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The contact �junction� potential between water-vapor and water-oil interfaces is studied
theoretically. Unlike the previous studies, we show that ionic contribution to the contact potential
vanishes when the concentration of aqueous electrolyte goes to zero. The incorrect prediction of a
large ionic contribution to the junction potential in the infinite dilution limit, obtained in the earlier
studies, is traced back to the inappropriate use of the grand-canonical ensemble for strongly
inhomogeneous Coulomb systems. It is shown that for these systems, the thermodynamic limit is not
reached even when the number of particles is astronomically large, on the order of 1024. There is,
therefore, no equivalence between statistical ensembles. For realistic, finite size systems, canonical
calculation predicts a vanishing ionic contribution to the junction potentials of water-vapor and
water-oil interfaces even for very concentrated electrolyte solutions. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2982244�

I. INTRODUCTION

Electrical structure of the water-vapor interface is of fun-
damental importance for ionic solvation thermodynamics
and for interfacial reactivity.1–5 Yet our understanding of the
interfaces between immiscible liquids, as well as, between
water and its vapor is far from complete. One quantity that,
in particular, is of fundamental interest is the so-called con-
tact electrostatic potential. This potential is the difference
between the inner �liquid� Galvani electrostatic potential and
the outer �vapor� Volta electrostatic potentials. The precise
value of the contact potential for a pure water-vapor interface
remains controversial,6 with values ranging from −1.1 to
+0.5 V. Simulations using simple point charge/extended
water1 place this value at −546 mV, while the full ab initio
molecular dynamics simulations6 predict a much smaller
value of −18 mV. The situation is further complicated by a
curious paper published by Zhou, Stell, and Friedman �ZSF�
20 years ago.7 In that paper ZSF argued that presence of
electrolyte strongly modifies the value of the junction poten-
tial. However, what is really curious is that ZSF calculations
show that the electrolyte contribution to the contact potential
persists, even when the concentration of electrolyte is van-
ishingly small. In the words of Lawrence Pratt “the ionic
contribution is there even though the ions are not.”8 Like the
Cheshire Cat of Alice in Wonderland, ions disappear, but
leave their electrostatic potential behind.

The contribution to the contact potential due to the
“phantom ions”6 is quite large—in the hundreds of milli-
volts, as compared to −18 mV for pure water-vapor inter-
face, found in the ab initio simulations. If true, this finding
could be of a paramount importance, providing a possible
justification for the long sought “water memory”—the under-
tow of homeopathy. The situation is so unsettling that the
authors of a recent review expressed their hope that “future

studies should quantify this phantom ionic effect to deter-
mine its actual relevance to the electrochemical potential.”6

The purpose of this paper is to provide precisely such quan-
tification. In Sec. II. I will briefly review the basic idea be-
hind the ZSF model. I will then discuss its limitations and
introduce an alternative “canonical” calculation,9,10 which
will allow me to precisely quantify the contribution of the
phantom ions to the contact potential.

II. THE ZSF MODEL

ZSF used the MacMillan–Mayer theory of solutions to
calculate the equilibrium distribution of electrolyte and the
resulting equilibrium junction potential of two immiscible
solvents in contact.7 The electrolyte ions were modeled as
hard spheres with a point charge located at the center, while
the solvent was represented by dipolar hard spheres. The
calculations were performed using the mean spherical ap-
proximation. Since I am only interested in highly diluted
electrolytes instead of repeating the full ZSF analysis, I will
use a much simpler Born model11 to calculate the ionic sol-
vation energy. For simplicity I will also restrict my attention
to 1:1 electrolyte although all the calculations can be easily
extended to more general electrolyte systems.

Consider two immiscible solvents in contact. Suppose
that the dielectric constant of solvent one is �1 and the di-
electric constant of solvent two is �2. If some electrolytes are
dissolved in the two solvents, when the equilibrium is estab-
lished it will partition itself between the solvents in such a
way as to have a constant electrochemical potential. The
equality of the electrochemical potentials can be expressed as

kBT ln��+
�1��3� + �+

�1� + q��1� = kBT ln��+
�2��3� + �+

�2�

+ q��2�, �1�a�Electronic mail: levin@if.ufrgs.br.

