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Abstract We study the XY model with infinite range interactions in an external magnetic
field. The simulations show that in the thermodynamic limit this model does not relax
to the thermodynamic equilibrium—instead it becomes trapped in a non-ergodic out-of-
equilibrium state. We show how the relaxation towards this non-equilibrium state can be
studied using the properties of the collisionless Boltzmann (Vlasov) equation.
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1 Introduction

It is our pleasure to dedicate this paper to Michael Fisher, Ben Widom, and Jerry Percus on
the occasion of their 80th birthday. All three are the indisputable giants of the equilibrium
statistical mechanics. In this paper, however, we would like to bring their attention to a new
and largely unexplored area of physics: statistical mechanics of systems with long-range
interactions. We hope that all three can bring their great intellects to bear on this difficult
problem.

One of the first thing that we learn in an introductory course on statistical mechanics is
that the mean-field approximation becomes exact when the interactions between the par-
ticles are infinitely long-ranged. This is a very interesting limit, since it applies both to
confined one-component plasmas and to self-gravitating systems. One, might, therefore ex-
pect that this problem has been greatly explored by the statistical mechanics community.
This, however, is not the case. A possible explanation for this neglect is, perhaps, due to the
believe that there is really nothing to study and everything is very well understood—after
all long-range systems are supposed to be trivially simple, they should be described exactly
by the simple mean-field equations. There are no complicated correlations between the par-
ticles, such as the ones studied by Michael, Ben, and Jerry in liquids and magnets. Over
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the last decade, however, it has become very clear that long-range systems are surprisingly
complex—much more so, than systems with short-range forces. Exactness of the mean-field
limit of the Boltzmann-Gibbs statistical mechanics only applies to long-range systems that
are in contact with a thermal bath. In this case, everything that is taught in a basic course
on statistical mechanics is perfectly correct—one must take some care to properly define
the thermodynamic limit [1–3], but once this is done, there are no great surprises (but see
also [4]).

A surprise comes when one tries to study an isolated (microcanonical) system with long-
range interactions [5] using molecular dynamics (MD) simulations. What one finds is that
instead of relaxing to the thermodynamic equilibrium governed by static mean-field equa-
tions, the system becomes trapped in a non-ergodic out-of-equilibrium stationary state, with
the one-particle distribution function showing a peculiar core-halo structure [6–11]. In the
thermodynamic limit, long-range systems exhibit a strong ensemble inequivalence—while
canonically they are perfectly well described by the equilibrium Boltzmann-Gibbs statistical
mechanics, when isolated, they fail to relax to the thermodynamic equilibrium [12–15]. It is
fairly easy to understand how the ergodicity breaking arises in the microcanonical ensemble.
The thermodynamic limit for systems with long-range forces requires that the pairwise in-
teractions between the particles be infinitesimally weak. This is achieved by scaling the two-
body interaction potential with the number of particles. The thermodynamic limit, therefore,
kills off all the interparticle correlations (collisions), so that the dynamics of each particle
is completely controlled by the dynamical mean-field produced by all other particles. Since
there are no collisions, the relaxation to equilibrium is controlled by the collective oscilla-
tions and the parametric resonances, which result in Landau damping [16]—some particles
gain a lot of energy from the collective oscillations (resonances), at the expense of the collec-
tive motion. This particles then move to highly energetic regions of the phase space, which
are very improbable from the perspective of the Boltzmann-Gibbs statistical mechanics. On
the other hand, production of highly energetic particles, in turn, damps out the collective
oscillations until the mean-field potential becomes completely static. When this happens,
the dynamics of each particle becomes integrable (non-chaotic)—for a radially symmetric
system—and the ergodicity is irreversibly broken [11].

The lack of ergodicity requires the development of new methods to study systems with
long-range forces, since one can no longer decouple the “equilibrium” from “dynamics”. In
this paper, we will show how the dynamics determines the phase structure of a paradigmatic
infinite range XY spin model in an external magnetic field.

