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Abstract. We investigate the stability of a uniform elliptical vortex in a two-
dimensional incompressible Euler fluid. It is demonstrated that for small eccen-
tricities, the vortex relaxes to a core-halo structure that undergoes rigid rotation
with the central core remaining nearly elliptical. For large eccentricities, the vor-
tex splits into two quasi-circular vortices that revolve around the center of mass.
Independent of the aspect ratio, the steady-state displays a low-density halo.
We present a theory that qualitatively explains the transition between the two
states. All theoretical results are compared with extensive molecular dynamics
simulations based on the vortex-in-cell algorithm.
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1. Introduction

Ever since Onsager’s 1949 paper on thermodynamics of turbulence [1], there has been
ongoing work on applying the framework of equilibrium statistical mechanics to two-
dimensional inviscid fluids [2, 3]. The spontaneous order observed in large-scale vortices,
such as Jupiter’s great red spot, suggests that there is an underlying fundamental princi-
ple that governs the inverse energy cascade [4, 5], which results in the formation of large
vortex structures. Onsager noted that N vortices confined to a finite area A have a finite
phase-space volume AN and, therefore, the number of accessible microstates, Ω(E), for
a given energy E must be a non-monotonic function, such that both for small and large
E, Ω(E)→ 0. This means that there exists a critical energy Ec for which Ω(Ec) is maxi-
mum. The critical energy corresponds to the most disordered configuration of vortices in
which they uniformly occupy all the available area. Within the Boltzmann–Gibbs sta-
tistical mechanics, the microcanonical entropy is S(E) = kB ln Ω(E), which means that
for E > Ec, the inhomogeneous vortex distribution will have lower entropy than at Ec.
Since the absolute temperature is 1/T = ∂S(E)/∂E, decreasing entropy entails a state
with negative absolute temperatures [6]. The existence of negative temperature states
implies the clustering of vortices with the same sign of vorticity, which would explain
the formation of large vortex structures in the turbulent 2D incompressible flows.

Implicit in Onsager’s theory is the ergodicity and mixing of the vortex dynamics
on which the thermodynamic argument relies. If Onsager’s reasoning is correct, any
2D uniform vortex distribution should relax to a giant circular vortex. On the other
hand, it is known from Kirchhoff’s work that a uniform elliptic vortex undergoes rigid
rotation, maintaining its shape [7]. Furthermore, it has been recently demonstrated
that, if perturbed, the Kirchhoff elliptic vortex [8] relaxes to a core-halo structure very
different from the circular vortex predicted by the Onsager’s equilibrium statistical
mechanics theory.

There is an additional subtlety in applying statistical mechanics argument to fluid
dynamics. It is well known that Euler equations for an incompressible 2D fluid can be
written in terms of vorticity. The vorticity of individual vortices, Γi, however, must be
infinitesimal, so that in the thermodynamic limit when the total number of vortices
N →∞, the net vorticity ΓiN remains finite and equal to Γt. This is precisely the
thermodynamic limit for systems with long-range interactions. It is well known that in
the thermodynamic limit, such systems do not relax to the usual Maxwell–Boltzmann
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equilibrium, but become trapped in non-equilibrium stationary states [9, 10]. The pur-
pose of this paper is to explore the relaxation into such stationary states of Kirchhoff
vortices with different eccentricities.

2. Mathematical formalism of Kirchhoff’s elliptical vortices

Kirchhoff’s vortex is an elliptical patch of a homogeneous non-viscous fluid of uni-
form vorticity rotating with constant angular velocity; it is a particular solution of
2D incompressible Euler equations [11]. In the vorticity-stream function formulation,
Euler equations can be written as:

∇ · �u = 0 (1)

∂Γ

∂t
+ (�u · ∇) Γ = 0 (2)

where �u ≡ �u(�r, t) is the fluid velocity, and �r = (x, y) are the coordinates. Γ ≡ Γ(�r, t) is
a pseudo-scalar vortex density introduced in the Helmholtz’s mathematical formalism
of point-vortex model [12] and defined as Γ(�r, t) = ∇× �u(�r, t) · ẑ, where ẑ is the unit
vector in the direction normal to the (x, y)-plane. Introducing a stream function ψ such
that �u(�r, t) = ∇× ψ(�r, t)ẑ yields the Poisson equation:

Δψ(�r, t) = −Γ(�r, t). (3)

The vortex density can be written in terms of individual vorticity, Γ(�r, t) =
∑

i Γiδ(�r −
�ri(t)). Defining the Kirchhoff function as

(4)

where G(�ri,�rj) = (−1/2π) ln |�ri − �rj | is the Green’s function solution to the Poisson
equation in an open space, the equations of motion for individual vortices take a
Hamilton-like form:

(5)

where the coordinates x and y are the conjugate variables. Since the Kirchhoff function
does not explicitly depend on time, the energy of the system (I3) is conserved. Further-
more, it can be shown that the total vorticity (I1), as well as the angular momentum
(I2), are also conserved quantities:

I1 ≡
∫

d2r Γ(�r), (6)

I2 ≡
∫

d2r Γ(�r)r2, (7)

I3 ≡
∫

d2r d2r0Γ(�r)Γ(�r0) ln | �r − �r0| . (8)
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3. Vlasov dynamics

In this paper, we will confine our attention to systems containing N identical vortices
of vorticity Γi = Γt/N , where the total vorticity is

Γt = lim
N→∞

N∑
i=1

Γi ≡ constant. (9)

Although the pair interaction between any two vortices is vanishingly small, the infinite
range of the potential results in a finite total force acting on each vortex. The advection
of vorticity by the flow field means that in the thermodynamic limit, N →∞, the vortex
dynamics is precisely governed by the Vlasov equation [13], which for identical vortices
is equivalent to equation (2)

∂f

∂t
+

∂ψ

∂y

∂f

∂x
− ∂ψ

∂x

∂f

∂y
= 0, (10)

where f(�r, t) denotes the one-particle distribution function, and ψ is the mean-field
potential (stream function). The one-particle distribution function is related to the
vortex density through Γ(�r, t) = Γtf(�r, t), where we have set the norm of the distri-
bution function to be equal to one. We note, however, that for a finite N—as is always
the case in computer simulations—there will exist a residual pair interaction. To avoid
these finite-size effects, different methods have been developed, such as the vortex-in-cell
algorithm.

The equations of motion (5) for the vortex dynamics can be written as:

�ui =
1

2π

N∑
j �=i

Γj(�ri − �rj)× ẑ

r2ij
, (11)

where �ri = (xi, yi) is the coordinate of the ith vortex, rij is the Euclidean distance
between the ith and the jth vortices, and ẑ is the unit vector normal to the (x, y)-plane.
A significant limitation of direct numerical integration of these equations of motion is
the order O(N 2) of the algorithm resulting from the long-range interaction between the
vortices. Even if this limitation could be overcome, the finite vortex strength will result
in residual pairwise interactions (collisions), which in the large time limit will lead to
unreliable results. An alternative is the particle-in-cell (PIC)/molecular dynamics simu-
lation (MDS) algorithm [14] developed by [15–17], which allows forces to be calculated
using a ‘smoothed-out’ solution of the Poisson-equation on a grid. The basic steps of
the algorithm are the following: (1) the space is divided into an m× n rectangular mesh
and the vortex strength is assigned to each node located in the center of each grid cell;
(2) the Poisson equation is solved on the grid composed of the nodes using an iterative
method; (3) the force on each vortex is obtained using the interpolation of the potential
obtained in the previous step; (4) a 5th order Runge–Kutta algorithm with a controlled
step is used to advance the system by a time interval dt; (5) repeat until a steady-state
is achieved.
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In the first step, a rectangular mesh with regular nodes at the center of each cell
of area hxhy is constructed. Each node is then assigned vorticity in accordance with
the PIC algorithm, see figure 1. Next, the discrete Poisson equation is solved using an
iterative technique based on the Gauss–Seidel method, called successive-over-relaxation

(SOR)—both methods are used to solve a linear system of equations of the form A�x = �b,
but the SOR contains a relaxation factor to accelerate convergence [18]. Decomposing the
matrix A into a diagonal component D, plus the upper and lower triangular components,

respectively U and L, results in (D + U + L) �x = �b. Then, after a little algebra, it is
written as

(D + ωL) �x = ω�b− [ωU + (ω − 1)D] �x, (12)

where ω is the relaxation factor constant, which must be greater than or equal to one
and less than two. Setting ω to unity yields the Gauss–Seidel method. The triangular
form, (D + ωL), on the left-hand side of the previous equation permits to solve for
�x iteratively, computing the values �x(n) sequentially by forward-substitution, as in the
equation below,

�x(n+1) =
1

D + ωL

{
ω�b− [ωU + (ω − 1)D]�x(n)

}
. (13)

The discrete Poisson equation obtained from the density distribution on the mesh-
grid in step one is then solved numerically by the above equation, where �x represents

the unknown potential on the grid nodes and �b the mesh-grid density. The matrix
A ≡ D + U + L describes the finite difference approximation of the Laplacian in the
Poisson equation according to a 2D five-point stencil, that is, the potential has to be
smooth only when considering the first neighbors. Rewriting equation (13) for each term

x
(n)
i yields

x
(n+1)
i = (1− ω)x

(n)
i +

ω

aii

(
bi −

∑
j<i

aijx
(n+1)
j −

∑
j>i

aijx
(n)
j

)
, (14)

where aij are the matrix components, and bi are the density components. The estimate of
the error of the method is of order of O(h2), when using a square grid with h = hx = hy.
The complete description of the SOR algorithm can be found in the reference [19].
Interpolating the potential, the force acting on each vortex can be calculated, and the
position of the vortices updated using a fifth-order Runge–Kutta algorithm [20]. All
the simulations in the present paper were performed with N = 220 = 1048 576 point-like
vortices, a square grid with 256× 256 cells. The boundary condition is ψ(�r)|�r ∈ ∂A = 0
and the potential is continuous at the origin, ∂�rψ(�r)|�r=0 = 0.

