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The thermodynamic properties of highly charged colloidal suspensions in contact with a salt reser-
voir are investigated in the framework of the renormalized Jellium model (RJM). It is found that the
equation of state is very sensitive to the particular thermodynamic route used to obtain it. Specifically,
the osmotic pressure calculated within the RJM using the contact value theorem can be very differ-
ent from the pressure calculated using the Kirkwood-Buff fluctuation relations. On the other hand,
Monte Carlo simulations show that both the effective pair potentials and the correlation functions
are accurately predicted by the RJM. It is suggested that the lack of self-consistency in the thermo-
dynamics of the RJM is a result of neglected electrostatic correlations between the counterions and
coions. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718367]

I. INTRODUCTION

In spite of its fundamental importance—both practical
and theoretical—the thermodynamic properties of charged
colloidal suspensions are far from understood.1–4 Even such
basic question as the existence of a liquid-gas phase transi-
tion in these systems still remains a topic of debate.5–8 The
difficulty in describing the thermodynamics of charged col-
loidal suspensions is a consequence of both size and charge
asymmetry between the different components of the system
and the long-range nature of the Coulomb interaction.1, 9, 10

To simplify the theoretical description one often uses the,
so-called, primitive model (PM). In this model all charged
components—colloidal particles, coions, and counterions—
are treated explicitly, while the solvent—usually an aque-
ous medium—is considered as a dielectric continuum. The
interactions between the colloidal particles, the counterions,
and the coions have both Coulomb and hard-core compo-
nents. Image effects resulting from the dielectric discontinu-
ities across the particle surface are usually neglected at the
lowest order of approximation.11–15

Colloidal suspensions often contain salt. For theoretical
description it is, therefore, convenient to work in a semi-
grand-canonical ensemble in which the number of colloidal
particles is fixed, while the concentration of salt is controlled
by an externally imposed chemical potential. Physically this
can be realized by separating the suspension from a salt
reservoir by a semi-permeable membrane transparent only to
microions.16, 17

The large asymmetry between the colloidal particles and
the microions forces us to employ different approximations
to account for the correlations among the various compo-
nents of suspension. The correlations among the microions
can be described by a linear Debye-Hückel (DH) like the-
ory. For dilute colloidal suspensions these correlations are
usually negligible. On the other hand, to account for strong
colloid-ion and colloid-colloid interactions require a full non-
linear theory. One approach that has proven to be very use-
ful for describing the nonlinear correlations between the

colloidal particles and the counterions is the concept of charge
renormalization.1, 18, 19 The idea is that strong electrostatic at-
traction between the colloidal particles and their counteri-
ons will lead to accumulation of counterions near the col-
loidal surface. These counterions can be considered to be
“condensed” (strongly bound) to the colloidal particle, effec-
tively renormalizing its bare charge. For strongly charged col-
loidal particles the renormalized charge will, in general, be
much smaller in magnitude than the bare charge.18

An alternative, but equivalent way of modeling colloidal
suspensions, is to explicitly trace out the microion degrees of
freedom in a semi-grand-canonical partition function.20 This
way the multi-component colloidal suspension is mapped
onto an equivalent one-component system in which only the
colloidal particles are explicit. This coarse-graining procedure
defines the, so-called, one component model (OCM). In this
approach, all the contributions coming from the traced-out
microions are implicit in the effective interactions between
the colloidal particles.20 The apparent simplification over the
original problem is only formal, since the effective interac-
tion between the colloidal particles now has a many-body
character20–22 and is state-dependent,20, 21 further complicat-
ing the thermodynamic calculations.23–26

For weakly charged colloidal particles, the effective inter-
action potential in the OCM takes a particularly simple form
known as the Derjaguin-Landau-Overbeek-Verwey (DLVO)
pair potential,27, 28

βu(r) = λB

(
Zeκa

1 + κa

)2
e−κr

r
, (1)

where a and −Zq are the colloidal radius and charge,
respectively. The inverse Debye screening length is κ

