A, 
and B,(x,y). For completeness we also record 

(3.31) 

and, formal, 

um&C,=Ao[x”k,p,f(2n+ l)i,U,e-zlzn”]. 
(3.32) 

D. Electrostatic energies 

From Eqs. (3.28) and (3.29) we see that one may take 
the limit R+m upon which the terms involving U, drop out 
and yield a simple result for Bo(x,a) =B,(x). By Eq. (2.14) 
the electrostatic energy of a single ion in the ionic sea fol- 
lows as 

(3.33) 

When a equals uo, the diameter of the sea ions, this has the 
standard DH form’T2*5 apart from the first term which de- 
pends on S and b( ~a). However, as one sees by following 
the usual procedure of charging the ionic sea,2,5 the first term 
here merely adds a fixed constant to the energy per ion. That 
has only a trivial effect on the predicted thermodynamics 
and, in particular, leaves the DH equation of state and coex- 
istence curve3’4 unchanged from the S=O (D’ =D) results. 

An explicit result for the energy of interaction follows in 
a similar way from Eq. (2.15) as 

a*(x) UokY )w 
l?u(x)Uo(x,y)w ’ (3.34) 

where the solvation and coupling factors are 

6(x)=eXl( 1 +x), (3.35) 
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suggests that the dominant elements of an n X n section of G 
will lie on the diagonal and, very roughly, have a magnitude 

lgnnl =(enn0x2n+~~~+en,n,2n~-2n)l~nl 

ho,= 1, h,q;ho,=x+y’, 
h,,=ho,=x2+3xy’+3y , h,,=x2+2xy’+2y r2 

h,o=x3+6x2y’+ 15xy”+ 15y13, h,,=x3+4x2y’+9xy’2+9y’3, 
h22=x4+6x3y’+24x2y’2+ 18O~y’~+ 180~‘~ 

hmo(X,y)=Xm+‘y c+k#Jxy), m=O, 1, 2, . . . . 

v(x)=il(x)lxkI(x)=$x2[1+O(x2)]; (3.36) 

see Eqs. (3.8) and (3.9). Recall also that 
W=e-:/y=ue-~‘R lR: this vanishes when R+m for any 
value of KZO and thus constitutes a basic small expansion 
parameter. 

E. Solution of matching equations 

To solve the set of matching Eq. (3.30) with Eq. (3.24) 
for the set {p,} we aim to obtain a power series in w. To that 
end it is helpful to put 

-2n x*“+[(2n-l)!!]* i 2n 0 I n y-*” 

X[(2n-I)!!]-*1S,+(x2/4n2)l 

-[& +$ (~)“]inS( ~)*“+‘+~~, (3.43) 

where we have used Eqs. (3.19) and (3.21) for ennrr Eq. 
(3.27) for o,, , and Eq. (2.11) for 8,. For x= 0( 1) this crude 
estimate suggests that the elements gij decrease faster than 
exponentially when y > 2 as (i + j) increases which, in turn, 
suggests that XG is bounded and, indeed, of order unity. We 
conclude that the series in w may be expected to converge 
for small w provided y = R/u > 2 and x= KU is not too large. 
Certainly, our results should be asymptotically exact for 
y--too and x=0( 1). 

P,(x.Y)=w%(x)&Ax?Y) (3.37) 

and to work with the coefficients {u,},>t. In terms of the 
polynomials h,,(x,y), defined in Rq. (3.23), the matching 
equations can then be rewritten as 

Finally, to evaluate the ion-ion interaction energy 
W,,(R) as given in Eqs. (3.34)-(3.36) we need Eqs. (3.24) 
and (3.37) which yield 

Un=+h,0tw[h,,01U*+hn*0*u2+.‘.]. (3.38) 

For convenience, some of the low order polynomials h,, are 
recorded in Table I: all remain well behaved when y+m and 
in that limit vary as x~+~. They are therefore compatible 
with a solution in powers of w which we write 

u,(x,y)=+h,o(x,y)+wG,~(x,y)+~*G,~(~,y)+~~~ . 
(3.39) 

