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We present a new approach to efficiently simulate electrolytes confined between infinite charged
walls using a 3d Ewald summation method. The optimal performance is achieved by separating the
electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte.
The electric field produced by the 3d periodic images of the walls is constant inside the simulation
cell, with the field produced by the transverse images of the charged plates canceling out. The
non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation
with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction
that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least
an order of magnitude more rapid than the usual simulation methods for the slab geometry and can
be further sped up by adopting a particle–particle particle–mesh approach. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4945560]

INTRODUCTION

Study of electrolyte solutions is of paramount impor-
tance in physics, chemistry, and biology. Electrolytes are
fundamental to human physiology,1 but also play an
important role in systems as distinct as water soluble
paints,2 cement,3 supercapacitors,4,5 etc. The long range
nature of the Coulomb force makes it very difficult to
obtain a quantitative understanding of these systems. The
well known Poisson-Boltzmann (PB) equation can provide
valuable insights for weakly interacting Coulomb systems
for which electrostatic correlations are negligible.6 However,
many interesting phenomena, such as like-charge attraction7–11

and charge reversal,12–15 appear when PB equation loses
its validity. To study such systems a number of theoretical
approaches have been introduced. These fall into three main
categories: integral equations,12,16,17 field theory,18,19 and
density functional theory.8,20 All of these methods, however,
rely on approximations which must be tested “experimentally.”
The only “exact” quantitative approach for studying 3d
Coulomb systems relies on Molecular Dynamics (MD) or
Monte Carlo (MC) simulations.21 Unfortunately, because of
the long range interaction, simulations of Coulomb systems
are notoriously challenging. The difficulty arises because
unlike for systems with short range forces, one cannot use
periodic boundary conditions for the simulation box. Instead,
an infinity of periodic replicas of the simulation cell must be
constructed. Each ion in the principal simulation cell interacts
with an infinite number of images of all the other ions. In
order to efficiently sum over the replicas, Ewald summation
methods have been developed.22–24 These methods rely on
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splitting the interaction potential into short and long range
contributions, so that the short range part can be rapidly
calculated in the real space, while the long range part can
be efficiently summed in the reciprocal, Fourier space. Ewald
summation methods are particularly useful for 3d isotropic
systems. However, when a system has a reduced 2d symmetry,
application of Ewald summation techniques becomes more
challenging. The difficulty in these cases is the appearance
of Bessel function in 2d Fourier transforms, contrary to a
simple exponential present in 3d, leading to a very slow
convergence.25,26 This problem not withstanding, there is
a great practical importance to understand systems with
reduced symmetry. These relate to the class of problems
with characteristic slab geometry—water and ionic liquids
confined in thin films,27–29 charged nanopores,30–32 self-
assembled monolayers,33 polymer layers,34 heterogeneous
charged surfaces,35–37 just to cite a few examples.

The efficiency of Ewald-like 2d and 1d methods is
not nearly as high as for isotropic 3d systems. The slow
convergence rate was a subject of extensive studies.38,39 A
number of different approaches have been tried to overcome
this difficulty.40–45 In the present paper we will introduce a
new method to simulate electrolyte solutions confined by the
charged walls. To avoid the slow convergence of 2d Ewald
approach, we will use 3d Ewald summation. This means
that the system will be replicated in all three dimensions.
In reality, however, we are only interested in 2d (x, y) part
of the replication, with the transverse z-replicas being an
artifact of the 3d Ewald summation. To diminish the effect
of z-replicas, we will include a vacuum region on both sides
of the slab within the simulation cell. This, however, is not
sufficient to adopt 3d Ewald summation to 2d geometry. The
conditional convergence of the lattice sum still results in a
surface contribution to the total electrostatic energy which
depends on the aspect ratio of the macroscopic system (sum