THE JOURNAL OF CHEMICAL PHYSICS 129, 124712 �2008�

0021-9606/2008/129�12�/124712/3/$23.00 © 2008 American Institute of Physics129, 124712-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2982244
http://dx.doi.org/10.1063/1.2982244


kBT ln��−
�1��3� + �−

�1� − q��1� = kBT ln��−
�2��3� + �−

�2�

− q��2�. �2�

In the equations above ��
�i� is the concentration of � ions in

the solvent i, ��i� is the electrostatic potential of solvent i, q
is the elementary charge, ��

�i� is the solvation free energy of a
� ion inside solvent �i�, T is the temperature, and � is the de
Broglie thermal wavelength. Since I am interested in very
dilute solutions, the interaction between ions can be ne-
glected and the solvation free energy of each ion can be
approximated by the Born form

��
�i� =

q2

2R�
� 1

�i
−

1

�0
� , �3�

where R� is the ionic radius of � ions and �0 is the vacuum
permittivity constant. Subtracting Eq. �2� from Eq. �1� and
using the fact that in the thermodynamic limit the two phases
must be charged neutral, I arrive directly at the principal ZSF
result

�� � ��2� − ��1� =
q

4
� 1

R+
−

1

R−
�� 1

�1
−

1

�2
� . �4�

Since �� does not depend on the concentration of electro-
lyte, we are forced to conclude that the ionic contribution to
the junction potential is there “even though the ions are
not.”8 Certainly this seems like a strange state of affairs. Is it
possible that the calculation presented above is missing some
important ingredient? To see what has gone wrong we will
now present a slightly different discussion of the same
model.

III. CANONICAL CALCULATION

The calculation presented in Sec. II is intrinsically grand
canonical—one of the solvents can be thought of as being a
reservoir of electrolyte for the other solvent. In a charge
neutral system there must be equivalence between grand-
canonical and canonical ensembles.9,10,12 However, this
equivalence exists only in the thermodynamic limit, N→�,
V→�, while N /V is held fixed. Clearly in any experiment,
the number of ions—although very large—will not be infi-
nite. The long range nature of the Coulomb interaction de-
mands a particular care in going to the thermodynamic limit.
To see clearly the finite size effects we will now study a
canonical version of the problem discussed above.

Suppose that we have two immiscible solvents confined
in a beaker of volume 2V. The lower half of the beaker is
occupied by a solvent of large dielectric constant �water, �1�,
and the top half by a solvent of low dielectric constant �oil,
�2�. If N ion pairs of a strong electrolyte are dissolved in
water, after some time a fraction of these ions will diffuse
into the oil region. If the electrolyte is asymmetric with R−

	R+, there will be an excess of anions in the oil phase—
since the electrostatic energy penalty for going into the low
dielectric phase for larger ions is smaller—and an excess of
cations in the water phase. As a consequence of the Earn-
shaw theorem,13 the excess charge in the two conducting
phases will concentrate along the interface, establishing an
electric field that will oppose a further charge build up. It

should be noted that the tendency of the excess charge to go
to the surface is to a large extent a nonlinear and correla-
tional effect,14 not well accounted for in mean-field theories
based on the linearized Poisson–Boltzmann equation. Thus,
in general, such mean-field theories will overestimate the
length scale on which the electrostatic potential varies in
strongly inhomogeneous systems.

Following the original ZSF model, I will take the water-
oil interface to be planar and rigid. The excess charge of the
two phases will then form a double layer of width w=R+

+R− along the interface. After the equilibrium is established
the ionic concentration in the two phases will be such as to
minimize the Helmholtz free energy. Suppose that x-fraction
of cation and y-fraction of anions are in the water phase.
Then from the conservation of the total number of particles,
the corresponding fractions in the oil phase will be 1−x for
cations and 1−y for anions. Using the Gauss law, the electric
field inside the oil portion of the double layer is found to be
E2=4
�x−y�Nq /�2A, and the electric field inside the water
portion of the double layer is E1=4
�x−y�Nq /�1A, where A
is the cross-sectional area. Integrating the field energy den-
sity over the span of the double layer, we obtain the electro-
static contribution to the total free energy. The Helmholtz
free energy for the whole system is

�F = Nx ln x + N�1 − x�ln�1 − x� + Ny ln y

+ N�1 − y�ln�1 − y� +
2
N2�x − y�2q2

kBTA

�2R+ + �1R−

�1�2

+ Nx���+ + Ny���− + const. �5�

The first four terms of Eq. �5� are purely entropic, the
�x−y� term is the contribution from electric field established
at the interface, while the last two terms correspond to the
difference in the solvation free energy for cations and anions
in the two phases