2 The Model

We consider a system of N , XY interacting spins whose dynamics is governed by the Hamil-
tonian

H =
N∑

i=1

[
p2

i

2
+ h cos θi + 1

2N

N∑

j=1

[
1 − cos(θi − θj )

]
]
, (1)

where θi is the orientation of the ith spin, pi is its conjugate momentum, and h is the
external magnetic field [17]. The macroscopic behavior of the system is characterized by
the order parameters (magnetic moments), Mn = (Mxn,Myn), where Mxn ≡ 〈cos(nθ)〉,
Myn ≡ 〈sin(nθ)〉, n = 1,2, . . ., and 〈· · ·〉 stands for the average over all the particles. The
order parameters Mn = |Mn| measure the homogeneity of the distribution of angles: for
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Mn = 0 we have a disordered paramagnetic state, whereas for finite Mn some degree of
inhomogeneity (order) will exist. Using Hamilton’s equations of motion, the dynamics of
each spin is governed by θ̇i = pi , ṗi = F(θi), where

F(θi) = −(h + Mx1) sin θi + My1 cos θi . (2)

The total energy per particle is given by

u = H

N
= 〈p2〉

2
+ 1 − M2

1

2
− hMx1. (3)

Since the Hamiltonian does not explicitly depend on time t , the total energy per particle u

is conserved along the evolution.
We are interested to study how an initially disordered (paramagnetic) state develops order

when magnetic field is turned on. We will consider an initial distribution of the waterbag
form. Without loss of generality, we choose a frame of reference in which 〈p〉 = 0, so that
the initial one-particle distribution function reads

f0(θ,p) = 1

4πp0
Θ

(
p0 − |p|), (4)

where p0 is the maximum modulus of the momentum. The energy per particle for this initial
distribution is u = p2

0/6 + 1/2. Because of the symmetry of f0 and of the force F(θ) with
respect to θ = 0, in the thermodynamic limit the spin distribution n(θ) must be an even
function of θ throughout the evolution, so that Myn(t) = 0. Therefore, the macroscopic
dynamics is completely determined by Mx1(t). Another consequence of the parity of n(θ)

is that the total momentum of the system is conserved, so that 〈p〉 = 0 along the whole
dynamics.

3 Nonlinear Equation for the Evolution of Magnetization

For finite h, the initial distribution given by Eq. (4) is not stationary, so that the system
will evolve with time. Our aim here is to derive a low dimensional set of equations that
can describe the macroscopic dynamics of the system, in particular, the magnetization mo-
ments Mxn(t). In the thermodynamic limit N → ∞, the dynamical evolution of the one
particle distribution function is governed exactly by the collisionless Boltzmann (Vlasov)
equation [18]

∂f

∂t
+ p

∂f

∂θ
+ F(θ)

∂f

∂p
= 0. (5)

The left-hand side of this equation is just the convective derivative of the one-particle dis-
tribution function. Therefore, the system evolves over the phase space as an incompressible
fluid. Supposing that the external field h is sufficiently weak to produce only a small change
in the phase-space particle distribution,

f (θ,p, t) = 1

4πp0
Θ(pmax − p)Θ(p − pmin), (6)

where pmin(θ, t) and pmax(θ, t) are assumed to be continuous functions of θ that vary with
time as the system evolves. Note that the phase-space density 1/4πp0 is preserved in ac-
cordance with the incompressibility imposed by Eq. (5). Since θ is periodic, we can expand
pmin and pmax in a Fourier series. Truncating the series at second order, we write
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pl =
2∑

n=0

[
Al

n(t) cos(nθ) + Bl
n(t) sin(nθ)

]
, (7)

where l = min,max and the coefficients Al
n(t) and Bl

n(t) will be determined by the spin
dynamics.

First, we note that the requirement that the spin distribution n(θ, t) = ∫
f (θ,p, t) dp is

an even function of θ (and consequently that 〈p〉 = 0) requires that

Amin
n = ±Amax

n , (8)

Bmin
n = Bmax

n ≡ Bn, (9)

for all n. Next, we observe that the total volume occupied by the distribution (6) in phase
space must be preserved, i.e., the norm is conserved, requiring

Amax
0 = −Amin

0 = p0. (10)

Substituting Eqs. (6) and (7) in the definition of the magnetic moments

Mxn = 〈
cos(nθ)

〉 =
∫

f (θ,p, t) cos(nθ)dp dθ, (11)

we readily obtain Mxn = (Amax
n − Amin

n )/4p0. Therefore, in order to describe states with
finite magnetization and to be consistent with the condition expressed by Eq. (8), we must
require

Amax
n = −Amin

n = 2p0Mxn, n = 1,2. (12)

Now, taking the successive derivatives of Eq. (11) we obtain

Ṁxn = −n
〈
p sin(nθ)

〉
, (13)

M̈xn = −n2
〈
p2 cos(nθ)

〉 − n
〈
F(θ) sin(nθ)

〉
. (14)