Uo(X,y;S,Ulb)= 1 + 2 Gcj(x,y)( +W)j, (3.44) 
j=l 

The functions Gni can now be found recursively by substi- 
tuting in Eq. (3.38) and comparing powers of w. This suc- 
cessively yields 

where we extend Eqs. (3.40) and (3.41) to n=O in order to 
define Goj(X,y): these expressions entail (i) the w,(x) de- 
fined in Eq. (3.26) supplemented by Eq. (3.25) with Eqs. 
(3.4)-(3.7) and by Eq. (2.11) for S, , and (ii) the polynomials 
h,,(x,y) specified via Eqs. (3.23), (3.18), and (All): see 
also Table I. In total, then, we have obtained an exact formal 
expansion for W,*(R) in powers of w=cz~-~~IR which is 
probably convergent for fixed x= ~a30 as y= Rlu-+m. It 
remains to study the asymptotics in more detail for large y. 

G,I = i hn~ho, (3.40) 
I=1 

IV. ASYMPTOTIC BEHAVIOR OF THE INTERACTIONS 

G,2=i hn,w,G,,=ii 5 hniMw+,A,,o~ (3.41) 
I= 1 l=l m=l 

whence the general form is evident; but note that G,,# Gkn . 
Using these results in Eqs. (3.39) and (3.37) and then in 

Eqs. (3.24), (3.28), (3.29), (3.31), (3.32), (3.14) and (3.15) 
gives the general solution for the potential q(r) in all regions 
as a formal power series in w. One may alternatively write 
Eq. (3.38) as a matrix equation and solve in the form 

u~[ui]=“[ITwG]-‘ho, (3.42) 

where b=[hoi], while the infinite matrix G has elements 
gij=hijoj (i,j= 1,2,3,... ) . Expanding the matrix inverse as 
a geometric progression reproduces the previous series. Then 
if the spectral norm of G is XG (loosely, the modulus of the 
eigenvalue of largest magnitude) the radius of convergence 
of the power series expansions in w is w. = l/XG . It is, of 
course, hard to estimate Xo. However, inspection of Table I 

Let us now analyze the result (3.34) for the ion-ion 
interaction energy WI*(R) for large R. When K is positive 
the parameter w = emZly decays exponentially fast and is the 
natural expansion variable. In leading order we obtain just 

W&R>- f12(R)= $$6*(x)w 

(4.1) 

as quoted in the Introduction. Note that this result is inde- 
pendent of b/us 1 and D’. In the limit K+O it reduces uni- 
formly to the pure Coulombic form W12= 2 q*/DR as ex- 
pected. 

The more interesting correction to the leading screened 
Coulombic interaction may then be written 

Awn(R)= Wn(R> - W(i)*(R) = WLY), 

(4.2) 
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(B) x=Ka-+O at fixed z=~Rsl, Rlb-+m. 

f... , - (4.3) 

where u(x)+= $x2 was defined in Eq. (3.36) while Eqs. (3.40) 
and (3.41) give Goi( Gc2(x,y),... . The Gcj(xtY) are 
clearly series in inverse powers of y: hence for K>O the 

exponential factors wj- e -jKR/Rj dominate. Furthermore, 
using the character of the h,, and w, [see Table I and Eq. 
(3.27)] the variation with Sas x and y-’ vanish in any way 
is given by 

Since this limit entails x+0 the terms in u vanish in Eq. 
(4.3) while the polynomials h,, in the G, vary as yeme” 
times polynomials in z. Thence we obtain, recalling Eq. 
(2.11) for f-I,, 

(~+KR)~ 

n +~ [~+K~?+(I/~)K~R~]~ 
1 2 (~+KR)~ 

G~j(x,y)=O[(x+y-‘)2i(S+X2)j]. (4.4) 

The general structure of AWi2(R) for large R when K>O is 
thus clear. 