0021-9606/2016/144(14)/144103/7/$30.00 144, 144103-1 © 2016 AIP Publishing LLC
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of all the replicas). Since we are interested in an infinite slab,
the aspect ratio should be such that the x and y sides of the
slab are infinitely bigger than the slab width (z-direction).
For a conditionally convergent lattice sum this means that
the summation has to be first done over x and y directions,
and then over z-direction. This important point was discussed
by Smith46 and implemented in simulations by Yeh and
Berkowitz42 (YB). The approach of YB is quite simple. If
the system consists of electrolyte and charged plates, one can
discretize the surface charge and apply 3d Ewald summation
method, with an additional surface correction, to the whole
system, i.e., electrolyte and the wall charges. Clearly this is
not very efficient since it requires to include in the lattice sum
the surface charges which are fixed throughout the simulation.
Since the electric field produced by the plates is constant,
it should be possible to separate it from the rest of the
system, allowing the ions to move in a fixed external potential
produced by the plates, which has a simple linear form. The
difficulty with this approach is that a system of only ions,
without the wall charges, is not charge neutral, so that the
lattice sum will diverge. In this paper we will show, however,
that this divergence can be renormalized away, allowing us
to construct a very fast and efficient algorithm for simulating
ionic systems in a slab geometry.

METHOD

The idea of the present method is to consider the
electrostatic potential produced by the plates as an external
scalar field acting on all the ions inside the simulation cell.
As we intend to use the 3d Ewald summation to accelerate
the simulations, we must consider the replicas of the plates in
z-direction in addition to the replicas in x and y-directions.
The electric fields of two infinite uniformly charged plates
are 2πσ1/ϵw and 2πσ2/ϵw, where σ1 is the charge density
of the left plate and σ2 of the right plate, and ϵw is the
dielectric constant of the medium, normally water. Both fields
are orthogonal to the plates. The replication of the simulation
cell in the x and y directions will naturally result in 2 infinite
plates. However, the replication of the simulation cell in the
z direction will produce an infinite array of such infinite
surfaces, see Fig. 1. We note, however, that the electric fields
that these z-images of the plates produce on the ions inside the

simulation box cancel out, so that the ions in the cell feel only
the electric fields of the bounding walls and of their x and y
replicas. These are precisely the electric fields of the infinite
charged plates: 2πσ1/ϵw and 2πσ2/ϵw. We can, therefore,
separate the electric field (or equivalently the electrostatic
potential) produced by the charged walls and their images
from the field produced by the ions and their images. For
more complicated geometries, such as a cylindrical charged
nanopore, additional care is required to account for the electric
field produced by the periodic replicas of the charged cylinder.
The difficulty now is that the replicated system of just ions
is no longer charge neutral, so that the electrostatic potential
produced by the images of all the ions will diverge. We will
show, however, that this divergence can be renormalized away,
allowing us to study a non-neutral periodic charged system.

Consider a system of particles of charges q j located at
random positions r j inside a box of sides Lx, Ly and Lz.
The system in general is not charge neutral. Let us consider,
without loss of generality, Lx = Ly = L. The system is now
replicated infinitely in all directions. The replication vector
is defined as rep = (Ln1,Ln2,Lzn3), where n′s are integers.
In Fig. 2 we show the replicated system. The electrostatic
potential generated by the ions and all the images at a point P,
located at some random position r in the simulation box, can
be written as

φ(r) =
∞
n

N
j=1


ρ j(s)

ϵw |r − s| d
3s, (1)

where ρ j(s) = q jδ(s − r j − rep) is the charge density of q j

and its replicas. The vector n = (n1,n2,n3) represents all
the replicas, and the simulation box corresponds to (0,0,0).
The 3d Ewald summation21 is a very efficient method for
performing summation over all the replicas. The idea is to
place a neutralizing Gaussianly distributed charge on top of
each ion and then subtract the potential produced by the
Gaussian charges from the total potential. The fundamental
observation is that if the charge of each ion is neutralized
by the Gaussian charge, the resulting potential will be short
ranged and can be easily accounted for using simple periodic
boundary conditions. On the other hand, the potential of
the Gaussian charges can be efficiently calculated using
the Fourier representation of the charge density. In fact the

FIG. 1. 3d replicated system. Note
that inside the central simulation cell
the electric field produced by the z-
replication of charged walls cancels out.
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FIG. 2. The simulation box with ran-
domly positioned charges and one of
its replicas. The point C represents the
center of the simulation box, where the
origin is located, and P is an arbitrary
point.