≡ √
4πλB(ρ+ + ρ−), where ρ+ and ρ− are the mean concen-

trations of the monovalent counterions and coions inside the
suspension, and λB ≡ βq2/ε is the Bjerrum length. Due to the
global charge neutrality, ρ+ − ρ− − Zρ = 0, where ρ is
the concentration of colloidal particles.
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For strongly charged colloidal particles, the linear DLVO
theory is not sufficient to describe the pairwise interactions.
The nonlinear effects, however, can partially be included into
DLVO potential by explicitly accounting for the counterion
condensation. This can be achieved by replacing the bare col-
loidal charge in Eq. (1) by the renormalized effective charge
Z → Zeff. The charge renormalization accounts for the strong
nonlinear particle-counterion correlations near the colloidal
surfaces.

The formal trace over the microion degrees of freedom
in the partition function results in many-body effective OCM
interactions.21 In particular, besides the DLVO pair potential
and higher multi-body potentials, there also appear zeroth-
order terms which do not depend on the specific colloidal co-
ordinates, but only on the average colloidal and ionic concen-
trations. These are known as the “volume terms.”3, 9 Since the
volume terms do not depend on the colloidal coordinates, they
have no influence on the structural properties of the OCM. On
the other hand, they appear to be relevant for calculating the
thermodynamic functions, and in particular the equation of
state of the colloidal suspension.20, 25, 26 In general, the effec-
tive OCM interactions between the colloidal particles depend
on the particular colloidal configuration. This point has been
demonstrated in PM simulations where it was found that bcc
and fcc arrangements lead to different effective pair forces be-
tween the colloidal particles.29

The question of whether the effective potential models
based purely on pair interactions are sufficient to study the
thermodynamics of a fully multi-component system is still
under discussion.23, 24 In the case of charged colloidal sys-
tems, the problem is even more subtle, since such systems
must obey additional constraints, i.e., global electro-neutrality
and the well-known Stillinger-Lovett moment conditions.30

As a consequence, many theoretical tools originally designed
for unconstrained systems have to be reformulated before they
can be applied to charged systems.31, 32

The aim of this work is to address some thermodynamic
inconsistencies which arise when different routes are used to
calculate the thermodynamic functions of charged colloidal
suspensions. To this end, we will use the renormalized Jel-
lium model (RJM), from which both the renormalized charge
and the osmotic pressure can be easily calculated.33, 34 From
the renormalized charge, the effective pair potential—and
hence the colloid-colloid pair correlation functions—can be
obtained using the OCM Ornstein-Zernike (OZ) equation35

with an appropriate closure. Knowing the correlations, it is
possible to calculate the osmotic compressibility using the
Kirkwood-Buff (KB) fluctuation theory.36 In this work we
will compare the osmotic compressibilities of the RJM calcu-
lated using both the contact theorem and the KB fluctuation
relations.

The paper is organized as follows. In Sec. II we will
briefly review the theoretical methods used for the thermody-
namic investigations—the RJM, the Donnan equilibrium, and
the Kirkwood-Buff relations. In Sec. III, we will briefly dis-
cuss the simulation techniques employed in this study. The re-
sults will be presented in Sec. IV, and conclusions, discussion,
and suggestions for the future investigations will be given in
Sec. V.

II. THEORETICAL BACKGROUND

A. The renormalized Jellium model

The RJM is a model that allows one to calculate the ef-
fective charge of colloidal particles and the thermodynamic
properties of colloidal suspensions based on the mean-field
Poisson-Boltzmann-like (PB) equation. RJM is known to be
very accurate for salt-free colloidal suspensions with mono-
valent counterions. In contrast to the traditional cell model
(CM), where a lattice-like structure is assumed for colloidal
particles, in the RJM the colloidal correlations are modeled
by a uniform neutralizing background. The major concep-
tual advantage of the RJM over the CM is that the DLVO
pair potential Eq. (1) is exact within the RJM formalism,
while for CM there is no pairwise interaction between the col-
loidal particles.33 Thus, the effective charges calculated us-
ing CM have no clear connection with the DLVO potential.
Recently, the RJM was successfully extended to incorporate
inter-colloidal correlations,37, 38 the multivalent counterions,39