Note that these equations can also be derived by taking the appropriate moments of the
Vlasov equation (5). Substituting Eqs. (6)–(12) into Eq. (13) leads to Ṁx1 = [B1(Mx2 −
1) − B2Mx1]/2 and Ṁx2 = −B2 − B1Mx1. Solving these equations with respect to B1 and
B2 we find

B1 = 2Ṁx1 − Mx1Ṁx2

M2
x1 + Mx2 − 1

, (15)

B2 = −2Mx1Ṁx1 + (Mx2 − 1)Ṁx2

M2
x1 + Mx2 − 1

. (16)

Finally, using Eqs. (2) and (6)–(12) in Eq. (14) we obtain

M̈x1 = [
h + (

1 − 2p2
0

)
Mx1

]
/2 − Mx1B

2
1/4

− [
B2

2Mx1 + B1B2 + Mx2(h + Mx1)
]
/2

−[
M2

x1 + 2Mx2(Mx2 + 1)
]
p2

0Mx1, (17)

M̈x2 = −4p2
0

[
Mx2 + M3

x2 + M2
x1(2Mx2 + 1)

]

+ B2
1 (1 − 2Mx2) − B2

2Mx2 + Mx1(h + Mx1). (18)
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Equations (17) and (18) are a closed set of nonlinear second order differential equations
for the evolution of Mx1(t) and Mx2(t). They provide an approximate description of the
macroscopic dynamics of an infinite range XY model with a small external field. The initial
distribution given by Eq. (4), provides the initial conditions for the dynamics of magnetic
moments, Mx1(0) = Ṁx1(0) = Mx2(0) = Ṁx2(0) = 0.

4 Linear Analysis

We start by studying the linear regime of Eqs. (17) and (18). For vanishingly small h, we
expected that the resulting magnetization of the system will also remain small, i.e., Mxn ∼
O(h). Retaining only linear terms in the equations, we obtain

M̈x1 +
(

2p2
0 − 1

2

)
Mx1 = h

2
, (19)

M̈x2 + 4p2
0Mx2 = 0. (20)

Equation (19) shows that Mx1 will undergo stable oscillations described by

Mx1(t) = 2h

2p2
0 − 1

sin2

(√
2p2

0 − 1

2

t

2

)
(21)

as long as p2
0 > 1/2. This result is the same as obtained using the linear response theory

based on the Vlasov equation (5) [17]. Equation (20) also shows that at the linear order Mx2,
is not coupled to the external field h, leading to a trivial dynamics, Mx2(t) = 0. For p2

0 < 1/2,
the oscillations of magnetization around h/(2p2

0 − 1) become unstable. The linear theory,
however, is unable to provide any information on the new stable points of oscillation.

5 Nonlinear Macroscopic Oscillations

To investigate the nonlinear dynamics of the magnetic moments, we need to numerically
solve Eqs. (17) and (18). In Fig. 1 we show the numerical integration of these equations for
h = 0.1 and u = 0.7 (p0 ≈ 1.095). In the panel (a), the theoretically calculated evolution
of Mx1 is compared with the results of MD simulations and with the linear response theory
given by Eq. (21). It is clear that the linear response theory rapidly dephases from the results
of simulations, while the nonlinear equations (17) and (18) provide a very good description
of the dynamics. For longer times, however, there is also a dephasing of the nonlinear equa-
tions as well. We expect that inclusion of higher order modes in the Fourier expansion of
Eq. (7) should lead to progressively more accurate nonlinear solutions. In Fig. 1(b), we also
present the results the evolution of Mx2(t). While the linear theory predicts that Mx2(t) = 0,
the figure clearly shows that it undergoes a complicated temporal dynamics, which is well
captured by our non-linear equations, as compared to the MD simulations.

In Fig. 2 we present the snapshots of the phase space obtained using the MD simulation
for different times along the first oscillating cycle of Mx1. The lines correspond to pmin and
pmax of Eq. (7), as obtained from the nonlinear theory. We see that there is a very good
agreement between these functions and the borders of the actual particle distribution.
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Fig. 1 Evolution of the magnetic
moments Mx1 in (a) and Mx2 in
(b) for u = 0.7 and h = 0.1. The
solid red line is obtained using
MD simulation with N = 107

particles. The dashed blue line is
the result of the nonlinear
evolution equations (17)
and (18). In panel (a), the dotted
green line corresponds to the
linear response, Eq. (21) (Color
figure online)