distribution does not need to be Gaussian, but this is the most
common choice.47

The electrostatic potential after adding and subtracting
the Gaussian charges is

φ(r) =
∞
n

N
j=1


ρ j(s) − ρ

j
G
(s)

ϵw |r − s| d3s +
∞
n

N
j=1


ρ
j
G
(s)

ϵw |r − s| d
3s,

(2)

where ρ
j
G
(s) = q j(κ3

e/
√
π3) exp(−κ2

e |s − r j − rep |2) and κe is a
dumping parameter. The potential can be written as

φ(r) =
∞
n

N
j=1

q j erf(κe|r − r j − rep |)
ϵw |r − r j − rep |

+

∞
n

N
j=1

q j erfc(κe|r − r j − rep |)
ϵw |r − r j − rep | . (3)

Using the Fourier transform the expression above can be
written as

φ(r) =
∞

k=0

N
j=1

4πq j

ϵwV |k|2 exp[− |k|
2

4κ2
e

+ ik · (r − r j)]

+

N
j=1

q j erfc(κe|r − r j |)
ϵw |r − r j | , (4)

where k = ( 2π
L

n1,
2π
L

n2,
2π
Lz

n3). In the second term of Eq. (2) we
have removed the summation over replicas, considering only
the main simulation box, n = (0,0,0), with the usual periodic
boundary condition. This is justified if κe is chosen to be
sufficiently large, so that erfc(κe|r|) decays rapidly, and the
minimum image convention (periodic boundary condition) can
be used. In practice we set κe = 5/L, if L < Lz or κe = 5/Lz,
if L > Lz.

For k = (0,0,0) the first term of Eq. (4) is singular.
This term has been a topic of extensive discussions.21,48–50

In order to treat it, some authors argue that we must
consider the induced surface charge at the boundary of
an infinite system. They argue that this boundary term
can be neglected if the exterior medium is a metal, so
called, tinfoil boundary condition. However, for an infinite
system, there is no boundary. Furthermore, introduction
of a boundary is inconsistent with the periodicity of the
system used to perform the Ewald summation. Clearly the
lattice sum can be performed in real space, and although
it is conditionally convergent, for a specific method of

summation—spherical or planewise—the result will be well
defined and should agree with the Ewald summation method.
If the k = (0,0,0) term is neglected, the real space and
Ewald method calculations will disagree. Fortunately, for
isotropic systems neglecting the k = (0,0,0) term appears to
introduce only small errors. However, for systems with a
slab geometry neglect of k = (0,0,0) term can lead to very
significant errors. These observations are consistent with the
results of Nymand and Linse (NL),51 who compared the
electrostatic potentials for an isotropic neutral system using
direct real space summation and the Ewald method, see
Table 1 of Ref. 51. For homogeneous bulk systems (which
correspond to spherical summation of replicas) they observed
that the energy contribution of the singular term is small on
average. However, NL did not consider slab geometry—which
corresponds to planewise summation of replicas—in which
case neglect of the singular terms can result in very large
errors.42 Let us now consider the singular term in more detail.
Neglecting the prefactors, the k = (0,0,0) term can be written
as

lim
k→0

N
j=1

q j

|k|2 exp[− |k|
2

4κ2
e

] exp[+ik · (r − r j)]. (5)

Now, let us expand the exponentials and keep only the singular
terms,

lim
k→0

N
j=1

q j 1
|k|2 −

N
j=1

q j 1
4κ2

e

+ lim
k→0

N
j=1

q j ik · (r − r j)
|k|2

− lim
k→0

N
j=1

q j [k · (r − r j)]2
2|k|2 . (6)

In a charge neutral system,


j q j = 0, the first two
terms are zero. For a non-neutral system, however, they
are infinite. On the other hand, they are independent of r,
and can be renormalized away by simply redefining the zero
of the potential. The third and fourth terms of expression
(6) are position dependent and require greater care when
calculating the limit k → 0. We first observe that the singular
behavior of the k → 0 is a consequence of the large distance
behavior of the lattice sum. To properly account for this
limit we rewrite the third and the fourth terms of expression
(6) using Dirac delta function. The third term can then be
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expressed as

S3 =

N
j=1

q j

 +∞

−∞
δ(k) ik · (r − r j)

|k|2 d3k, (7)

with the following representation of δ(k) = 1
(2π)3

 H
−H eik·pd3p.