and colloidal polydispersity.40

In the RJM, one colloidal particle of charge −Zbareq
and radius a is fixed at the origin of the coordinate system.
The distribution of free (uncondensed) ions around this par-
ticle is assumed to follow the Boltzmann distribution, ρ±(r)
= ρ±e∓βqψ(r), where ρ± are the counterion and coion mean
densities, and ψ(r) is the mean electrostatic potential. The
remaining colloidal particles, along with their condensed
counterions, are taken to provide a uniform neutralizing
background of charge density −Zeffqρ. The reduced mean
electrostatic potential φ(r) = βqψ(r) then satisfies the
Poisson-Boltzmann-Jellium (PBJ) equation,

∇2φ(r) = −4πλB

(
ρ+e−φ(r) − ρ−eφ(r) − Zeff ρ

)
. (2)

This equation can be numerically solved with the boundary
conditions φ(r → ∞) → 0 and dφ(r)

dr
|r=a = ZbareλB

a2 . The first
condition defines the zero of the electrostatic potential in the
bulk of suspension, while the second one determines the elec-
tric field at the colloidal surface using the Gauss law.

Far from the central colloidal particle—the region where
the electrostatic potential is weak—the PBJ equation can be
linearized, resulting in the following long-distance behavior:

φ(r) = −Zeff λBeκa

(1 + κa)

e−κr

r
, (3)

where κ = √
4πλB(ρ+ + ρ−) = √

4πλB(2ρ− + Zeff ρ) is
the effective screening length, and where we have used the
global charge neutrality condition ρ+ − ρ− − ρZeff = 0.
Note that in the far-field, the bare charge Zbare is replaced by
the renormalized charge Zeff, reflecting the nonlinear colloid-
counterion correlations at the colloidal surface.

For a given salt and colloidal concentrations, ρ− and ρ,
respectively, the effective charge is calculated by matching
the numerical solution of Eq. (2) with the linearized potential
Eq. (3), in the far-field. Since within the RJM the background
charge arises from the smeared-out charge of colloidal par-
ticles and their condensed counterions, the self-consistency
requires that the effective colloidal charge must be the same
as the charge of the uniform neutralizing background. This
procedure can be easily implemented numerically.41 Suppose
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that we know Zeff, then from Eq. (3) we will also know the po-
tential and the electric field in the far-field region. We can then
integrate the PBJ equation using a standard Rounge-Kutta al-
gorithm to obtain the electrostatic potential all the way up to
the colloidal surface. The corresponding bare colloidal charge
Zbare is obtained using the Gauss law at the colloidal sur-
face. In reality, of course, one wants to calculate the effective
charge for a given bare charge. This can be done by varying
Zeff until the desired Zbare is found. In practice, this can be eas-
ily implemented numerically by coupling a Newton-Raphson
root-finding subroutine to the PBJ solver.

The osmotic pressure within the RJM is given by

βP = ρ+ + ρ−, (4)

where ρ± are the bulk concentrations of free coions and coun-
terions. In spite of its apparent simplicity, this ideal-gas-like
equation of state requires a knowledge of microion concen-
trations in the far-field which, in turn, depend on the charge
renormalization and osmotic equilibrium with the salt reser-
voir. We should also note that unlike for CM, for which the
contact value theorem is exact,42–45 Eq. (4) of the RJM is only
valid in the mean-field approximation. We will later argue that
the failure to properly account for ionic correlations leads to
the thermodynamics inconsistencies in the RJM.