6 Stationary Solutions

Despite the fact that the Vlasov equation (5) is time reversible and, therefore, the temporal
evolution never ceases, in some cases the system may evolve towards a “coarse grained”
stationary state. This is possible because in such cases the evolution generates a filamenta-
tion of the distribution in the phase-space that occurs at progressively smaller length scales.
Upon coarsegraining, it will then appear that the system has reached a stationary state. This
is illustrated in Fig. 3. From the point of view of the macroscopic dynamics, the relaxation
process may then be seen as an effective damping in the evolution of magnetic moments.
The damping is provided by the Landau mechanism in which some spins enter in reso-
nance with the oscillations of Mx1(t) gaining large amounts of energy at the expense of the
collective motion. The effective damping will then favor the relaxation of Mx1 and Mx2 to-
wards the fixed points of Eqs. (17) and (18). In order to test this, we ran MD simulations
up to t = 400 and computed the time averaged magnetic moment M̄x1 over the final interval
�t = 200. The results are shown in Fig. 4, where, for the sake of comparison, we also plot
the prediction from the linear response theory. Although the agreement is not perfect, it is
clear that the nonlinear theory of Eqs. (17) and (18) reproduces better the numerical results
as compared to the linear theory. In particular, it correctly predicts the increase in the slope
of M̄x1 as a function of h near h = 0.03, followed by a decrease in the slope for h > 0.05.
We can expect that inclusion of higher order harmonics in Eq. (7) will lead to even a better
agreement between the theory and the MD simulations.
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Fig. 2 Snapshots of the phase
space obtained using MD
simulation with u = 0.7 and
h = 0.1. The snapshots were
taken at t = 0.0 (a), t = 2.0 (b),
t = 4.0 (c), and t = 6.0 (d). The
lines correspond to pmin and
pmax of Eq. (7) as obtained from
the nonlinear theory (Color figure
online)

Fig. 3 Evolution of the magnetic
moments Mx1 for u = 0.6 and
h = 0.15 obtained using MD
simulations with N = 106

particles. In this case the system
relaxes towards a macroscopic
quasi-stationary state. After
t ≈ 1010, the system will
crossover to thermodynamic
equilibrium state with
Mx1 = 0.48 (Color figure online)

7 Conclusions

We have studied the XY model with infinite range interactions, in an external magnetic field.
MD simulations show that in the thermodynamic limit this model does not relax to the ther-
modynamic equilibrium—instead it becomes trapped in a non-ergodic out-of-equilibrium
state. Therefore, in the microcanonical ensemble, the Boltzmann-Gibbs statistical mechan-
ics is inapplicable to this model. The model demonstrates the dramatic breakdown of the
ensemble equivalence for systems with long-range forces. When put in a contact with a
thermal bath, these systems relax to the usual thermodynamic equilibrium. Therefore, in
the canonical ensemble they are perfectly well described by the Boltzmann-Gibbs statistical
mechanics—there is a well defined entropy and free energy, with the state of thermodynamic
equilibrium corresponding to the minimum of free energy. On the other hand, in the micro-
canonical ensemble, Boltzmann entropy looses all meaning. The stationary state to which an
isolated system with long-range interactions will relax does not correspond to the maximum
of the Boltzmann entropy. To study the (non-thermodynamic) equilibrium state to which
the systems will evolve one must begin with the kinetic theory. The evolution of the one-
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Fig. 4 Values of the time averaged magnetic moment M̄x1 as a function of h for u = 0.6. The squares are
results from MD simulations performed up to t = 400 and averaged over the last 200 times with N = 106

particles. The dashed red line corresponds to the fixed points of the nonlinear equations (17) and (18), whereas
the dotted green line is the result from linear response. For h < 0.03, the oscillations of Mx1(t) do not show
any significant damping (as in Fig. 1), while for h > 0.03 the oscillations are strongly damped, and the
magnetization converges to a stationary value, as is shown in Fig. 3. For the set of parameters presented in the
figure, the equilibrium Boltzmann-Gibbs statistics predicts magnetizations in the range M̄x1 = 0.486–0.478
(Color figure online)

particle distribution function of a system with long-range interactions is governed by the
collisionless Boltzmann (Vlasov) equation. The final state to which the system will evolve
will not, in general, be described by the Boltzmann distribution—in fact, it will explicitly
depend on the initial condition. Therefore, for these systems, dynamics will determine the
equilibrium. In this paper, we have shown how the final state can be approximately pre-
dicted based on the properties of the Vlasov equation, without having to explicitly solve this
complicated PDE. Clearly, long-range interacting systems are much more complicate and
interesting than has been supposed only a decade ago. We hope that Michael, Ben, and Jerry
might get stimulated by this new challenge.
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