The limits of integration, −H and H, where H
= (H1,H2,H3) correspond to the way that the sums are
performed in the real space. For example, if we replicate the
simulation cell in a spherically symmetric fashion, then H1
= limm→∞mLx, H2 = limm→∞mLy, and H3 = limm→∞mLy,
that is all sides diverge at the same rate. On the other hand for
a slab geometry H1 and H2 limits should go to infinity much
faster than H3. In general it is convenient to define H1 = α1Lc,
H2 = α2Lc, and H3 = α3Lc, where Lc is some characteristic
macroscopic length scale. The ratio of α′s then corresponds to
the aspect ratio of the macroscopic system, i.e., the simulation
cell and all of its replicas. The integral over p1, p2, and p3 can
be performed explicitly yielding the following representation
of the delta function:

δ(k) = 1
(2π)3

3
i=1

 αi
Lc
2

−αi
Lc
2

eikipidpi =
1
π3

3
i=1

sin(kiαiLc/2)
ki

.

(8)

This representation encodes the large distance behavior of the
lattice sum and is at the heart of the singular behavior of k → 0
limit. Eq. (7) can then be written as S3 =

N
j=1 qjD · (r − r j),

where the components of the vector D are

Dn =
i
π3

 +∞

−∞

kn
|k|2

3
j=1

sin(k jα jLc/2)
k j

d3k, (9)

which by symmetry integrate to zero, Dn = 0, so that S3 = 0.
The fourth singular term of expression (6) is

S4 = −
N
j=1

q j

 +∞

−∞
δ(k) [k · (r − r j)]2

2|k|2 d3k. (10)

Again using the representation of the delta function it can be
rewritten as

S4 = −
N
j=1

q j

2π3

3
n=1

Bn(rn − r j
n)2, (11)

where the index n corresponds to the x, y , and z components
of the vector r and

Bn =

 +∞

−∞
d3k

k2
n

|k|2
3
j=1

sin(k jα jLc/2)
k j

. (12)

Using the identity

1
|k|2 =

 ∞

0
dt e−tk

2
, (13)

the coefficients Bn can be simplified to46

B1 =
π

5
2

2

 +∞

0

α13e−
α2

13
4t erf( α23

2
√
t
)erf( 1

2
√
t
)

t
3
2

dt, (14)

B2 =
π

5
2

2

 +∞

0

α23e−
α2

23
4t erf( α13

2
√
t
)erf( 1

2
√
t
)

t
3
2

dt, (15)

B3 =
π

5
2

2

 +∞

0

e−
1

4t erf( α13
2
√
t
)erf( α23

2
√
t
)

t
3
2

dt, (16)

where αi j = αi/α j are the aspect ratios of the macroscopic
system. The coefficients Bn can now be easily calculated
using numerical integration. For a spherically symmetric
summation of replicas, the aspect ratios are α13 = Lx/Lz and
α23 = Ly/Lz. On the other hand, for a planewise summation
of a slab geometry, α13 → ∞ and α23 → ∞. In this case the
integrals can be performed explicitly46 yielding B1 = B2 = 0,
and B3 = π3.

Separating the k = 0 term from the k-vector summation,
Eq. (4) can now be rewritten as

∆φ(r) =
∞

k,0

N
j=1

4πq j

ϵwV |k|2 exp[− |k|
2

4κ2
e

+ ik · (r − r j)]