B. The Donnan equilibrium

In this work, we will consider a colloidal suspension in
contact with a salt reservoir. The system is separated from the
reservoir by a semi-permeable membrane which allows for a
free flux of microions. The ionic concentration inside the sus-
pension will then be determined by the osmotic equilibrium
with the salt reservoir. Contrary to uncharged systems, for
which the osmotic equilibrium simply results in a solvent flow
from a solute poor to a solute rich region, the osmotic equi-
librium in charged systems is also constrained by the overall
charge neutrality of the system. Physically, this is reflected
in the appearance of a potential difference across the semi-
permeable membrane which controls the overall build up of
charge in the system.16, 17 This potential difference is known
as the Donnan potential.46 From a theoretical point of view,
it can also be thought of as a Lagrange multiplier used to en-
force the charge neutrality of the system.16, 47

In equilibrium, the ionic electrochemical potentials in-
side the system must be equal to the ones in the salt reser-
voir. Neglecting the electrostatic correlations between the mi-
croions, the ionic concentrations in the bulk and reservoir
are related by ρ± = ρse

∓φD , where ρs is the salt concentra-
tion in the reservoir, and φD is the adimensional Donnan po-
tential. Using the charge neutrality condition for free ions,
ρ+ − ρ− − ρZeff = 0, the Donnan potential can be elimi-
nated to yield the bulk concentrations of free (uncondensed)
microions,

ρ± = 1

2

(√
(ρZeff )2 + (2ρs)2 ± Zeff ρ

)
. (5)

This expression can be used, together with the equation
of state Eq. (4), to write the osmotic pressure β
 as,

β
 ≡ βP − 2ρs = ρ +
√

(ρZeff )2 + (2ρs)2 − 2ρs, (6)

where we have also added the colloidal ideal gas contribution
βPc = ρ. It is important to stress that the above expression
for the osmotic pressure completely ignore the microion cor-
relations. This can be justified as long as the concentration
of coions in the bulk is very low. The colloid-counterion cor-
relations are taken into account through the colloidal charge
renormalization.

Using Eq. (6), two important limits can be verified.
For high-salt concentrations—Zeffρ/2ρs � 1, salt-dominated
regime—there is no significant variation in the ionic concen-
trations across the membrane and the osmotic pressure (6)
is small. On the other hand, in the limit Zeffρ/2ρs 	 1—the
counterion-dominated regime—there is a significant variation
in the microion concentration between the bulk suspension
and the reservoir and the osmotic pressure is large.16

The inverse osmotic compressibility χ−1
T = ρ

(
∂


∂ρ

)
ρs ,T

follows directly from Eq. (6),

βχ−1
T = ρ+ ρ2Z2

eff√
(ρZeff )2 + (2ρs)2

(
1+d log(Zeff )

d log(η)

)
, (7)

where η = 4πa3ρ/3 is the colloidal volume fraction. The
derivative on the right-hand side of this expression can be ne-
glected, since in the RJM the effective charge depends only
weakly on the colloidal volume fraction.33, 34

C. The Kirkwood-Buff relation

Once the nonlinear colloid-ion correlations are properly
taken into account through the charge renormalization, the
DLVO pair potential Eq. (1) can be used to investigate the
structural properties of the suspension. This can be done by
solving the OCM Ornstein-Zernike equation

h(r) = c(r) + ρ

∫
h(r′)c(|r − r′|)dr′, (8)

where h(r) and c(r) are the total and the direct correlation
functions, respectively. This equation has to be supplemented
by an appropriate closure relation between h(r) and c(r).35

Once the structural properties are known, the thermody-
namic informations can then be obtained using the KB fluc-
tuation theory.36 KB theory allows us to express the thermo-
dynamic functions, such as the osmotic coefficients and the
compressibilities, as integrals over the pair correlation func-
tions. Originally formulated for unconstrained mixtures, KB
theory requires some extra care when extended to systems in
which the number densities of different components are not
independent.23, 31, 32 This is precisely the case for the charged
systems, for which long-range Coulomb interaction requires
an overall charge neutrality. In addition to this, there are also
other constraints known as the Stillinger-Lovett moment con-
ditions, that restrict the fluctuations of different components30

of a charged system. A naive application of the original KB
theory to charged systems leads to undetermined results.35, 48
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One way of avoiding these difficulties is to study the KB in-
tegrals for arbitrary k vectors in the Fourier space,32 taking
the limit k → 0 at the end of the calculations. The extended
KB theory then relates the osmotic compressibility with the
Fourier transform of the total correlation function ĥ(k),