+2fiieeKR( l+KR+~K2R2)(f)‘+o(~)]. - 

On the other hand, when K=O we have u =0 and 
w=y - ’ so that 

Goj(x,y)wj+1=O(Sily3j+1). (4.5) 

One immediately sees that the first correction to e2(R) 
now varies as SIR4, as found by Levine et a1.6v7 Conversely, 
if one wishes to compute the coefficients of subsequent in- 
verse powers out to, say, lIRP, it is necessary to include the 
terms of order w[P’~]-~ and lower in the expansion. By the 
same token, however, only the leading few terms in the ex- 
pansions of G, in products of the polynomials h,, are 
needed for fixed p. 

(4.9) 

On setting KR=O this reproduces the terms @4/R4, Qi6/R6, 
and a71R7 of Levine and Bell7 (who carried the expansion 
explicitly out to order l/R”). 

Note that Eq. (4.9) does not depend on the length a. This 
is rather artificial since even though we must have a > b the 
limit specified in (B) is equivalent to taking a-0 at fixed K. 

To obtain a uniform asymptotic expression one must analyze 
the leading term in Eq. (4.3) more delicately using Eq. (4.6): 
the cost is that some truncation in powers of x2 is necessarily 
also entailed. We find the correction factor can be written 

From these remarks it is clear that a truncated formula 
that correctly gives the full asymptotic behavior of A W, 2( R) 
for large R when K>O will not uniformly reproduce the cor- 
rect inverse power series in R when one allows Ka-+O. With 
this proviso in mind we readily obtain from the leading terms 
in Eq. (4.3) a result valid for 

*(x,y)=u(x)[l-+ &(x2/y) emxy] 

(A) y=Rla-+a at fixed x = Ka>O, namely, 

-~KR 

(4.10) 

AW12(R)=q262a & u(Ka)+H(Ka)+J(Ka) i 
I 

a2 
+0 9 

i iI 
[l+O(eeKRIR)]. (4.6) 

The auxiliary functions deriving from the expansion of 
%(x,Y) =e 

H(x) = 5 OI(X)X21” S1X2f 0(x4), (4.7) 
I=1 

which is correct for all x30 as y+* and includes terms in 
AWi2 up to e -2KRIR7 and e -3KRIR5 when x>O while for 
x= 0 the terms @JR” are given correctly for ns7. Note, 
however, that in light of the error term in Eq. (4.10), the 
coefficients u(x) and w,(x) are needed only up to orders x4 
and x2, respectively. It is evident from Eq. (4.10) and the 
previous discussions that a crossover from the extended Le- 
vine er al. results occurs for y Z 1 lx, i.e., KR> 1 as might 
reasonably have been expected! 

J(x)=5 l(z+ 1)w,(x)x2’-‘~2slx+o(x3). (4.8) 
I=1 

Since the coefficients o1 decrease as al/[ (21- 1) ! !] 2, at 
least for x = O(l), these series should be rapidly convergent. 
On using Eqs. (3.36) and (2.11) the expression (4.6) yields 
the main result (1.2) quoted in the Introduction. 

As anticipated, taking the limit x= Ku-+0 in Eq. (4.6) 
does nor reproduce the results of Levine et a1.6s7 However, 
these can be recaptured and extended somewhat in the limit 

If errors of order (x + y - 1)4 are acceptable one may drop 
the factors [..*I and {me+} in Eq. (4.10), use u(x)=$x’, 
oi (x) f~ S, , and set S, to 0. This yields the result previously 
announced’: as explained, that, in turn, may be interpreted 
directly in physical terms as the sum of the interactions of 
the charge of each test ion (a) with the hole in the ionic 
atmosphere resulting from the exclusion of screening charge 
by the hard core of the other ion and (b) with the dipole 
induced in the dielectric sphere, constituting the other ion, by 
the screened electric field. This approach leads to an expres- 
sion valid for asymmetrical test ions with distinct 
aisb,+bi, D, I, and qi. Specifically, recalling Eq. (3.35) for 
6(x), we conclude 
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(4.11) 