4. Stream function

Consider a homogeneous elliptical Kirchhoff vortex, with a and b, respectively the
lengths of the major and minor semiaxes. The stream function produced by the vortex
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Figure 1. Representation of the mesh-grid that illustrates the particle distribution
in the first step of the PIC algorithm. The kth vortex, indicated by a black dot,
divides its vortex strength between the cell in which it is located and the neighboring
cells that are within reach of the PIC kernel, doted square. In the image, the
(i− 1, j + 1)-cell has a contribution proportional to the area Ai−1,j+1. The vortex
strength is then assigned to the node located in the center of the cell.

is identical to the electrostatic potential of a two-dimensional ellipse [21, 22].

ψell(x, y) =

{
ψinn(x, y), (x/a)2 + (y/b)2 � 1

ψout(x, y), otherwise
(15)

with equations, ψinn and ψout given by

ψinn(x, y) = log

(
2a

c

)
+

1

2
− x2

a(a+ b)
− y2

b(a+ b)
− arcosh

(a
c

)
, and (16)

ψout(x, y) = log

(
2a

c

)
+

1

2
+R

[
z2

c2

(√
1− c2

z2
− 1

)
− arcosh

(z
c

)]
, (17)

where, c ≡
√
a2 − b2, z ≡ x+ iy, i =

√
−1, and R gives the real part of the argument

between the square brackets. Asymptotically, the potential is limr→∞ ψell(r) = −log(r).
As can be seen from figure 2, the boundary of the elliptical distribution crosses various
equipotential lines of equation (16). This is also clear from the form of the inner potential

in ψell(x, y) which has equipotential ellipses with semiaxes proportional to
√
a(a+ b)

and
√

b(a+ b), while the distribution function has semiaxes a and b.
To be a stationary solution of the Vlasov equation, the dependence on the coordi-

nates (x, y) in the distribution function f(x, y) must appear only through the conserved
quantities, such as the one particle energy, which in the present case is the stream func-
tion ψell, i.e., f ≡ f(ψell(x, y)). The fact that the border of the elliptical distribution is
not an equipotential surface implies that the original elliptical distribution function is
not stationary and will evolve with time. The MDS have shown that evolution occurs as
a rigid rotation of the ellipse with a constant angular velocity [8]. This suggests that a
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Figure 2. Equipotential lines of the potential of equation (15), ψell(x, y) (solid
lines). Notice how the border of the distribution function—dashed ellipse—crosses
the equipotentials. This means that the surface of the ellipse is not an equipoten-
tial, signifying that elliptical vortex distribution is not stationary. In this figure, the
vortex distribution is a homogeneous ellipse with semiaxes a = 1.0 and b = 0.5.

canonical transformation to a rotating reference frame will make elliptical distribution
Vlasov-stationary. We, then, consider a rotation,

x̃ = x cos(ωt) + y sin(ωt), (18)

ỹ = −x sin(ωt) + y cos(ωt), (19)

the generating function for which is F (x, ỹ), such that x̃ = ∂ỹF (x, ỹ), and y = ∂xF (x, ỹ).

The stream function in the rotating reference frame is ψ̃ell(x̃, ỹ) = ψell(x̃, ỹ) + ∂tF (x, ỹ),
where ∂tF (x, ỹ) = ω(x̃+ ỹ)/2. We now look for the angular velocity ω which will make
the boundary of the ellipse an equipotential of ψell(x̃, ỹ). Evaluating the transformed
potential at the boundary of the distribution function, i.e., (x̃/a)2 + (ỹ/b)2 = 1, shows
that it becomes independent of x̃ and ỹ for ω = 2/(a+ b)2. Therefore, the distribution

function f(ψ̃ell(x̃, ỹ)), with

ψ̃ell(x̃, ỹ) = ψell(x̃, ỹ) +
ω

2
(x̃2 + ỹ2), ω =

2

(a+ b)2
, (20)

is indeed a stationary solution of the Vlasov equation in the rotating reference frame
[8]. In the lab frame, the Kirchhoff vortex will then rotate with angular velocity
ω = 2/(a+ b)2. Figure 3(a) displays three equipotential curves of the transformed poten-