χT = 1 + ρ

∫
h(r)dr = 1 + ρĥ(0). (9)

Using OZ equation, this expression can be inverted to yield(
∂βP

∂ρ

)
ρs ,T

= 1 − ρĉ(0). (10)

KB theory shows that the knowledge of colloidal pair cor-
relation function is sufficient for calculating the equation of
state of the colloidal suspension. Curiously, Eqs. (9) and (10)
rely only on the pair correlations which are well modeled us-
ing the effective pair potential, Eq. (1). This suggests that the
the zero-order volume terms, which depend on the colloidal
concentration,3, 9 are already accounted for by colloidal pair
correlations.

III. MONTE CARLO SIMULATIONS

To explore the validity of the RJM model, we perform
Monte Carlo simulations to obtain the “exact” pairwise in-
teraction potential. The simulations are performed for several
fixed distances R between two spherical colloidal particles of
charge −Zbare q, which are restricted to move along the main
diagonal of a box of side length L = 180 Å. Colloid parti-
cle 1 is located at x, y, z = −R/2

√
3, and colloidal particle

2 at x, y, z = R/2
√

3. In order to keep the electro-neutrality,
2Zbare microions of charge q are also present in the simula-
tion box. If salt is added to the system, then L3ρS microions
of charge q and L3ρS microions of charge −q are included in-
side the box. The total number of microions in the system is
then N = 2L3ρS + 2Zbare. The radii of all the ions are set to 2
Å. The usual Coulomb potential is considered between all the
charged species. The total energy used in the MC simulations
is,

β

λB

E =
N−1∑
i=1

N∑
j=i+1

z2
i

rij

−
N∑

i=1

Zbarezi

r1̄i

−
N∑

i=1

Zbarezi

r2̄i

, (11)

where zi is the charge valence of the ion i (+1 or −1), rij is the
distance between two ions i and j, r1̄i and r2̄i are the distances
between the ion i and the colloidal particles 1 and 2, respec-
tively. Since we consider periodic boundary conditions, the
Ewald summation technique is employed.49 The equilibration
is achieved after 2.5 × 103 simulation steps per particle; ev-
ery 100 movements per particle an uncorrelated state is saved.
The mean force is calculated using 1 × 104 uncorrelated con-
figurations.

The average electrostatic force on a colloidal particle
(positive force corresponds to repulsion), along the diagonal
direction is

F̄e(R) =
〈

N∑
i=1

Zbarezi

2

(
cos θ1̄i

r2
1̄i

+ cos θ2̄i

r2
2̄i

)〉
+ Z2

bare

R2
,

(12)

where F̄e(R) = β

λB
Fe(R), θ1̄i and θ2̄i are the angles between

the diagonal and the line connecting the particle i to the
colloid 1 and the colloid 2, respectively. These distances
are measured from the diagonal in the counterclockwise, for
particle 1, and in the clockwise, for particle 2 direction, re-
spectively. The Ewald technique is used to calculate the elec-
trostatic forces. Besides the average electrostatic force, there
is also an entropic depletion force which must be taken into
account. To do this we use the method of Wu et al.,50 which
consists of a small displacement of the colloidal particles
along the diagonal (while the microions remain in a fixed con-
figuration) in order to count the resulting overlaps between the
colloidal particle and the microions. This entropic force can
be expressed as

F̄d (R) =
〈
Nc

1

〉 − 〈
N

f

1

〉 + 〈
Nc

2

〉 − 〈
N

f

2

〉
2�RλB

, (13)

where F̄d (R) = β

λB
Fd (R), Nc

1 is the number of overlaps of
colloidal particle 1 with the microions (both anions and
cation), after a small displacement �R (≈1Å) in the direction
of the colloidal particle 2 (superscript c stands for closer) and
N

f

1 , is the number of overlaps after a displacement �R in the
opposite direction (superscript f stands for farther). Similarly
Nc

2 and N
f

2 , are the number of overlaps of colloidal particle 2
with the microions after a displacement �R in the direction of
the colloidal particle 1 and in the opposite direction, respec-
tively. The effective pair potentials can then be calculated by
integrating the mean force, −λB

∫ R

Rmax
dR′ [F̄e(R′) + F̄d (R′)

]
,

where Rmax is the reference distance at which the interaction
between the two colloidal particles is negligible.