−
N
j=1

3
n=1

2q j

ϵwVπ2 Bn(rn − r j
n)2

+

N
j=1

q j erfc(κe |r − r j |)
ϵw |r − r j | , (17)

where ∆ corresponds to the renormalization of the potential
in Eq. (4)—subtraction of infinite constants. As a test of
the modified Ewald summation formula for a non-neutral
system, Eq. (17), we calculate the electrostatic potential
difference between a random position r and the center of
the simulation box, 0. Note that although the electrostatic
potential is divergent for a non-neutral periodic system,
the potential difference is well defined. We calculate the
renormalized electrostatic potential produced by the two
charges q1 = q2 = |e|, where e is the electron charge, located
at random positions. We set Lx = Ly = L = 1 Å and Lz = 2 Å.
The spherical replication of the rectangular simulation box will
result in an infinite system with an aspect ratio of α13 = 1/2
and α23 = 1/2, leading to parameters B1 = B2 = 13.5158 and
B3 = 3.9746. Using Eq. (17), we find the converged value
∆φ = φ(r) − φ(0), to 2-decimal place accuracy, using ≈250
k-vectors spherically summed. In real space, using the explicit
summation, Eq. (1), we find exactly the same converged value
for ∆φ(r), the convergence, however, is much slower, so that
to get a 2-decimal place accuracy requires summation of
over ≈19 700 n-vectors. For isotropic bulk simulations, the
energy contribution due to the singular term appears to be
small on average. This can account for the prevalent use of
“tinfoil” boundary conditions which are claimed to eliminate
the k = 0 term. However, in order to properly describe an
electrostatic system in thermodynamic limit—in particular an
inhomogeneous one—using simulations based on the periodic
cell replication, the singular term is important and cannot, in
general, be neglected.

In the slab geometry we want to calculate the potential
difference when the simulation box is replicated in the x and
y directions only. Again we will use the modified 3d Ewald
summation given by Eq. (17). This means that the box will be
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replicated in all 3 dimensions. However, the replication in the
x and y directions should be performed at a rate much faster
than in the z direction. This leads to B1 = B2 = 0, and B3 = π3

and Eq. (17) becomes

∆φ(r) =
∞

k,0

N
j=1

4πq j

ϵwV |k|2 exp[− |k|
2

4κ2
e

+ ik · (r − r j)]

−
N
j=1

2πq j

ϵwV
(r3 − r j

3)2 +
N
j=1

q j erfc(κe|r − r j |)
ϵw |r − r j | .

(18)

Even though the contribution from the z-directional
replicas is much smaller than from the x and y directional
replicas, it is not negligible. In order to diminish the impact
of z-replicas on the electrostatic potential, we must leave a
sufficiently large vacuum region in the z-direction. To test
Eq. (18) for a slab geometry, we study the same 2 particle
system discussed earlier. Using Eq. (1) we can explicitly
calculate the potential difference ∆φ = φ(r) − φ(0), when the
simulation cell is replicated only in the x and y directions,
n = (nx,ny,0). The convergence is very slow requiring values
of 2.5 × 106 replicas to get an accuracy of 2-decimal
places.

To diminish the interaction with z-directional replicas, in
order to use Eq. (18) for a slab geometry, we restrict positions
of the charges and the vector r to the region − Lz

4 < z <
Lz

4 in
the simulation cell, leaving the regions − Lz

2 < z < − Lz

4 and
Lz

4 < z <
Lz

2 empty. The calculated electrostatic potential
difference is exactly the same as found using the real-
space lattice summation. The same 2-decimal point accuracy,
however, is achieved with only ≈630 k-vectors.

The renormalized electrostatic energy for a non-neutral
slab system can now be calculated as E = 1

2
N

i=1 qi∆φ(ri),

E =
∞

k,0

2π
ϵwV |k|2 exp[− |k|

2

4κ2
e

][A(k)2 + B(k)2]

+
2π
ϵwV

[M2
z −QtGz] + 1

2

N
i, j

qiq j erfc(κe|ri − r j |)
ϵw |ri − r j | , (19)

where

A(k) =
N
i=1

qi cos(k · ri),

B(k) = −
N
i=1

qi sin(k · ri),

Mz =

N
i=1

qir i3, (20)

Qt =

N
i=1

qi,

Gz =

N
i=1

qi(r i3)2.