tial, ψ̃ell(x̃, ỹ), depicted in figure 3(b). The red solid line represents the separatrix that
separates high and low energy regions of the lab frame; the separatrix contains two
fixed hyperbolic (saddle) points located at (±xfix, 0). Note that in the figure 3(a) there
are different curves which correspond to the same value of the potential in the rotating
reference frame. The equipotentials are organized by the type of line and color—same
line-type (and color) correspond to the same potential energy. The position of the sad-
dle points can be obtained by calculating the derivative of the potential with respect to

x, for y = 0, ∂x̃ ψ̃ell(x̃, ỹ)|y=0 = 0. This yields xfix = [(a+ b)3/(a+ 3b)]1/2. The maximum
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Figure 3. (a) Equipotential curves of the potential in the rotating reference frame,
ψ̃ell(x̃, ỹ) of equation (20), representing the three distinct regions: a separatrix (red
solid lines) containing two saddle points (the small dots besides the boxed S’s), two
lower-energy regions (black dashed lines) containing two minima, and two branches
of the higher-energy region (orange dotted lines) containing a local maxima at the
inner branch. Note that each line color corresponds to the same potential. (b) 3D
representation of ψ̃ell(x̃, ỹ), notice the contrast between the higher-energy regions
(darker shade) to the lower-energy regions (lighter shade).

y-extent, ymax, along the separatrix trajectory can be computed from the conservation

of the potential, ψ̃ell(xfix, 0) = ψ̃ell(0, ymax). The black dashed lines represent the low-
energy regions that contain two minima located at (0,±ymin). The values, ±ymin, can be
obtained by computing the derivative of the potential with respect to y, for x = 0. Per-

forming the calculation ∂ỹ ψ̃ell(x̃, ỹ)|x=0 = 0 yields ymin = [(a+ b)3/(3a+ b)]1/2. Finally,
the orange dotted lines show the equipotentials corresponding to the same high-energy
in the rotating frame. Notice that there are two branches, one inside the separatrix and

another outside; they will be henceforth denoted, ψ̃<
ell(x̃, ỹ) and ψ̃>

ell(x̃, ỹ), respectively.
For further information, we refer the reader to reference [8].

5. Stability of Kirchhoff’s vortices

The question of linear stability of Kirchhoff’s vortices is not new; Love’s 1893 paper
demonstrated that Kirchhoff vortex remains linearly stable as long as the ratio of the
major to the minor axes is lower than three [23]. For higher asymmetries, oscillatory
surface m modes will be excited by microscopic perturbations [24]. Here, m represents
the number of wavelengths to the elliptic circumference—similar to Kelvin m waves that
propagate on a circular patch with r cos(mθ) [25]. The surface modes of oscillation have
dependence only on the elliptical axis ratio and affect the dynamics in different ways; for
instance, in the previous section, we showed Kirchhoff’s vortices undergo rigid rotation
with constant angular velocity. However, rigid rotations only happen for aspect ratios
lower than three, which is when the m = 3 mode becomes unstable. As the amplitude
of the mode m = 3 grows, the ellipse distorts asymmetrically. On the other hand, when
modes m = 4 and m = 6 are dominant, the elliptical patch distorts in a more symmetri-
cal way. We will later see that these modes also affect the final stationary state to which
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Figure 4. Time evolution snapshots of an ellipse with linearly unstablem = 3 mode
(aspect ratio a/b = 3.50); (a) shows the early evolution of the ellipse against the
initial vortex distribution (dashed line); (b) shows the instability filaments taking
vortices far beyond the core; and (c) shows the final steady-state with a nearly
elliptical core and a thick halo.

unstable Kirchhoff vortex will relax. The modes m = 4 and m = 6 become unstable at
the aspect ratios 4.612 and 7.774, respectively [26]. The m = 4 mode is particularly
important. It contains three distinct regimes: filamentation, oscillation, and fission. The
fission mode appears at a/b = 6.044 and hints at a new solution, as the nucleus breaks
into two blobs of roughly the same size. The early time evolution of the Kirchhoff’s vor-
tices were obtained using contour dynamics simulations [27]. Although very accurate,
this method can not be used to study the asymptotic stationary states to which the
unstable vortices will evolve. For this, we will use vortex-in-cell simulations discussed in
section 3.

5.1. Linear stability

We now briefly review the important properties of the linearly unstable modes m = 3,
m = 4, and m = 6. The large time effect of these unstable modes on the asymptotic
dynamics of Kirchhoff’s vortices will be discussed in the following section.