IV. RESULTS

We are now in a position to compare the thermodynamic
predictions from Eqs. (7) and (9). To this end, the OZ equa-
tion is numerically solved using the hypernetted-chain (HNC)
closure

c(r) = h(r) − log(h(r) + 1) − βu(r). (14)

This closure is known to be very accurate for the Yukawa-like
pair potentials.35, 51 For a given reservoir salt concentration ρs

and volume fraction η, the pair potential is given by (1), with
the effective charge calculated using the RJM.

In order to test the accuracy of the effective pair poten-
tial predicted by the RJM, in Fig. 1 we compare it with the
results of the Monte Carlo simulations. As can be seen, the
DLVO pair potential with the bare colloidal charge consider-
ably overestimate the effective colloid-colloid interaction. On
the other hand, the pair-potential predicted by the RJM agrees
well with the MC simulations. For short separations, however,
a small deviation from the Yukawa functional form is evi-
dent. This nonlinear screening interaction is a consequence
of neglected correlations among the counterions sandwiched
between the colloidal surfaces.

In Fig. 2, the colloid-colloid pair correlation function g(r)
calculated using the RJM and the HNC integral equation, is
compared with the results of the MC simulations52 in the
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FIG. 1. Effective pair potentials calculated using the MC simulations
(squares), bare DLVO pair potential (dashed line), and DLVO with RJM
effective parameters (solid line) for Zbare = 20, a = 10 Å, and λB = 7.2 Å.

high-salt concentration regime. Again, we see a good agree-
ment between the theory and the simulations.

Figures 1 and 2 show that the effective charges calcu-
lated using the RJM are able to correctly predict both the
pair interactions and the structural properties of colloidal sus-
pensions containing added electrolyte. We next check if this
good agreement also extends to the thermodynamic func-
tions. Unfortunately, very quickly we run into difficulties. We
find that for the intermediate salt concentrations, the osmotic
compressibility calculated using the KB fluctuation relation
Eq. (9) strongly deviates from the one calculated using the
RJM equation of state (JEOS), Eq. (6). The discrepancy be-
tween the two routes can be clearly seen in Fig. 3, which
shows the osmotic compressibility χosm as a function of the
reservoir salt concentration ρs, for colloidal particles of bare
charge Z = 1000 and various volume fractions. Although
both routes agree in the high-salt regime, there are strong
deviations at intermediate salt concentrations. Furthermore,
as the colloidal concentration increases, the discrepancy be-
tween the two thermodynamic routes becomes stronger. At
low volume fractions and high-salt concentration, both routes
approach the correct ideal gas limit χosm ≈ 1, when strong
screening makes the system behave as a dilute suspension of
hard spheres.

The question that arises then is: Which thermodynamic
route is more reliable? Unfortunately, the answer is not very
clear. Due to the difficulty of performing large scale simu-
lations on suspensions containing electrolyte, there are very
little data available to us to answer this question. Further-
more, there is also a scarcity of the experimental data deal-
ing with osmotic properties of charged colloidal suspensions.
In Fig. 4, we compare both the osmotic pressure calcu-
lated using the JEOS and the KB fluctuation theory with the
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FIG. 2. Colloid-colloid pair correlation functions obtained using the MC
simulations (Ref. 52) and the RJM-OZ approach, for (a) ρs = 24.9 mM and
(b) ρs = 249 mM. In both cases, the bare charge is ZbareλB/a = 21.6, and the
volume fraction is η = 0.0084.