For a neutral system, Qt = 0, and we recover the earlier
expression for the electrostatic energy.42

We now apply the method developed above to a system
of electrolyte confined between two charged walls. We set
L = 179 Å and Lz = 400 Å. The ionic radius is 2 Å, while the
separation between plates is 50 Å. The number of k-vectors
is around 300. The equilibration is achieved with 1 × 106

MC steps, while the density profiles are obtained with 20 000
samples, each saved after 100 particle trial moves. As a first
example, we set σ1 = 0.04 C/m2 and σ2 = −0.01 C/m2. For
plate 1 we have 80 counterions of charge −|e|, while for plate
2, we have 20 counterions of charge |e|. In the MC Metropolis
algorithm we use the energy expression Eq. (19), for the
Nc = 100 ions, and the electrostatic energy of interaction
between ions and the charged walls,

Ep =
2π
ϵw

Nc
i=1

(σ2 − σ1)r i3qi. (21)

To appreciate the power of the present method we
compare it with the usual algorithm in which the surface charge
is represented by 256 uniformly distributed point particles.42

In this case we use Eq. (19) for a neutral system, considering
all charged particles, including the ones on the plate surface,
Qt = 0. The result is shown in Fig. 3 and is indistinguishable
from the non-neutral simulation method developed in the
present paper. The gain in the simulation time is very
substantial—a traditional simulation method took 20 times
more CPU time than the algorithm developed in the present
paper. Next we apply the new simulation method to the case
of σ1 = σ2. This situation is particularly relevant for studying
colloidal stability with the help of Derjaguin approximation.52

We consider 500 mM of 2:1 or 4:1 dissociated electrolyte
between charged walls. The electric fields produced by the
plates cancel out. Therefore, the simulation is performed only
with Eq. (19)—we do not need to take into account the plates
in the calculations, except in order to obtain the number of
plate counterions. For σ1 = σ2 = −0.04 C/m2, we have 80
counterions of charge 2|e|, for 2:1 case, and 40 counterions
of charge 4|e|, for 4:1 case. Using the same L = 179 Å and
Lz = 400 Å, the ionic profiles and the integrated charges are

FIG. 3. Integrated charge between charged surfaces. Symbols represent the
calculation using the modified (non-neutral) 3d Ewald approach, while line,
the traditional method.42 The difference is imperceptible.
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FIG. 4. (a) Density profiles of ions between equally charged surfaces confining 2:1 electrolyte—circles represent positive ions, while squares negative ones. (b)
The integrated charge.

shown in Figs. 4 and 5. Observe that for 4:1 salt there is a
significant charge inversion, so that the condensed counterions
overcompensate the surface charge on the plates, see Fig. 5.
This phenomenon can also occur with divalent counterions,
but is much weaker, see Fig. 4. A study of such strongly

FIG. 5. (a) Density profiles of ions between equally charged surfaces con-
fining 4:1 electrolyte—circles represent positive ions, while squares negative
ones. (b) The integrated charge.

concentrated inhomogeneous charged systems is not very
practical with other simulation methods.

CONCLUSIONS

We have developed a new approach for simulating
electrolytes in a confined slab geometry. Our algorithm relies
on 3d Ewald summation to properly account for the long
range Coulomb interaction between the ions and the charged
surfaces. The optimal performance of the method is achieved
by separating the electrostatic potential produced by the
charged walls from the potential produced by the electrolyte.
The fundamental observation is that the electrostatic potential
produced by the 3d periodic images of the plates has a simple
linear form, with the electric field produced by the transverse
images of the charged plates canceling out. This observation
suggests that the ions and the charged surfaces can be treated
separately. The difficulty, however, is that the system of
only ions no longer respects the charge neutrality, with its
electrostatic energy diverging. Nevertheless, we showed that
a simple renormalization of the electrostatic potential cures
the divergence, allowing us to consider a non-neutral system
of ions moving in the field produced by the charged plates.
This approach leads to a dramatic speed up of simulations
of Coulomb systems confined between charged walls. The
dielectric discontinuities can be easily implemented in the
present method using periodic images of all the ions,53 while
the electric field produced by the charged surfaces can be
replaced by an external potential, as in Eq. (19), but with the
dielectric constant of water replaced by the average dielectric
constant between the two mediums. Finally, the simulations
can be made to run even faster by adopting a Particle-Particle
Particle-Mesh (P3M) approach. Such improvement would
allow us to use the algorithm to study all atom simulations of
liquid-liquid/vapour interfaces.54,55
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