Perturbations become linearly unstable for aspect ratio a/b = 3, with the amplitude
of the mode m = 3 growing exponentially. The most notable feature of this unstable
mode is that it produces an asymmetric shape, as can be seen in figure 4(a); the pertur-
bations lead to a wave propagating on the surface of the ellipse, which eventually breaks
[28], expelling the vortices away from the main cluster. This leads to the formation of a
spiral structure, as can be seen in figure 4(b).

The mode m = 4 becomes unstable at the aspect ratio a/b = 4.612 [26], resulting
in a more symmetrical distortion. The first regime is called filamentation and generally
behaves as a continuation of the unstable mode m = 3, however presenting a double
spiral structure besides the elliptical core, as can be seen in figure 5. The oscillation
regime starts at aspect ratio a/b = 5.435 and displays a different evolution. In essence,
it results in a split of the elliptical vortex into two: one large and one small, as can be
seen in figures 6 and 7(a). During the subsequent evolution, the small vortex is partially
reabsorbed by the large vortex, the process which also results in a significant halo pro-
duction. Lastly, at aspect ratio a/b = 6.044 the fission regime begins. It is characterized
by two identical blobs connected by a thin filament, as can be seen in figure 7(b). The
filament soon vanishes, resulting in a dual-core structure.
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Figure 5. Time evolution snapshots of an ellipse with linearly unstable m = 4
mode (aspect ratio a/b = 5.2). Note the double spiral, although not symmetri-
cal—characteristic of the filamentation regime of m = 4 instabilities.

Figure 6. Time evolution snapshots of an ellipse with linearly unstablem = 4 mode
(aspect ratio a/b = 5.435). The evolution illustrates the mechanism by which a dual-
core steady-state is formed. Fission must not necessarily occur to form a dual-core
structure because, through the filamentation process, the connection between the
nuclei becomes so sparse that it forms the halo.

Figure 7. Time evolution snapshots of linearly unstable Kirchhoff’s vortices with
different unstable modes: (a) m = 4 within oscillation regime; (b) m = 4 within
fission regime; and (c) m = 6. The early stages of the evolution show three different
clusterings of vortices. Not withstanding the very different short time dynamics,
all these systems evolve to a stationary core-halo distribution with two asymmetric
cores surrounded by halo, revolving around the center of mass.

Higher perturbation modes have a very similar dynamics to modesm = 3 andm = 4.
The only remarkable characteristic is the split of the Kirchhoff’s elliptical vortex into
larger number macroscopic vortices, when the dominant unstable mode has larger m
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Figure 8. (a) Equipotential curves of the potential in the rotating reference frame,
equation (20). Notice the resonant structure (thick line) near the original elliptical
vortex distribution (dashed line). Perturbed vortices are captured by the separatrix
trajectory, resulting in a thin halo; (b) the theoretical prediction of the ansatz
equation (21). The core region (darker shade) corresponds to higher density, whereas
the halo region (lighter shade) corresponds to lower density; and (c) steady-state
of a Kirchhoff elliptic vortex with semiaxes a = 1 and b = 0.5.

value, as can be seen in figure 7(c), when the dominant mode is m = 6, resulting in two
small blobs revolving around the central large blob.

5.2. Non-linear stability and the core-halo model solution

MDS of Kirchhoff’s vortices with an aspect ratio of less than three have shown an
evolution that differs from the expected behavior. Linear stability analysis predicts that
for such aspect ratios, Kirchhoff’s vortices should remain stable. This, however, is not
what is observed in simulations. Instead, we find that while Kirchhoff vortex rotates,
it expels some of the microscopic vortices, resulting in formation of a thin low-density
halo. Figure 8(a) shows the equipotential curves of the stream function in the rotating
reference frame, equation (20). On the other hand, figure 8(c) shows a snapshot of
the final steady-state achieved by the Kirchhoff vortex with the aspect ratio a/b = 2.
Even though for low eccentricity Kirchhoff vortex is linearly stable, small perturbations
can cause non-linear instabilities. In particular, we observe a resonant structure with
a separatrix, depicted by the red bold line in figure 8(a). Notice that the separatrix
is very close to the boundary of the original Kirchhoff vortex. Small perturbation can,
therefore, move some of the microscopic vortices outside the main core and allow them
to be captured by the separatrix orbit. This resonant mechanism is similar to the non-
linear Landau damping in plasma physics [9, 29, 30]. The halo will form along the
separatrix, reaching the maximum radius at around ymax, corresponding to ∼1.47 for
this specified aspect ratio (illustrated in figure 8). This is consistent with the extent of
the halo observed in the simulations.