10
-2

10
0

10
2

ρ
s
 [mM]

0

0.5

1

ρχ
/ β

JEOS
KB

(a)

10
-4

10
-2

10
0

10
2

ρ
s
 [mM]

0

0.5

1

ρχ
/β

JEOS
KB

(b)

10
-2

10
-1

10
0

10
1

10
2

10
3

ρ
s
 [mM]

0

0.5

1

ρχ
/β

JEOS
KB(c)

10
-4

10
-2

10
0

10
2

10
4

ρ
s
 [mM]

0

0.5

1

ρχ
/β

JEOS
KB

(d)

FIG. 3. Reduced osmotic compressibility χ̃ ≡ ρχ/β as a function of the
reservoir salt concentration ρs for colloidal particles of radius a = 30 Å and
bare charge Z = 1000. The colloidal volume fractions are: (a) η = 10−5,
(b) η = 10−4, (c) η = 10−3, and (d) η = 10−2. We see a dramatic discrep-
ancy between the predictions of the JEOS (solid lines) and the Kirkwood-
Buff fluctuation theory (dashed lines), especially at intermediate salt concen-
trations and high volume fractions.

experimental measurements of Rasa et al.53 Neither one of the
thermodynamic routes seems to be able to accurately describe
this experimental data. Most likely this is a consequence of
the strong electrostatic correlations between the ions result-
ing from the use of a low dielectric solvent by Rasa et al.
Nevertheless, the fluctuation route seems to give results in a
closer agreement with the experimental data than the JEOS.
This suggest that for the RJM the fluctuation route might be
more reliable for calculating the thermodynamic functions.
We will now explore the possible causes of the discrepancy
between the two thermodynamic routes.

A. Colloid-colloid correlations

One possibility is that the discrepancy observed in
Fig. 3 is due to the way that colloidal correlations enter
into the theory in the two thermodynamic routes.54, 55 In-
deed, while the colloid-colloid correlations are neglected in
the JEOS, they contribute to the osmotic pressure calculated
using the KB formalism Eq. (9), since the HNC equation54

used to obtain the correlation function takes into account
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FIG. 4. Comparison between the osmotic pressure calculated using the
JEOS, (solid line) and the explicit integration of Eq. (9) (dashed line), with
the experimental results reported in Ref. 53. The reservoir salt concentration
is ρs = 8μM, while the Bjerrum length is λB = 2.38 nm, the colloidal radius
is a = 21.9 nm, and colloidal charges are: (a) Z = 34 and (b) Z = 40.
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the colloidal hard-cores. The colloid-colloid repulsion is par-
ticularly important for large volume fractions and high-salt
concentration (Zρ/2ρs �1), when ionic contribution to the
osmotic pressure is small. To asses the relevance of these cor-
relations, we can add to the JEOS the excess colloidal virial
pressure,

βP ex= − 2πρ2

3

∫ ∞

0
g(r)r3 dβu

dr
dr+2πρ2V

∫ ∞

0
g(r)

∂βu

∂V
r2dr,

(15)
where u(r) is the effective pair potential in the OCM descrip-
tion. The first term on the right-hand side of this equation
represents the standard excess virial pressure for the one-
component system, while the second term accounts for the
density dependent effective pair potential. This term is essen-
tial to reproduce the correct Debye-Hückel limiting law in the
infinite dilution limit.56 Substitution of Eq. (1) into Eq. (15)
produces the following expression for the excess pressure,

βP ex =2πρ2

3

∫ ∞

0
g(r)βu(r)(κr + 1)r2dr

− πρ2
∫ ∞

0
g(r)βu(r)

(
κr − 2(κa)2

1 + κa

)
r2dr,

(16)

where u(r) is the effective colloidal pair potential, Eq. (1). For
all the parameters studied here, however, we find that |Pex|
� PJell, and the effect of colloidal correlations is too small to
account for the strong discrepancy observed in Fig. 3.

B. Ion-ion correlations

As the salt concentration increases, the mean distance be-
tween the cations and anions becomes small, leading to strong
inter-ionic correlations. Such correlations are completely ig-
nored by the mean-field Poisson-Boltzmann equation, which
is the basis of the RJM. Indeed, in the absence coions (and for
monovalent counterions), the RJM model was found to pro-
vide an excellent account of both thermodynamic and struc-
tural properties of charged suspensions.33, 34, 37, 38 This good
accuracy of the model is the result of large characteristic dis-
tance between the counterions inside a salt-free suspension.
On the other hand, presence of salt leads to strong cation-
anion correlations neglected in the RJM.