This result correctly reproduces the leading form of the de- 
cay of W12(R) as R+a for all ~30. However, it does not 
generate the Q6/R6 correction when ~--to; nor does it con- 
tain contributions decaying as e-3KR, etc. These higher order 
terms, however, can be seen physically to represent the in- 
teraction of the hole charge of one ion with the hole charge 
of the other and with the induced dipole of the other, and of 
one induced dipole with the other induced dipole, and so on. 
Finally, the crossover occurring when R> l/~ is readily seen 
in Eq. (4.11). 

where we may still use Eq. (3.33) for W, = qB, . Integration 
of wbi,(x,y) with respect to x corresponds to charging the 
ionic sea and yields the desired free energy of solvation for a 
bipolar pair.3-5 

V. BIPOLAR IONS 

As mentioned in the Introduction, Fisher and Levin3,4 
recently treated tightly bound, oppositely charged ions, form- 
ing neutral dipoles or Bjerrum pairs,3-5 by Kirkwood’s 
compound-ion model.’ Specifically, the pair of ions at rela- 
tively close separation Rsa was represented as two charges, 
+ q and - q, symmetrically embedded in a sphere of suitably 
chosen radius, b+. When R is less than 2a tie regions of 
radius a, bounded by the dashed curves in Fig. 1, from which 
the ionic sea is to be excluded, merge to form a single, 
kidney-shaped domain. To approximate this domain formed 
of two overlapping spheres, the radius bdip was chosen 
judiciously3’4 as a fixed average exclusion radius, 
a+=bo + b,ip, measured from the midpoint of the line join- 
ing the two ionic centers. At best, however, this choice is 
subject to some ambiguity and it would be clearly preferable 
to determine the solvation energy for a bipolar pair of nearby 
ions, say W,ip, by using the proper exclusion volume in solv- 
ing the DH equations. 

At first sight the calculations reported in Sec. III for 
R>2a lose validity when R<2a. The boundary conditions 
(2.7) and (2.8) still apply but are needed only on restricted 
parts of the spheres rl = a and r2= a bounding region II+ 
(and similarly for region If); in addition one appears to need 
a further boundary condition on the plane 8, = (3, or, say, 
z = 0 which bisects the line joining the centers of 9, and 9,. 
Specifically in the - or dipolar (+,-) case one must have 
fl: cp(r)=O on z=O; but, for the + or like-charge case, 
9: cp(r) and all derivatives across z = 0 must be continuous 
while all odd derivations must vanish. Consider, however, 
the forms of solution posited in Eqs. (3.1)-(3.3) for regions 
I, II, and III, respectively. The last of these, by its symmetric 
construction, automatically satisfies P for all of space ex- 
ternal to II+ and I+. If, however, Eq. (3.2) is extended to all 
of II+ and, when R<2b, Eq. (3.1) to all of If, it may not be 
a priori clear that 9 is satisfied. Nevertheless, the 
symmetric/antisymmetric character of the boundary condi- 
tions and the analyticity of the solutions inside each of the 
(extended) regions will ensure the preservation of the sym- 
metries and, hence, of the boundary conditions @. 

Accordingly, we discuss here the situation described by 
Fig. 1 but with RC 2~: then regions II and IV merge to form 
a connected domain, say, II+; likewise, if also R < b, regions 
I and V merge to form, say, I+. The dipolar pair, of most 
physical interest, corresponds to q2 = -4; but, since it costs 
no more effort, we continue to treat a bipolar pair with 
q2= +q. Now the potential q(r) in I+ must still obey Eq. 
(2.13) when r*-+O; this defines B,(x,y;G,a/b). Then, as 
before, qB,(x,y) is the total energy of interaction of .7i 
with 32 and with all the sea ions while W,(x) 
=qB=(x,m)=qB,(x) represents the energy of 9’i alone in 
the ionic sea; the interaction energy Wf2(x,y) is still given 
by Eq. (2.15). In defining the bipolar solvation energy 
Wbi,(x,y) one must not include the formation energy of the 
isolated pair 3, :Y2 (removed from the ionic sea): if D’ = D 
this is simply +q2/DR; more generally it is given by 
WFz(O,y), i.e., by setting x= KU to zero. In total, therefore, 
we have 