The formation of halo results in a flow of vorticity from the high-energy to the
low-energy regions of the phase space in the lab frame. Since the energy of the whole
system is conserved, the removal of some vortices to the low energy region of the phase
space (in the lab frame) must be compensated by the clustering of other vortices in the
high energy core. The core will then be formed by the process of evaporative heating,
which will continue until all the high energy states up to the Fermi energy εF in the
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rotating frame are populated up to the maximum allowed phase space density—the
density of the vortices in the initial distribution. In the rotating frame, the ejected
particles will first start to accumulate along the separatrix of the initial unperturbed
ellipse, however, as the core eccentricity decreases due to particle evaporation, the stream
function will also change, with the separatrix orbit moving to energy εsep. The ejection
will continue until a stationary state is established, with the rate of ejection from the
core equal to the rate of condensation into the core. We will then suppose that the halo
will be formed by a uniform distribution of density χ in: (i) the region of the external

branch εsep � ψ̃>
ell(x̃, ỹ) � εh and; (ii) the region of the internal branch εsep � ψ̃<

ell(x̃, ỹ) �
εF, where εsep corresponds to the separatrix energy of the stationary core. The Fermi

energy is εF = ψ̃<
ell(as, 0) = ψ̃<

ell(0, bs), where the self-consistent potential is approximated

as that of an ellipse ψ̃ell(x̃, ỹ) with semiaxes as and bs. The separatrix energy is then

εsep = ψ̃ell(0, ymax), where ymax is calculated using the semiaxes as and bs of the final

stationary core. Finally, the halo energy is εh = ψ̃ell(0, ymax), where ymax is calculated
using the semiaxes a and b of the original Kirchhoff vortex. We, then, propose an ansatz
core-halo solution [8] to the stationary Vlasov equation in the rotating reference frame:

fch(x̃, ỹ) = ηΘ
(
ψ̃<

ell(x̃, ỹ)− εF

)
+ χΘ

(
εh − ψ̃>

ell(x̃, ỹ)
)
Θ
(
ψ̃ell(x̃, ỹ)− εsep

)
Θ
(
εF − ψ̃<

ell(x̃, ỹ)
) (21)

where Θ is the Heaviside step function. Note that the formation of the halo is related
only to the non-linear instability produced by the resonant structure of the stream
function. The extent of the halo is determined by the ymax of the separatrix of the original
Kirchhoff vortex, while its width is self-consistently determined by the separatrix of the
final elliptical core.

The stationary distribution parameters as, bs and χ can now be determined using the
conservation of the norm of the distribution function, the conservation of the angular
momentum, and the conservation of energy, given by equations (6)–(8). For the Kirchhoff
vortex with the aspect ratio a/b = 2 we find an excellent agreement between the theory
and simulations, see figures 8(b) and (c). We next explore the domain of validity of the
core-halo ansatz solution.

6. Validity of single-core ansatz

In the previous section, it was shown that a linearly stable Kirchhoff vortex evolves into
a core-halo structure. The aspect ratio of the initial Kirchhoff ellipse determines the
final steady-state. We observe, however, that as the eccentricity of the Kirchhoff vortex
increases, the halo becomes thicker while the core becomes increasingly circular. This
behavior is demonstrated in figure 9. It is then natural to ask what will happen if the
Kirchhoff vortex has eccentricity such that the final stationary core becomes completely
circular of radius rc, while the halo occupies all the area between rc < r < ymax, see
figure 10. Clearly, beyond this critical value of eccentricity the final stationary state can
no longer be of a simple core-halo form and a bifurcation to a new type of solution must
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Figure 9. (Top row) Snapshots of the initial elliptical distributions of Kirchhoff’s
vortices with different aspect ratios; and (bottom row) their corresponding station-
ary states. Notice how evolution leads to a more circular core. The clustering of
vortices into the central region (higher energy) compensates for the vortex flow to
the halo region (lower energy).

Figure 10. Density distribution of the theoretical circular core-halo distribution,
equation (22), with the parameters determined by solving equations (26)–(28). The
core region (darker shade) corresponds to the higher density η ≡ (πab)−1 (where
ac = 1, bc ≈ 0.223) of the initial distribution, whereas the halo region (lighter shade)
corresponds to the lower density χ ≈ 0.039. The core radius is predicted to be
rc = 0.424.

occur. To find the critical aspect ratio of the Kirchhoff vortex for which the asymptotic
stationary distribution (in the rotating reference frame) must bifurcate to a new form
we must determine the aspect ratio ac/bc which will lead to a core-halo distribution
with a circular core of radius rc and halo of density χc. Without loss of generality, we
can set ac = 1 and then calculate the critical values bc, rc, and χc. A stationary radially
symmetric distribution function must have the form f(ψ(r)), which in the case of the
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core-halo distribution simplifies to

fch∗(r) = ηΘ(rc − r) + χcΘ (rh − r)Θ (r − rc) , (22)

where the halo radius is defined as rh ≡ ymax. Then, the solution to the Poisson
equation—whose source function is fch∗(r)—is given by the potential φ(r), divided into
three distinct regions corresponding to the step levels of the distribution: the potential
of the central region (φc), the potential of the halo region (φh), and the potential of the
outer region, which from the Gauss law is −ln(r):

φ(r) =

⎧⎪⎪⎨⎪⎪⎩
φc(r), 0 < r < rc

φh(r), rc < r < rh

− ln(r) otherwise.