���� =
q2

2kBTR�
� 1

�1
−

1

�2
� . �6�

Minimizing the free energy with respect to x and y, we find

ln
x

1 − x
+ �x − y�� + ���+ = 0, �7�

ln
y

1 − y
− �x − y�� + ���− = 0, �8�

where

� �
q2N

kBTA

�2R+ + �1R−

�1�2
. �9�

Equations �7�–�9� determine the partitioning of ions between
the two phases. Integrating the electric field across w, the
electrostatic potential difference between the two phases is
found to be �q��= �y−x��. In the limit N→� ��→��, Eqs.
�7� and �8� require that y→x. Subtracting Eq. �7� from Eq.
�8�, we arrive at the ZSF result for the electrostatic potential
difference ��. In the thermodynamic limit the electrostatic
potential difference between the two phases saturates at the
value predicted by the grand-canonical calculation, Eq. �4�.
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In the limit of vanishing ionic concentration N→0, however,
we find a very different result. In this case the �x−y� term in
Eqs. �7� and �8� becomes very small and the two equations
decouple. The potential difference between the two phases
becomes

�q�� � �e���+ − e���−�� , �10�

which clearly vanishes in the limit of infinite dilution. De-
pending on the value of the dimensionless parameter � there
are, therefore, two distinct regimes of ��: Linear and satu-
rated. The crossover between the two occurs at

�
 �
�

2
� ��+ − ��−

e���+ − e���−
� . �11�

Figure 1 shows the characteristic behavior of �� as a func-
tion of � for two immiscible liquids with dielectric constants
�1 /�0=80 and �2 /�0=10.

Let us now consider a water-oil interface
��1 /�0=80,�2 /�0=3� for an asymmetric electrolyte with R+

=2 Å and R−=4 Å. Suppose that 1 mol of this electrolyte is
first dissolved inside the water phase of V=1 l and suppose
that the cross-sectional area of our bottle is 100 cm2. Once
the equilibrium is established what will be the junction po-
tential across the water-oil interface? Let us first see whether
for these parameters, the electrostatic potential is in the satu-
ration or in the linear regime. Using Eq. �9� we find that �
=5.9
109, on the other hand the crossover value is �


=1.24
1011 so we are well inside the linear regime. Using
Eq. �10� I then calculate the ionic contribution to the contact
potential to be ��=−14 mV, while the result of the grand-
canonical calculation �the saturation value� is ��
=−297 mV. For a water-vapor interface ��1 /�0=80,�2 /�0

=1� the situation is even worse. In this case I find the contact
potential is −5.9
10−20 mV, while the grand-canonical cal-
culation predicts 913 mV. For water-vapor interfaces, the
grand-canonical formalism errs by some 22 orders of
magnitude.

IV. CONCLUSIONS

It is quite common to use canonical or grand-canonical
formalisms of statistical mechanics interchangeably, guided
simply by convenience. The equivalence between ensembles,
however, exists only in the thermodynamic limit, N→�, V
→�. For systems with short range interactions, the thermo-
dynamic limit is reached very quickly with a few hundreds
of particles. However, for Coulomb systems this is no longer
the case. The contact potential between the water-vapor in-
terfaces is a dramatic demonstration of this dichotomy. In
this case we see that the thermodynamic limit is not reached
even when the number of particles is stupendously large, on
the order of 1024 ions. If one uses the grand-canonical for-
malism to calculate the contact potential of the water-vapor
interface, one comes to the conclusion that at vanishing di-
lution of electrolyte, the ionic contribution to the junction
potential is some hundreds of millivolts, meaning that any
impurity, or even the dissociation of water into H+ and OH−

will significantly contribute to the interfacial electrostatic po-
tential. The ionic contribution appears to be there even
though the ions are not.8 In reality, the canonical calculation
shows that the ionic contribution to the junction potential of
the water-vapor interface is always very small. At “infinite”
dilution it is of the order of 	10−27 mV. There is no “phan-
tom ion effect” for water-vapor interfaces. On the other hand,
if water is placed in contact with a solvent of sufficiently
large dielectric constant, say �2 /�0=40, even a vanishingly
small concentration of electrolyte on the order of 10−6 M
�for the system discussed above� would produce a −11.5 mV
compared to the saturation value of −11.56 mV contribution
to the junction potential. In this case, the grand-canonical
formalism will work just fine. The range of validity of the
grand-canonical ensemble is delimited by the value of �
.
Finite size effects are fundamentally important as long as the
number of ions in the systems is such that ���
.
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FIG. 1. Contact potential as a function of � for two immiscible liquids with
dielectric constants �1 /�0=80 and �2 /�0=10. The two solvents are inside a
cylindrical 2 l bottle of cross-sectional area A=100 cm2, each occupying
half of its total volume. The ions of electrolyte have radius R+=2 Å, and
R−=4 Å. The saturation value of �� in this case is −81 mV.
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