In order to explore the influence of inter-ionic correla-
tions on the osmotic pressure in a colloidal suspension, we
modify the JEOS by adding the correlational Debye-Hückel
contribution,1, 57

βP ex = − κ3

24π
. (17)

Figure 5 shows the osmotic compressibilities resulting
from addition of Eq. (17) to the JEOS, Eq. (6). As can be
seen from this figure, incorporation of ionic correlations even
at this leading-order level, significantly improves the agree-
ment between the two thermodynamic routes, especially at
large colloidal volume fractions. This simple calculation sug-
gests that the thermodynamic consistency of the RJM can
be restored by incorporating the inter-ionic correlations into
the RJM. Unfortunately, at the moment, it is not clear how
the inter-ionic correlations can be included into the RJM in a
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FIG. 5. Comparison between the osmotic compressibilities calculated using
the JEOS Eq. (6) (solid lines); the JEOS with explicit ionic correlations
Eqs. (6) and (17) (point lines); and the KB fluctuation theory,
Eq. (9) (dashed lines). The radius of colloidal particles is a =
10 Å, the bare colloidal charge is Z = 1000, and the Bjerrum
length is λb = 7.2 Å. The volume fractions are: (a) η = 0.01 and
(b) η = 0.05.

fully self-consistent fashion. This will be the subject of future
research.

V. SUMMARY AND CONCLUSIONS

We have reported an inconsistency arising when differ-
ent routes are employed to calculate the thermodynamic func-
tions in the the RJM. The discrepancies are particularly strong
at moderate salt concentrations. On the other hand, compar-
ing the predictions of the RJM with the MC simulations, we
see that the model accurately accounts for the effective pair
interactions and the colloidal correlation functions, even for
suspensions containing electrolyte.

Thermodynamic inconsistency between different routes
is not particular to the RJM and is found for many other
systems.58 Even for a Debye-Hückel electrolyte, the osmotic
compressibility calculated via the PM virial equation is quite
different from the predictions of the fluctuation theory.3 In
these cases, MC simulations are particularly helpful to choose
the more accurate route to thermodynamics.58 Unfortunately,
simulations of charged colloidal suspensions at even moder-
ate salt concentrations are still too computationally demand-
ing while the experimental data is still very scarce. The ex-
perimental and the simulational data available to us seems to
indicate that KB fluctuation relations provide a more reliable
route to thermodynamics of the RJM. The KB route seems
to partially account for the inter-ionic correlations which are
completely neglected by the JEOS. Although, these correla-
tions are negligible in the absence of coions they, however,
become relevant when salt concentration increases and the
characteristic distance between the cations and the anions
becomes small.1 Unlike for salt-free suspensions, for which
the electrostatic correlations are important only when ions are
multivalent, for suspensions with salt ionic correlations are
important even with monovalent ions when the concentration
of salt is larger than few tens of mM.

It is well known that ionic correlations have a strong in-
fluence on charged colloidal suspensions. For example, the
exclusion volume effects can strongly modify the ionic ad-
sorption near the colloidal surface,60 while high size asym-
metry between coions and counterions may lead to colloidal
charge reversal even with monovalent microions.59 Further-
more, it has been recently demonstrated by both molecular
dynamic simulations and the PM Ornstein-Zernike equations
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that deviations from the DLVO theory can be observed in the
region of high-salt concentrations.61 None of these effects are
captured by the mean-field PB theory, and demand more elab-
orated approaches which properly account for the ionic corre-
lations. In Sec. IV B, we showed that even a simple incorpora-
tion of the DH contribution into the osmotic pressure already
brings the JEOS and the fluctuation results into a closer agree-
ment. A fully self-consistent incorporation of ionic correla-
tions into the RJM requires, however, development of a new
methodology closer in spirit to the density functional theory.
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