(23)

Note that the −ln(r) behavior of the electrostatic potential for r � rh automatically
guarantees the conservation of the norm of the distribution function. The stream
functions for the core and halo regions are found to be

φc(r) =
(
πr2hχc − 1

)
log(rc)−

1

2
π
[
ηr2 + r2c (χc − η)− r2hχc + 2r2hχc log(rh)

]
, (24)

φh(r) =
(
πr2hχc − 1

)
log(r)− 1

2
πχc

[
r2 − r2h + 2r2h log(rh)

]
. (25)

The continuity requirement for the potential’s derivative at the interface requires the
core radius to be

rc ≡
(
πr2hχc − 1

πχc − πη

)1/2

. (26)

The halo radius rh depends on the location of the hyperbolic fixed point corresponding
to the initial vortex distribution, which is only a function of the initial aspect ratio i.e.
ac/bc. Recall that ac = 1, so that rh = xfix(bc) = [(1 + bc)

3/(1 + 3bc)]
1/2 and η = (πbc)

−1.
The critical core radius, therefore, depends only on bc and χc, which can be obtained
using the conservation of angular momentum and energy:∫

d2r r2fch∗(r) =
1

4

(
1 + b2c

)
, (27)

1

2

∫
d2r fch∗(r)φ(r) =

1

8

[
1− 4 ln

(
1 + bc
2

)]
, (28)

where the right-hand side of the above equations is calculated using the initial Kirchhoff
ellipse with a = 1 and b = bc. Solving these equations we find bc ≈ 0.223, χc ≈ 0.039,
and rc ≈ 0.424. The critical aspect ratio beyond which a simple core-halo stationary
distribution is no longer possible is found to be ac/bc ≈ 4.48. Observing the results of
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Figure 11. (a) Steady-state for the aspect ratio at which the theory predicts a
bifurcation to a new type of solution. Note a more complex halo structure than
was assumed in theory. This may explain existence of a single core for this aspect
ratio. (b) The core-halo solution with a single core. Note the halo is becoming more
uniform. (c) A bifurcation to a new type of solution with two cores.

molecular dynamics simulations we see, however, that for this aspect ratio, the core is
still elliptical, see figure 11(a). The bifurcation to a new solution with two asymmetric
cores occurs for slightly higher aspect ratio of about ∼5.5, as can be seen in figure 11.
The error can be attributed to the much more complex halo structure resulting from the
overlap of linear and non-linear instabilities. Nonetheless, the simulations are consistent
with the theory demonstrating that at the bifurcation point the resulting stationary core
is, indeed, circular. The radius of the stationary core at the bifurcation point predicted
by the theory is rc = 0.424, while the simulations find a slightly smaller circular core of
radius rc ≈ 0.35.

The core-halo model introduced in the previous sections qualitatively explains the
steady-state to which a perturbed Kirchhoff vortex will evolve. The model has proven
to be quantitatively accurate for Kirchhoff vortices with the aspect ratio less than
three, for which linear instabilities are not excited. For linearly unstable Kirchhoff vor-
tices, however, theory is only qualitatively accurate. Wave-breaking of linearly unstable
m = 3 mode leads to the expulsion of microscopic vortices farther than predicted by
the resonant structure of the initial Kirchhoff vortex. This can be seen in figures 4(a)
and (b). In addition, the stationary core-halo structure is observed to exhibits a more
extensive and thicker halo, as illustrated in figure 4(c). Unfortunately, we do not have a
theory that allows us to a priori predict the extent of the halo for Kirchhoff’s vortices
with a/b � 3. The situation becomes even more complex for Kirchhoff vortices with
higher eccentricities, when mode m = 4 becomes excited. In this case, the propagating
surface waves can lead to fission of the elliptical vortex.

For the aspect ratio a/b ≈ 5.43 we begin to observe the asymmetric stationary states
with two cores, one of which is much smaller than the other, as seen in figure 11(c).
This is consistent with the theoretical argument that a single core state does not exist
for Kirchhoff’s vortices with sufficiently large eccentricity. The exact value of the aspect
ratio at which the bifurcation from a single to double core occurs differs somewhat from
the prediction of our theory. This is a consequence of a more complex structure of the
halo than was assumed in the theory.