Somewhat more explicitly one may proceed as follows 
where, for simplicity, we consider only the case D’= D 
when regions I+ and II+ may be identified (or, by taking 
b = a, when one may neglect II’). Then the boundary condi- 
tions are clearly satisfied by 

m 

cp,+(r)=& z& + C E,[rlP,(cos 4) 

n=O 

I? rzP,(cos e,)] (5.2) 

for general {E,}. One can expand l/r2 in Legendre polyno- 
mials in cos 19, and similarly use 

r!jP,(cos e,)= 5 
( 1 

1 R’-,( -rl)mP,(cos 0,). 
m=O 

(5.3) 
These substitutions lead to 

m 

qI+(r)=&- + 2 i,r;P,(cos el), 
1 n=O 

~bi~(~~~)=~~I(~)+~~2(~~Y)-~~~(~~Y) where the expansion coefficients satisfy 

I 

(5.0 

(5.4) 
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B,,=k&. +E,(-)“I: R”E,,,. 
m=o 

(5.5) 

Now if one identifies i,, in Eq. (5.4) with B, in Eq. (3.1) one 
sees that the expansions are identical! One may worry that 
the B, were originally completely free while the L?,, are con- 
strained by Eq. (5.5). Nevertheless since the E, are free these 
constraints serve only to embody the symmetry; but, as we 
have noted, this will be realized in any case when the I+-III 
boundary conditions are imposed because cpnt embodies the 
proper symmetry. Note that even though one does not need a 
boundary condition over the full sphere r t = a, one may still 
match the coefficients of the P,(cos 0,) since doing so will 
ensure satisfaction of the boundary condition on the neces- 
sary surfaces. We conclude, as before, that the matching 
problem posed when R<2a is identical to that for R> 2a. 

In summary, with the aid of Eqs. (3.33) and (3.34) we 
obtain from Eq. (5.1) the expression 

wbip(x,y)=& [ 2 % (l-g)-& ivf(xvy)]v 
(5.6) 

62(x)Uo(x,y)e-xy Uo(OvY) 
v~(x~y)=y’F.u(x)~o(x y)e-XY-y’ (5.7) 

I 

with, as previously, U,(x,y) defined formally via Eq. (3.44). 
Since we are now interested in (y - 1) small the conver- 

gence of Eq. (3.44) is a serious issue. Certainly y< 1 will lie 
outside the domain of convergence since when y = 1 the 
charge of Y2 sits on the sphere r i = a on which the matching 
is performed. When x is small, however, one may hope that 
correct asymptotic behavior will be generated by truncating 
the expansion for U,(x,y). To study that let us specialize to 
D’ = D so S=O (which case is of particular interest394) and 
focus on small x. If we write 

G(x,Y)= ~h,o(wMw) 

for n> 1, use Eqs. (3.21) and (3.23) to give 

(5.8) 

h ,,=(2m-1)!!(2n-l)!! 

x[l+xy+O(x2)], (5.9) 

and employ Eq. (3.27) for w,(x), the matching Eqs. (3.38) 
can be written 

m 

t,= 1 +x2(y-‘+x)e-XY 
n+j 

xl i 

-2jt. 

j=l j (2j+‘3)(2>+ 1) ’ 

(5.10) 

with n> 1, while Eq. (3.24) yields 

U,(x,y)- 1 ?x2y-‘( 1 +xY)~ emXy 

4 
Y-21tf(X?Y) 

[=, w+3w+ 1) * 
(5.11) 

Note that a factor [ 1 +0(x2)] has been dropped from the 
second terms in both these expressions. Now when x+0 in 

Eq. (5.10) one has I,= 1 for all n with, formally, corrections 
of order x2. When this is inserted in Eq. (5.11) the sum 
converges to 

1 
SO(Y)=, yfy2- l)ln (5.12) 

for y> 1, so yielding an explicit formula for U,(x,y) for- 
mally correct to 0(x3). Via Eqs. (5.7) and (5.6) we thus 
obtain an expression for wbi,(x,y) which is also formally 
correct to 0(x3): we suspect this is truly asymptotic when 
x+-O at fixed y> 1. 