For larger aspect ratio, a/b = 7, the linear instability produced by the m = 4 mode
leads to fission of the ellipse into two equal sized cores. The instability happens very
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Figure 12. Time evolution snapshots of an unstable Kirchhoff’s vortex with aspect
ratio a/b = 7.00. Notice the symmetric fission which occurs at the early stages of
the evolution, leading to a steady-state with two identical vortices revolving around
the center of mass. The halo, once again, is thin.

rapidly. The subsequent rotation of the two cores around their center of mass, results
in a parametric resonance which again expels some of the microscopic vortices from the
cores, forming a thin halo, as can be seen in figure 12.

7. Discussion and conclusions

The core-halo structure is a consequence of non-linear instability, which arises from
the resonant structure of the stream function in the rotating reference frame. For an
aspect ratio less than three, the Kirchhoff vortex remains linearly stable, and small per-
turbations are not amplified. The mechanism for the halo formation is the parametric
resonance, which moves some of the microscopic vortices into the low energy region of
the phase-space. Under these conditions, we can say that the Kirchhoff vortex is lin-
early stable, but non-linearly unstable. When the eccentricity of the Kirchhoff vortex
increases further, the core becomes linearly unstable. This introduces a new mecha-
nism—wave-breaking—for ejecting the microscopic vortices from the core. The halo
structure becomes more complex and extends farther than is predicted by the theory.
As the aspect ratio increase further, we find that the core becomes more spherically
symmetric and the halo more isotropic. Based on this observation, the core-halo model
predicts that for large eccentricities, Kirchhoff vortex must relax to a new structure;
this is, indeed, found in the simulations, which show that for large eccentricities, the
Kirchhoff vortex relaxes to a two-core-halo structure.

The relaxation of the Kirchhoff vortex into the final stationary state is analogous
to the violent relaxation of self-gravitating systems and plasmas. Unlike real particles,
however, the individual point vortices of finite strength are physically impossible due to
the infinite fluid velocity in the vortex core. Only vortices of infinitesimal strength are
physically relevant and, indeed, the Euler equation can only be mapped onto a system
of infinite number of infinitesimal vortices. Therefore, unlike gravitational or plasma
systems, in which collisional effects eventually lead to the thermodynamic equilibrium
after relaxation time which scales with the number of particles, for fluid systems this is
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Figure 13. Asymptotic order parameter as a function of the aspect ratio of the
initial Kirchhoff vortex. Notice that linearly unstable vortices (a/b > 3) first result
in steady-states which are more isotropic. However soon after the stationary dis-
tribution becomes completely isotropic (O ≈ 0), there is an abrupt transition to a
dual-core structure at a/b = 7.

not the case—Euler fluid can only relax to a non-equilibrium stationary state. For this
reason we call the steady-state ‘stationary’, as opposed to the ‘quasi-stationary states’
of systems with finite number of real particles interacting through long-range forces. For
fluid this is the last stage of evolution, there is no further relaxation.

To quantitatively study the one-core to two-core transition, we consider an order
parameter:

O = 〈sin (2θ)〉2 + 〈cos (2θ)〉2, (29)

where θ is the angle that each vortex makes with the x-axis. An isotropic distribution of
vortices would result in an order parameter close to zero, while an elliptical or bimodal
particle distribution, such as in the case of a dual-core structure, will lead to a non-
zero order parameter. As expected, Kirchhoff vortices with the aspect ratio close to
unity result in steady-states with a core-halo structure characterized by a very thin halo
and order parameter close to zero. With increasing aspect ratios, the order parameter
increases—corresponding to a higher eccentricity of the core—up to a/b = 3, where the
system is no longer linearly stable resulting in thicker and denser halos. Since halos are
close to circularly symmetric, the order parameter decreases. For an aspect ratio between
approximately a/b = 5.2 and a/b = 5.43, the particle distribution is almost perfectly
isotropic, with the order parameter close to zero, see figure 13. For these parameters,
the secondary core begins to form. When the aspect ratio reaches the fission values
of the m = 4 instability, the order parameter increases dramatically. The m = 4 fission
instability, therefore, is responsible for drastically accelerating the formation of the dual-
core structure. We would like to stress that the linear-stability analysis by itself is not
sufficient to predict the structure of the final stationary state. Even if a Kirchhoff vortex
undergoes a fission instability, there is no way to know a priori that later on one of the
cores will not fuse with the other core with an accompanying production of halo. This
is indeed what we see happen with Kirchhoff vortices with an aspect ratio close to 5.5.
On the other hand, the core-halo theory allows us to study the stationary state directly.

https://doi.org/10.1088/1742-5468/aba68b 17

https://doi.org/10.1088/1742-5468/aba68b


J.S
tat.

M
ech.

(2020)
083205

Linear and non-linear instabilities of Kirchhoff’s elliptical vortices

It predicts that for large aspect ratios there does not exist a stationary (in the rotating
reference frame) core-halo solution with a single core.
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