On the other hand, the substitution fj= 1 in Eq. (5.10) 
yields the sum 

s”(Y)=; + “[Y-2”so(y)], 
( i 
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that for n>l and y+1+ diverges like 
1/4n(n- l)( 1 -y-2)“-‘- pnln2 with /.L? 1. Consequently, 
for any x however small the leading corrections to t, become 
of order 1 for large enough n and then diverge exponentially 
fast with n increasing! This is not inconsistent with an as- 
ymptotic character as x--+0 but does raise the spectre of 
nonconvergence. A more general, heuristic diagnosis follows 
from the ansatz t, --X” for large n: Matching this to the be- 
havior S,(hly)- [ 1 - (X/y2)]-” in Eq. (5.10) yields the 
condition X(y2 - X) =y2. For y>2 this equation has a real 
solution with h/y26 f. For such a solution set {tn} the sums 
in Eqs. (5.10) and (5.11) converge rapidly. Beyond that when 
y<2 one finds complex solutions but with modulus 
1 X/y21 = l/y. Thus provided one has y > 1 the sums still con- 
verge absolutely. 

These considerations suggest that there are well behaved 
solutions {t,,} of the set of equations (5.10) which do yield a 
convergent expression for uo(x,y) and then for wbir(x,y). 
However, direct iterative solution of Eq. (5.10) may not be 
successful when y < 2. Other numerical methods, such as 
truncating the set of equations at increasingly high order, 
might well prove adequate but we have not investigated the 
issue. It is also possible that a systematic expansion in pow- 
ers of y at fixed x will yield convergent results, at least when 
x2( 1 +x)emXY is small. And, as already stated, we expect the 
truncated expansion in powers of x described above to be 
asymptotic. Nevertheless, without a more detailed investiga- 
tion it is not clear that a practical improvement on the ap- 
proximation of using an effective radius bdip in the Kirkwood 
modePs4 can be gained for the range of principal interest, 
namely, x51.5. 

VI. CONCLUSIONS 

By solving the Debye-Htickel equations analytically for 
appropriate boundary conditions we have obtained expres- 
sions for the interaction energy W12(R) between two similar 
ions, represented as equally or oppositely charged dielectric 
spheres, at separation R in an ionic medium. The general 
result is contained in Eqs. (3.34)-(3.36) with Eq. (3.44). 
More explicit expressions valid when R becomes large are 
obtained in Sec. IV: the leading, screened Coulomb form 
e2(R) is stated in Eq. (4.1) with a correction, A W12(R), in 
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valid for Is] <z. On the right-hand side of Eq. (Al) we use 
Eq. (3.4) to expand i,(s) in powers of s. Comparing like 
powers yields the recursion relation 

Eqs. (4.2) and (4.3); explicit results for the correction in two 
distinct regimes, (A) positive ionic strength (K>O) and (B) 
asymptotically vanishing ionic strength (K-O), are given in 
Eqs. (4.6) and (4.9). Results valid uniformly (for positive or 
zero ionic strength) follow from Eq. (4.10); finally, Eq. 
(4.11) presents the explicit leading order behavior of 
A Wt *(R) for dissimilar ions with distinct charges, radii, and 
dielectric constants. The most fundamental conclusion is that 
the corrections A W,*(R) decay as the square of the leading, 
screened Coulomb coupling.* 

The analytic results obtained rest on an apparently novel 
two-center expansion for spherical Bessel functions, which is 
established in the Appendix. 

[n/21 
-c 

2n-4Z+ 1 

I=1 2’E!(2n-21+ I)!! em.n-21(Z)7 

(A3) 

In Sec. V we have discussed the solvation energy of a 
closely associated (+,+) or (+,--) ion pair. The general 
analysis still yields formally exact results-see Eqs. (5.6) 
and (5.7)-which, in turn, lead to expressions asymptotic for 
small ionic strengths. However, as regards practical numeri- 
cal computations for larger ionic strengths (corresponding to 
tea Z I), further work is needed to test the efficacy of various 
methods that might be used to evaluate the general formulas. 

where the qmi are given in Eq. (3.7), while [w] denotes the 
largest integer contained in w and an empty sum vanishes. 
This yields the polynomials 

e&z) = 5 qmilZi=Z ezk,(z), (A4) 
i=O 

m 

Finally, it should, of course, be noted that the applicabil- 
ity of our results to real ionic solutions is subject to various 
caveats. In particular, the molecular details of the test ions 
and of the solute ions have been wholly subsumed into the 
dielectric sphere model; and no account of the molecular 
structure of the solvent has been given beyond assignment of 
an effective dielectric constant, D. Nonetheless, at a qualita- 
tive and semiquantitative level we expect our results to pro- 
vide fairly reliable guides to the properties of real fluid sys- 
tems. 

eml(z)=C qmi(Z+i+ l)lZ'+', 
i=O 

(A5) 

of degrees m and m + I in z - ’ . Recursively one sees that 
emn( z) is polynomial in z- ’ of degree m+n for all m, n>O. 
Furthermore, the two terms of highest degree arise only from 
the double sum in Eq. (A3), namely for i = m, j = n, and 
i+j=m+n- 1: the result (3.21) for em,n,m+n and 
e m,n,m+n-l directly follows. 

To obtain an explicit general expression for emnr note 
that the generalized Neumann transform14 

s’(s)=Jn_ts{gn)= i On + 1 )i,(s)g, c46) 
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APPENDIX: PROOF OF THE TWO-CENTER 
EXPANSION 

As explained in the text, the form of the expansion 
(3.17), in particular the appearance of the Legendre polyno- 
mials, follows from general principles. Here we explicitly 
evaluate the expansion coefficients e,,(z). It suffices to spe- 
cialize to 19, =O which implies @,=O so that 
P,(COS k$)=P,(cos et)=1 and, by Eq. (3.16), S=z-s or 
r2 = R - r1 . The expansion then reads 

which on specializing to y= 1 and v=p + f with C,“( 1) given 
by E10.9 (3), reduces to 

.4Qn{sPeS}=(2p- l)!! 1’1 , nap, 
( 1 

=0, n<p. (‘48) 

Applying this to Eq. (Al) and using Eqs. (3.6) and (A2) 
yields 

e,,(z) =JyFl!.{z ezkm(z-s)} 

k,(z-s)= C (2n+ l)i,(s)e,,(z)e-“lz. 
n=O 

(Al) (A9) 

Now on the left-hand side we may use Eq. (3.6) for 
k,( z - s) and the binomial expansion 

m I+i si (z--s)‘~‘~=~ c I ( i 7, 
i=O Z 

On rearranging terms and introducing 

J’(m,r)=min(m,r) and J-(n,r)=max(O,r-n) 

(‘42) (AlO) 
we obtain the final result 

has a unique inverse as follows from the orthonormality of 
{i,(z)} with weight l/z. Now E7.15 (1)14 states 

z”eyz=2T(v)C (v+n)C,“(y)Z,+,(z), (A7) 
n=O 
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emnr=G j$e ( >)2 s ~~‘:~!~i =enmr, 

(All) 
where the symmetry under interchange of m and n is easily 
checked. Note that the sum on j may be left free if all terms 
with negative factorials are understood to vanish or to be 
deleted. The results quoted for r= 0, 1, 2 in Eqs. (3.19) and 
(3.20) follow immediately from Eq. (Al 1). For small r-cm, 
n there are r-t 1 terms in the sum. However, for large ram, 
n there are (m+n+ 1 -r) terms; thus EQ. (3.21) for 
r = m + n and r = m + n - 1 may be crosschecked. 
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